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Abstract: This paper proposes a fast phase-only beamforming algorithm for frequency diverse array
multiple-input multiple-output radar systems. Specifically, we use the Kronecker decomposition to
decompose the desired phase-only weight vector into phase-only transmit and receive weight vectors
and to decompose the target steering vector into transmit and receive steering vectors. By using
the properties of the Kronecker product, the transmit and receive steering vectors and the transmit
and receive weight vectors with the Vandermonde structure are decomposed into Kronecker factors
with uni-modulus vectors, respectively. On this basis, in order to maintain the mainlobe gain and
form a deep null at the desired position, the Kronecker factors are divided into two parts.The first
component, referred to as the interference suppression factors, is responsible for creating deep nulls.
The second component, known as the signal enhancement factor, maintains the mainlobe gain. We
provide an analytical solution with low complexity for the Kronecker factors. This strategy can obtain
the phase-only weights while effectively forming a deep null at the desired position. Numerical
experiments are conducted to verify the effectiveness of the proposed algorithm.

Keywords: frequency diverse array multiple-input multiple-output (FDA-MIMO); beamforming;
phase-only control; interference suppression; Kronecker decomposition

1. Introduction

Antenna arrays play a crucial role in various industries of modern information tech-
nology, including radar, communications, remote sensing, etc. [1–6]. Beamforming, as a
fundamental technique in array signal processing, is widely employed to enhance target
signal and suppress interference by creating deep nulls in undesired directions. Improving
the interference suppression capability of antenna arrays is a critical requirement for radar
and communication systems.

Over the past few decades, numerous beamforming techniques have been inves-
tigated [7–13]. Conventional beamforming techniques require adjusting the amplitude
and phase of the receive filter, resulting in higher hardware costs at the receiver. There-
fore, previous works have explored phase-only beamforming techniques for phased array
radar [10–13], which utilize neural networks [10], numerical optimization [11], and other
methods [12,13] to obtain phase-only weights. However, these techniques may be limited
by computational complexity. In order to reduce computational complexity and improve
practicality, a phase-only array response adjustment via the geometric approach was pro-
posed [14]. Unfortunately, this method [14] can only rapidly adjust the response at a single
point and cannot simultaneously form deep nulls for multiple points. Moreover, it is worth
noting that these techniques [7–14] primarily aim to create deep nulls in desired directions,
but they are limited in their ability to create deep nulls at specific locations due to the
angle-dependent beam pattern of phased array radar systems. From a practical point of
view, it is possible to encounter interference signals that have similar angles as the target of
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interest [15,16]. As a result, there is a demand to investigate beamforming techniques that
can effectively form deep nulls at specific locations.

Recently, the frequency diverse array (FDA) radar has gained significant attention from
academia due to its degrees of freedom (DOFs) in the range domain [17–19]. In contrast
to the capability of forming nulls in a specific direction in the beam pattern of phased
array radar, by introducing frequency offsets between the elements of the transmitter,
FDA allows for the control of nulls in both range and angle dimensions, thus effectively
suppressing interference signals from specific directions and ranges. However, the beam
pattern of the FDA radar exhibits time-varying characteristics, necessitating the integration
of Multiple-Input Multiple-Output (MIMO) technology at the receiver end to achieve an
equivalent time-invariant beam pattern [20–22], thereby fully leveraging the advantages of
the two-dimensional (2D) range-angle beam pattern of the FDA radar.

Based on this capability, numerous beamforming techniques [23–27] have been pro-
posed. For instance, Lan et al. [26] proposed two iterative algorithms with multi-response
control based on the oblique projection (MRCOP) method, namely the concurrent MR-
COP (C-MRCOP) and the successive MRCOP (S-MRCOP). Moreover, two approaches,
namely point-by-point successive null broadening control (SNBC) and multi-point concur-
rent null broadening control (CNBC), were developed for suppressing interference [27].
These approaches [27] were designed to broaden nulls at specific positions and effectively
mitigate interference signals. Apart from the aforementioned works, there are various
other beamforming techniques for the FDA-MIMO radar, such as transmit beam space
design [28], cognitive FDA-MIMO radar beamforming [29], low probability of intercept
of FDA-MIMO radar beamforming [30], and so on [31–33]. It is worth noting that none
of the aforementioned methods investigate the phase-only beamforming technique for
the FDA-MIMO radar. This implies that the mentioned approaches are not capable of
utilizing phase shifters at the receiver to form deep nulls at desired positions. Thus, the
implementation of these methods requires a complex and high-cost hardware architecture.
For the FDA-MIMO radar, two data-independent phase-only beamforming methods were
proposed using the convex optimization technique [34]. However, these methods still have
computational complexities, and cannot find an efficient solution in polynomial time when
the number of antennas is large. To the best of our knowledge, there have been limited
reports on the fast phase-only beamforming technique for the FDA-MIMO radar.

Motivated by this research gap, we propose a fast phase-only beamforming method
via the Kronecker decomposition [35] for the FDA-MIMO radar. In our work, we utilize
the Kronecker decomposition to decompose the desired phase-only weight vectors into
phase-only transmit and receive weight vectors, and decompose the target steering vector
into transmit and receive steering vectors. The steering vectors and weight vectors of the
transmit and receive modes with the Vandermonde structure are then decomposed into
Kronecker factors with uni-modulus vectors, respectively. Subsequently, we divide the Kro-
necker factors into two parts to achieve interference suppression and signal enhancement.
Our algorithm can rapidly form a deep null at the desired position with low computational
complexities. Numerical experiment results demonstrate the effectiveness and superiority
of the proposed method. We briefly summarize the research contributions of our work
as follows:

(1) We propose a phase-only beamforming design algorithm for the FDA-MIMO radar
based on Kronecker decomposition.

(2) We offer an analytical solution of the interference suppression factors and signal
enhancement factors.

(3) The proposed algorithm can form deep nulls at specified locations with very low
complexity and reduce the hardware cost of the FDA-MIMO radar system.

The remainder of this paper is organized as follows. In Section 2, the system model is
introduced, and the problem formulation is presented. Section 3 presents the analytical
solution for phase-only weight by designing the interference suppression factors and
signal enhancement factors. Numerical simulations are employed in Section 4 to validate
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the effectiveness of the proposed method. Finally, concluding remarks are provided in
Section 5.

Notations: Throughout this paper, notations (·)∗, (·)T and (·)† are used to represent
the conjugate, transpose and conjugate transposes, respectively. |w| denotes the modulus
of complex number w. ⊗ represents the Kronecker product. ∠(·) is the phase of (·). ∥·∥2
represents the Euclidean norm of a vector. (·)2π outputs the remainder after dividing (·)
by 2π. Π denotes the cumulative product operation. H⊥ refers to the orthogonal space
of H. Im represents the m × m identity matrix, and Cm×n indicates the sets of the m × n
complex matrix.

2. Signal Model and Problem Formulation

In this section, we introduce the FDA-MIMO radar signal model and the phase-only
beamforming problem.

2.1. Signal Model

We consider a monostatic FDA-MIMO radar, as illustrated in Figure 1. Let us assume
that the transmitter and receiver both adopt a Uniform Linear Arrays (ULA) consisting
of N and M elements, respectively. The antenna array element spacing is set to d = λ/2,
where λ represents the wavelength and is given by λ = c/ f0. c denotes the speed of light.
f0 represents the transmitting frequency of the first element of the transmitter, acting as the
reference carrier frequency. Setting a linear frequency offset ∆ f between the transmitting
frequencies of different transmitter elements [17–19], the transmitting frequency of the nth
element is

fn = f0 + n∆ f , n = 0, 1, . . . , N − 1. (1)

Figure 1. The monostatic FDA-MIMO array structure.

The transmit signal of the n-th element can be expressed as

sn(t) =

√
E
N

ψn(t)ej2π( f0+n∆ f )t, 0 ≤ t ≤ T, (2)

where E is the transmitted energy, t denotes the time within the radar pulse, T is the radar
pulse duration and ψn(t) represents the baseband envelope of the nth transmit element,
i.e.,

∫ T
0 ψ∗

n1
(t)ψn1(t)dt = 1, which satisfies the orthogonality condition,

∫ T

0
ψ∗

n1
(t)ψn2(t − ς)ej2π∆ f (n2−n1)tdt = 0, n1 ̸= n2, ∀τ, (3)

where ς denotes the delay time, n1, n2 = 0, 1 . . . , N − 1.
Assuming a far-field target located at angle θ and range r, after matched filtering is

performed on the receive elements, the received target echo signal by the FDA-MIMO radar
at time t can be expressed as follows (more details can be found in [20–22]):

x(t) = ζta(r, θ) + n(t), (4)
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where ζt is the complex coefficient after matched filtering, n(t) represents the noise signal.
a(r, θ) ∈ CNM is the array steering vector, which can be expressed as

a(r, θ) = at(r, θ)⊗ br(θ), (5)

where at(r, θ) is the range angle-dependent transmit steering vector, defined as

at(r, θ) =
[
1, ej2π ft , · · · , ej2π(N−1) ft

]T
∈ CN , (6)

and br(θ) is the receive steering vector determined by the angle, given by

br(θ) =
[
1, ej2π fr , · · · , ej2π(M−1) fr

]T
∈ CM, (7)

where ft =
d sin θ

λ − 2r∆ f
c and fr = d sin θ

λ denote the transmit and receive spatial frequen-
cies, respectively.

2.2. Problem Formulation

In order to design the phase-only weight vector to suppress the interference while
ensuring the target signal gain, the weight vector w needs to maximize the output signal-
to-noise ratio (SINR) after beamforming. This objective function can be modeled as

max
w

w†Rsw
w†Rj+nw

, (8)

where Rs represents the signal covariance matrix, defined as

Rs = σ2
s a(θ0, r0)a†(θ0, r0). (9)

σ2
s is the power of the signal, a(θ0, r0) is the target steering vector. Rj+n denotes the inter-

ference plus noise covariance matrix. Assuming interference and noise are independent,
we can express Rj+n as

Rj+n =
J

∑
j=1

σ2
j a

(
θj, rj

)
a†(θj, rj

)
+ σ2

nI, (10)

where the noise is assumed to be a white Gaussian signal with zero mean and covariance
matrix σ2

nI. σ2
j and σ2

n are the power of the jth interference and noise, respectively. a
(
θj, rj

)
is the jth interference steering vector.

By combining Equations (9) and (10), we can reformulate Equation (8) as

max
w

σ2
s
∣∣w†a(θ0, r0)

∣∣2
∑J

j=1 σ2
j

∣∣w†a
(
θj, rj

)∣∣2 + σ2
n∥w∥2

2

. (11)

It can be found in (11) that to maximize the output SINR, we need to maximize the
numerator and minimize the denominator of (11). Then, to maximize SINR while obtaining
the phase-only weight vector, the following problem can be obtained:

max
w

κ (12a)

s.t.
∣∣∣w†a(r0, θ0)

∣∣∣ = κ (12b)∣∣∣w†a
(
rj, θj

)∣∣∣ ≤ ρ, j = 1, . . . , J (12c)

|wi| = 1, i = 1, . . . , NM, (12d)
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where constraint (12b) is used to enhance the mainlobe gain, ρ is a small positive number
in constraint (12c) to suppress interference. And constraint (12d) ensures the phase-only
weight vector. Notice that Problem (12) is a nonconvex problem. In the next section, we
design an analytical method to solve Problem (12) and obtain the phase-only weight vector.

3. The Phase-Only Beamforming Based on Kronecker Decomposition

In this section, we introduce a fast phase-only beamforming technique via Kronecker
decomposition for the FDA-MIMO radar. For simplicity, we hypothesize that the numbers
of transmitter and receiver satisfy N = 2P and M = 2Q, where P and Q are positive
integer (we discuss the general case where the number of the transmitter or receiver is an
arbitrary positive integer in Section 3.4).

3.1. The Proposed Phase-Only Weight Vector Design Model

For the convenience of subsequent calculation, before designing the phase-only weight
vector, we define weight vector w̄ to be a feasible solution to Problem (12) with the following
form:

w̄ = w̄t ⊗ w̄r, (13)

where w̄t ∈ CN and w̄r ∈ CM are defined as the transmit and receive weight vectors,
respectively. Next, we introduce the following problem (14):

max
w̄t ,w̄r

κ (14a)

s.t.
∣∣∣(w̄t ⊗ w̄r)

†(at(r0, θ0)⊗ br(θ0))
∣∣∣ = κ (14b)∣∣∣(w̄t ⊗ w̄r)

†(at
(
rj, θj

)
⊗ br

(
θj
))∣∣∣ = 0, j = 1, . . . , J (14c)

|w̄n
t | = 1 (14d)

|w̄m
r | = 1, (14e)

where at(r0, θ0) and br(θ0) represent the target transmit and receive steering vectors, re-
spectively. at

(
rj, θj

)
and br

(
θj
)

are the jth interference transmit and receive steering vectors,
respectively. Compared to Problem (12), in Problem (14), variable w is replaced with w̄t
and w̄r. Moreover, to maximize SINR, we expect the left side of (12c) to be as small as
possible and set the left-hand side of Constraint (14c) equal to zero. In the next section,
we present an approach based on Kronecker decomposition to design phase-only weight
vectors w̄t and w̄r.

3.2. Kronecker Decomposition of Weight Vector and Steering Vector

First of all, we introduce an important lemma on Kronecker decomposition.

Lemma 1 (Kronecker Decomposition [35]). Let us consider vector g̃ ∈ CK whose elements have
uni-modulus and which has a Vandermonde structure according to the following expression:

g̃ =
[
1, ejΦ, ej2Φ, . . . , ej(K−1)Φ

]T
, (15)

where Φ is fixed. Vector g̃ can be decomposed as g̃ = g(L) ⊗ g(L−1) ⊗ . . . ⊗ g(1), where
K = k1k2 . . . kL with {kl}l=L

l=1 being positive integers. Each factor g(l) with a length of kl is

given by g(l) =
[
1, ejkl−1 ...k1k0Φ, ej2kl−1 ...k1k0Φ, . . . , ej(kl−1)kl−1 ...k1k0Φ

]T
with k0 = 1.

We note that if kl = 2, then g(l) in Lemma 1 is now simplified as g(l) =
[
1, ej2l−1Φ

]T
.

Recalling the transmit and receive steering vectors in (6) and (7), we can observe that at(r, θ)
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and br(θ) exhibit a Vandermonde structure, as stated in Lemma 1. Hence, at(r, θ) and br(θ)
can be decomposed as (16) and (17), respectively.

at(r, θ) = a(P)
t ⊗ a(P−1)

t ⊗ . . . ⊗ a(p)
t ⊗ . . . ⊗ a(1)t , (16)

br(θ) = b(Q)
r ⊗ b(Q−1)

r ⊗ . . . ⊗ b(q)
r ⊗ . . . ⊗ b(1)

r , (17)

where a(p)
t ∈ C2 and b(q)

r ∈ C2 denote the transmit and receive Kronecker factors, respec-
tively (p = 1, . . . , P and q = 1, . . . , Q), which are defined as

a(p)
t =

[
1, ej2p−1Φt

]T
, (18)

b(q)
r =

[
1, ej2q−1Φr

]T
, (19)

where Φt = 2π ft, Φr = 2π fr.
According to Problem (14), the design of w̄t and w̄r must satisfy (14b) for target echo

enhancement and (14c) for interference suppression. To meet these requirements and
simplify the algorithm, we assume that weight vectors w̄t and w̄r have a Vandermonde
structure. Then, w̄t and w̄r are decomposed as

w̄t = u(P)
t ⊗ u(P−1)

t ⊗ . . . ⊗ u(P)
t ⊗ . . . ⊗ u(1)

t , (20)

w̄r = u(Q)
r ⊗ u(Q−1)

r ⊗ . . . ⊗ u(q)
r ⊗ . . . ⊗ u(1)

r , (21)

where u(p)
t ∈ C2 and u(q)

r ∈ C2 denote the pth and qth Kronecker factors of the transmit and
receive weight vectors, respectively. Building upon Equations (20) and (21), the design of
w̄t and w̄r is converted into the design of u(p)

t and u(q)
r . We introduce the design method of

the Kronecker factors and synthesize the phase-only weight vector in the next subsection.

3.3. Design the Phase-Only Weight Vector

In the previous subsection, based on the Kronecker decomposition, the steering vector
and the weight vector are decomposed into multiple Kronecker factors. In accordance with
Equations (16), (17), (20) and (21), we can express w̄†a(r, θ) as follows:

w̄†a(r, θ)

=(w̄t ⊗ w̄r)
†(at(r, θ)⊗ br(θ))

=
{

u(P)†
t ⊗ . . . ⊗ u(1)†

t

}
⊗

{
u(Q)†

r ⊗ . . . ⊗ u(1)†
r

}
·
{

a(P)
t . . . ⊗ a(1)t

}
⊗

{
b(Q)

r ⊗ . . . ⊗ b(1)
r

}
.

(22)

Based on the mathematical properties of the Kronecker product, it is known that
for any matrices H1, H2, H3, and H4, they satisfy (H1 ⊗ H2)(H3 ⊗ H4) = H1H3 ⊗ H2H4.
Then, w̄†a(r, θ) is equivalent to

w̄†a(r, θ)

=
{(

u(P)†
t ⊗ . . . ⊗ u(1)†

t

)(
a(P)

t ⊗ . . . ⊗ a(1)t

)}
⊗

{(
u(Q)†

r ⊗ . . . ⊗ u(1)†
r

)(
b(Q)

r ⊗ . . . ⊗ b(1)
r

)}
(23)

=

{
P

∏
p=1

u(p)†
t a(p)

t

}
⊗

{
Q

∏
q=1

u(q)†
r b(q)

r

}
(24)

=
P

∏
p=1

u(p)†
t a(p)

t ·
Q

∏
q=1

u(q)†
r b(q)

r , (25)

where Equation (25) is derived from the fact that u(p)†
t a(p)

t and u(q)†
r a(q)r are complex numbers.

By observing Equation (25), we can find out, for the jth interference, that an arbitrary u(h)

needs to be designed such that w̄†a
(
rj, θj

)
= 0 satisfies onstraint (14c) for interference suppres-
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sion, where u(h) ∈ B (h ∈ H, H = {1, . . . , Q + P}) and B =
{

u(1)
t , . . . , u(P)

t , u(1)
r , . . . , u(Q)

r

}
.

Similarly, to satisfy target echo enhancement Constraint (14b), the rest of B needs to be
designed to maximize κ. For convenience, we designate the Kronecker factors that satisfy
Constraint (14b) as Signal Enhancement (SE) factors and denote their set as B1. Conversely,
the remaining Kronecker factors used to fulfill Constraint (14c) are referred to as Interfer-
ence Suppression (IS) factors, with their set denoted as B2. It follows that B1 ∪ B2 = B.
Additionally, we define v(h) ∈ I, where I =

{
a(1)t , . . . , a(P)

t , a(1)r , . . . , a(Q)
r

}
denotes the set

of transmit and receive steering vector factors of the target or interference. We further
define It as the target set and Ij as the jth interference set.

Now, we can design IS and SE factors separately to synthesize phase-only vector w̄. For
the convenience of understanding, we offer a relatively intuitive diagram Figure 2 where we
can clearly see that the phase-only weight is decomposed into multiple Kronecker factors.

Figure 2. An abbreviated illustration of the design of the phase-only vector.

3.3.1. The Design of Interference Suppression Factors

As described in Problem (14) , for any interference, the expected weight vector should
satisfy Constraint (14c). Then, according to Equation (25), Constraint (14c) for jth interfer-
ence steering vector a

(
rj, θj

)
is assumed to be{

P

∏
p=1

u(p)†
t a(p)

t
(
rj, θj

)}
·
{

Q

∏
q=1

u(q)†
r b(q)

r
(
θj
)}

= 0. (26)

Using sets B and Ij, Equation (26) can be simply expressed as

H

∏
h=1

u(h)†v(h)
j = 0, (27)

where v(h)
j ∈ Ij, H = Q + P.

One can observe from Equation (27) that for the jth interference, we only need to
choose one of the Kronecker products, u(h)†v(h)

j , such that the equation equals zero. Since

v(h)
j is fixed, the selection process of Kronecker product u(h)†v(h)

j is equivalent to selecting

u(p)
t or u(q)

r from the set Ij. The chosen u(h) is assigned to the corresponding Kronecker
product factor in (27) for each jth interference equation, and u(h) is called the IS factor. We
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suppose the superscript of the chosen IS factor for the jth interference is hj
(
hj ∈ H

)
; based

on Equation (27), the hjth Kronecker product factor should satisfy Equation (28).

u(hj)†v(
hj)

j = 0, (28)

where u(hj) ∈ B2. We recall Equations (20) and (21); the specific form of u(hj) can be
defined as

u(hj) =

[
ejφ

hj
1 , ejφ

hj
2

]
. (29)

For the jth equation, if hj ≤ P, substituting (29) and (18) into (28), the unknown phase

of the vector u(hj) can be expressed as

e−jφ
hj
1 + e

j
(
−φ

hj
2 +2p−1Φj

t

)
= 0. (30)

If hj > P in the jth equation, substituting (29) and (19) into (28), the unknown phase

of the vector u(hj) can be expressed as

e−jφ
hj
1 + e

j
(
−φ

hj
2 +2q−1Φj

r

)
= 0, (31)

where Φj
t = 2π f j

t , Φj
r = 2π f j

r , f j
t and f j

r denote the transmit and receive spatial frequencies
of the jth interference, respectively.

The phase solutions to (30) are

φ
hj
2 = 0, (32)

φ
hj
1 =

(
π −∠ej2p−1Φj

t

)
2π

, (33)

and the phase solutions to (31) are

φ
hj
2 = 0, (34)

φ
hj
1 =

(
π −∠ej2q−1Φj

r

)
2π

. (35)

It is important to note that arbitrarily chosen hj satisfies Constraints (14d) or (14e), but
not arbitrary hj can maximize the value of κ in (14b). Once the IS factors are determined,
based on (25), (w̄t ⊗ w̄r)

†(at(r0, θ0)⊗ br(θ0)) can be written as

H

∏
h=1

u(h)†v(h)
t = u(hj)†v(

hj)
t ·

H

∏
h=1,h ̸=hj

u(h)†v(h)
t

= γhj
·

H

∏
h=1,h ̸=hj

u(h)†v(h)
t ,

(36)

where v(h)
t ∈ It. In order to design the weight vector and ensure maximizing κ in

Constraint (14b), we expect (36) to be as large as possible. Thus, we calculate all the

γhj
= u(hj)†v(

hj)
t

(
hj ∈ H

)
and choose γ̂hj

with the largest modal value. The selected hj is
able to obtain the maximum κ, that is, the target echo gain. For easy understanding of the
relation between Kronecker factors and steering vector factors, the geometric perspective is

shown in Figure 3. The calculated u(hj) is actually in orthogonal space v(
hj)⊥

j of v(
hj)

j , and

the process of selecting hj is essentially to find orthogonal space v(
hj)⊥

j with the smallest

angle with v(
hj)

t .
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Figure 3. Illustration of the Kronecker factors.

In summary, the criterion for the determination of the IS factors effectively suppresses
the interference signal while ensuring the maximization of the output SINR. The design
procedure of IS factors is summarized in Algorithm 1 with specific steps elaborated.

Algorithm 1 Design of IS factors.

Require: N, M, a(r0, θ0), a
(
rj, θj

)
, f j

t and f j
r (j = 1, . . . , J).

Ensure: All the IS factors u(hj).
1: Set N = 2P, M = 2Q.
2: a(r0, θ0) = at(r0, θ0)⊗ br(θ0).
3: at(r0, θ0) = a(P)

t (r0, θ0)⊗ . . . ⊗ a(1)t (r0, θ0).

4: br(θ0) = b(Q)
r (θ0)⊗ . . . ⊗ b(1)

r (θ0).
5: for each j = 1, . . . , J do
6: a

(
rj, θj

)
= at

(
rj, θj

)
⊗ br

(
θj
)
.

7: at
(
rj, θj

)
= a(P)

t
(
rj, θj

)
⊗ . . . ⊗ a(1)t

(
rj, θj

)
.

8: br
(
θj
)
= b(Q)

r
(
θj
)
⊗ . . . ⊗ b(1)

r
(
θj
)
.

9: end for
10: for each j = 1, . . . , J do
11: for each h = 1, . . . , H do
12: φh

2 = 0.
13: if h ≤ P then
14: φh

1 =
(

π −∠ej2p−1Φj
t

)
2π

.
15: else
16: φh

1 =
(

π −∠ej2q−1Φj
r
)

2π
.

17: end if
18: Calculate γh = u(h)†v(h)

t .
19: end for
20: Choose the u(hj) with largest

∣∣∣γhj

∣∣∣ as the j-th IS factor
21: end for

3.3.2. The Design of Signal Enhancement Factors

After obtaining the IS factors in w̄, there are still Q + P − J SE factors to be de-
signed. In other words, Q + P − J Kronecker product factors in B need to be designed
to maximize κ (enhanced signal power) and meet Constraints (14d) and (14e) (satisfy the
phase-only constraint).

By pooling the designed IS factors corresponding to all J interferences, denoting the
superscript of the SE factors as he, Constraint (14b) can be expressed as
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{
P

∏
p=1

u(p)†
t a(p)

t (r0, θ0)

}
·
{

Q

∏
q=1

u(q)†
r b(q)

r (θ0)

}

=
J

∏
j=1

u(hj)†v(
hj)

t ·
H

∏
he=1,he ̸=hj

u(he)†v(he)
t ,

(37)

where u(he) ∈ B1, u(hj) ∈ B2, v(
hj)

t and v(he)
t both belong to the set It. Following Definitions

(6) and (7) and Constraints (14d) and (14e), we can easily observe that the module of the
heth Kronecker product factor is not greater than 2. This implies that∣∣∣u(he)†v(he)

t

∣∣∣ = δhe , δhe ∈ [0, 2]. (38)

Observing Equation (38), we know that
∣∣∣u(he)†v(he)

t

∣∣∣ obtains its maximum value only

when u(he)† and v(he)
t are conjugate with each other, i.e.,

∣∣∣u(he)†v(he)
t

∣∣∣ = 2. According to

Definitions (18) and (19), we define v(he)
t to have the following form:

v(he)
t =

[
1, ejω

(he)

]T
, (39)

where ω = 2p−1Φ0
t or ω = 2q−1Φ0

r is chosen according to the value of he;
Φ0

t = 2π f 0
t , Φ0

r = 2π f 0
r , f 0

t and f 0
r denote the transmit and receive spatial frequencies

of the target, respectively.
Thus, when

∣∣∣u(he)
†
v(he)

t

∣∣∣ = 2, the phase solutions to u(he) are

φhe
1 = 0, (40)

φhe
2 = ω. (41)

We note that arbitrarily u(he) satisfies Constraints (14d) or (14e). In summary, the SE factors
can be determined, and steps are summarized in Algorithm 2.

Algorithm 2 Design of SE factors

Require: P, hj(j = 1, . . . , J), f 0
t , f 0

r .
Ensure: All the SE factors u(he).

1: for each h = 1, . . . , H do
2: if h ≤ P&h ̸= hj, j = 1, . . . , J then

3: φh
2 = ∠ej2h−1Φ0

t

4: else
5: if h > P&h ̸= hj, j = 1, . . . , J then

6: φh
2 = ∠ej2h−P−1Φ0

r

7: end if
8: end if
9: end for

With the two aforementioned algorithms, the SE and IS factors can be determined.
The transmit and receive weight vectors can be calculated using the Kronecker product
as specified in Equations (20) and (21), respectively. The final phase-only weight vector is
calculated from Equation (13). Then, the design procedure of the phase-only weight vector
is given in Algorithm 3.
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Algorithm 3 Design of Phase-Only Weight Vectors

Require: N, M, a(r0, θ0) and a
(
rj, θj

)
(j = 1, . . . , J).

Ensure: The phase-only weight vector w̄.

1: Select and design IS factors by performing Algorithm 1

2: Design SE factors by performing Algorithm 2.

3: Calculate the transmit weight vector w̄t = u(P)
t ⊗ . . . ⊗ u(1)

t .

4: Calculate the receive weight vector w̄r = u(Q)
r ⊗ . . . ⊗ u(1)

r .

5: Calculate the weight vector w̄ = w̄t ⊗ w̄r.

3.4. Discussion

In this subsection, we discuss the performance of the proposed phase-only beamform-
ing algorithm, including the antenna number, IS factors selection, bistatic FDA-MIMO
radar, and computation complexity.

3.4.1. Antenna Number

The weight vector is designed for the exceptional case when the number of transmitter
and receiver N = 2P and M = 2Q. In fact, for the general case of non-prime number, it can
perform the Kronecker decomposition. After the Kronecker decomposition of w̄t, w̄r, at
and br, they can be decomposed into Kronecker factors of the following form:

g(l) =
[
1, ejkl−1 ...k1k0Φ, ej2kl−1 ...k1k0Φ, . . . , ej(kl−1)kl−1 ...k1k0Φ

]T
. (42)

The transmit and receive weight vectors can be determined using the procedures
described in the previous section.

According to reference [35], when the number of antennas is a prime number, one
simple solution is to utilize antenna selection. This approach addresses the issue of the
inability to decompose the steering vector into Kronecker products. For instance, in the
case where there are 67 antennas, the optimal subset of 64 antennas can be chosen using a
specific selection criterion. These selected 64 antennas can then be employed for phase-only
beamforming using Kronecker decomposition. Additionally, it is mentioned in [35] that
standards such as IEEE 802.11n and IEEE 802.11ac [36] often set the number of antennas to
be a power of two. This aligns well with the proposed design, facilitating the application of
the proposed approach.

3.4.2. Interference Suppression Factors Selection

In Algorithm 1, we consider the common case where each interference has different
transmit and receive frequencies, that is, f j1

t ̸= f j2
t and f j1

r ̸= f j2
r , j1 ̸= j2, j1, j2 = 1, . . . , J.

This means that the corresponding a(p)
t and b(q)

r for different interferences are not the
same. Therefore, for the jth interference, the obtained u(h) can only be used to suppress
the jth interference. If there are multiple interferences with a common transmit f j

t or
receive f j

r frequency, it is possible to design an IS factor that can suppress both interferences
simultaneously. This means that for different interferences, there is a shared component
in vj (the transmit or receive Kronecker factors), and they have a common u(hj) such that

u(hj)†v(
hj)

j = 0.
Moreover, it is important to note that the proposed algorithm exhibits a high demand

for array DOFs due to the relationship between the number of IS and SE factors and the
number of array elements. As the number of interferences increases, there is a degradation
in beam performance for a given number of array elements. Furthermore, accurate a priori
information is required by the proposed algorithm, indicating its limited robustness.
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3.4.3. Bistatic FDA-MIMO Radar

In this subsection, we discuss the application of the proposed algorithm to a bistatic
FDA-MIMO radar. According to the steps of the proposed algorithm, the calculation of
the phase-only weight vector is related to the transmit and receive spatial frequencies of
the interference and the target. For a bistatic FDA-MIMO radar, we let θ represent the
direction of arrival and β denote the direction of departure. The transmit and receive spatial
frequencies of the bistatic FDA-MIMO radar are denoted as ft =

d sin β
λ − 2r∆ f

c and fr =
d sin θ

λ , respectively. Therefore, when computing IS and SE factors in Algorithms 1 and 2,
it is necessary to substitute the transmit and receive spatial frequencies with those of the
bistatic FDA-MIMO radar.

3.4.4. Computation Complexity

It is worth highlighting that the proposed phase-only beamforming algorithm has
low computational complexities. The computational cost of the algorithm primarily arises
from the calculation of the phases of IS and the SE factors, including only the simple addi-
tions or multiplication operators. In the Algorithm 1 part, the computational complexity
mainly arises from the calculation of phase solution φh

1 and the calculation of γhj
. Since

u(hj) and v(h)
t with the dimension of 2 × 1, the computational complexity of u(hj)†v(h)

t is
O(2). The computational load of calculating the solution of φh

1 in (33) or (35) is O(J). So
the computational complexity of Algorithm 1 is O(2HJ). In addition, the complexity of
Algorithm 2 is O(H). Based on the analyses above, the computational complexity of the
proposed algorithm is O(2HJ + H), where H = log2 N + log2 M. In contrast, the convex

optimization method in [34] requires O
(
(NM + 1)4.5

)
complex operations, and the SNBC

method in [27] requires O
(

N3M3 + N2M2 + 1
)

complex operations. Table 1 summarizes
the computational complexity of these algorithms.

Table 1. Comparison of Computational Complexity.

Method Computational Complexity

Convex optimization [34] O
(
(NM + 1)4.5

)
SNBC [27] O

(
N3M3 + N2M2 + 1

)
Proposed method O((log2 N + log2 M)(2J + 1))

4. Simulation Results

In this section, we present numerical experiments to evaluate the effectiveness of the
proposed method. Since the method in [34] cannot find an efficient solution in polynomial
time when the number of antennas is large, we compare the performance of the proposed al-
gorithm with that of the SNBC method [27] in this section. The main simulation parameters
are provided in Table 2.
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Table 2. Simulation parameters.

Parameters Symbols Value

Transmit elements N 32
Receive elements M 32

Reference carrier frequency f0 16 GHz
Wavelength λ0 0.0187 m

Frequency offset ∆ f 3750 Hz
Main beam angle θ0 30◦

Main beam range r0 25 km
Main beam transmit frequency f 0

t −0.375
Main beam receive frequency f 0

r 0.25

4.1. Beam Pattern for Different Interference Scenarios

In this subsection, we assess the effectiveness of the proposed algorithm in forming
deep nulls at the desired locations.

4.1.1. One Suppression Point

In the first example, we consider forming a deep null at one desired point (30◦, 6 km).
That is, the transmit frequency is 0.1, different from the target, and the receive frequency
is 0.25, same as the target. Utilizing the proposed algorithmic procedure, we obtain the
phase-only weight vectors. Table 3 offers transmit weight vector w̄t and receive weight
vector w̄r, and the Kronecker product of the transmit and receive weight vectors is the final
phase-only weight vector. By observing it, we can find that the obtained weight vector
is phase only. Figure 4a,b plot the 2D beampattern synthesis result for different methods.
Figure 4c produces the equivalent transmit beam pattern of a 2D beam pattern at the receive
spatial frequency fr = 0.25. One can observe that the two methods can effectively form
a deep null in the desired position. Furthermore, it can be observed that our proposed
method yields a higher sidelobe level compared to the SNBC method. This is determined
by the performance of the proposed algorithm. However, it should be emphasized that the
advantage of our algorithm is that the deep null beam pattern can be achieved solely by
adjusting the phase of weight, a characteristic not possessed by the SNBC method.

Table 3. Phase-Only weight vector for one interference.

n/m w̄t w̄r n/m w̄t w̄r

1 e+j2.5133 e−j0.0000 17 e−j0.0000 e−j0.0000

2 e+j0.0000 e+j1.5708 18 e−j0.0000 e+j1.5708

3 e−j2.1991 e+j3.1416 19 e−j2.1991 e+j3.1416

4 e+j1.5708 e−j1.5708 20 e+j1.5708 e−j1.5708

5 e−j0.6283 e−j0.0000 21 e−j0.6283 e−j0.0000

6 e−j3.1416 e+j1.5708 22 e−j3.1416 e+j1.5708

7 e+j0.9425 e+j3.1416 23 e+j0.9425 e+j3.1416

8 e−j1.5708 e−j1.5708 24 e−j1.5708 e−j1.5708

9 e+j2.5133 e−j0.0000 25 e+j2.5133 e−j0.0000

10 e−j0.0000 e+j1.5708 26 e−j0.0000 e+j1.5708

11 e−j2.1991 e+j3.1416 27 e−j2.1991 e+j3.1416

12 e+j1.5708 e−j1.5708 28 e+j1.5708 e−j1.5708

13 e−j0.6283 e−j0.0000 29 e−j0.6283 e−j0.0000

14 e−j3.1416 e+j1.5708 30 e−j3.1416 e+j1.5708

15 e+j0.9425 e+j3.1416 31 e+j0.9425 e+j3.1416

16 e−j1.5708 e−j1.5708 32 e−j1.5708 e−j1.5708
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(a) (b)

(c)

Figure 4. The beam pattern for different methods. (a) SNBC [27]. (b) Proposed method. (c) The beam
pattern at receive spatial frequency fr = 0.25.

4.1.2. Multiple Suppression Points

In the second example, a simulation experiment is designed to verify that the pro-
posed algorithm can effectively form multiple deep nulls even in multiple desired posi-
tions. We consider three desired points with angle and range of 30◦, 6 km ; 40◦, 10 km and
−15◦, 5 km, respectively. The transmit and receive frequencies are (0.1, 0.25), (0.072, 0.322)
and (−0.254,−0.13), respectively. Figure 5 plots the 2D beampattern synthesis result by
using phase-only weight. One can see that the proposed algorithm can effectively form
three deep nulls in the corresponding interference positions. However, the SNBC method
does not guarantee the formation of a deep zero at all points.
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(a) (b)

Figure 5. The 2D beam pattern for different methods. (a) SNBC [27]. (b) Proposed method.

4.2. Beam Pattern on the Different Quantization Bits

In practical applications, due to hardware limitations, phase shifters cannot generate
a continuous phase; it is necessary to quantize the phase of the phase shifter. To show
the performance of the beam pattern synthesized by our proposed algorithm on different
quantization bits, the beampattern performances of the phase-only weight vector are
compared in this subsection. Considering one suppression point, Figure 6 presents the
beam pattern of the proposed algorithm when the receiver has different quantization bits,
correspondingly. By observing the beam pattern, it can be observed that the quantized
beam pattern exhibits considerable deviation from the original beam pattern when the
receiver has different quantization bits. Especially when the quantization bit is one, the
change in the beam pattern is more obvious. As the number of quantization bits increases,
the quantized beam pattern gradually approaches the original beam pattern. For instance,
when the quantization bit is seven, Figure 6d displays that the beampattern performance is
roughly the same as the original beam pattern.

(a) (b)

Figure 6. Cont.
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(c) (d)

(e)

Figure 6. The beam pattern on different quantization bits. (a) 1 bit, (b) 3 bits, (c) 5 bits, (d) 7 bits.
(e) The beam pattern at receive spatial frequency fr = 0.25.

4.3. Output SINR on the Different Quantization Bits

In order to verify the output SINR performance of the proposed algorithm, we offer
the output SINR at different signal to noise ratio (SNR) values and the number of snapshots.
Furthermore, we present the output SINR on different quantization bits to show the
performance of the proposed phase-only method when the phase shifters have different
quantization bits. According to the constraints in (14), the output SINR is defined as

SINRoutput =
w†Rsw

w†Rj+nw
. (43)

Considering one interference point with σ2
j = 30 dB, Figure 7 provides the original

output SINR of the proposed algorithm and the SNBC method [27]. Moreover, the output
SINR values of the two algorithms are given in Figure 7 for different quantization bits.
Since the SNBC algorithm is not phase only, here, we only show the quantized performance
of the SNBC algorithm at nine bits. Specifically, Figure 7a displays the output SINR of the
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proposed method in the SNR from −10 dB to 30 dB with 800 snapshots; Figure 7b plots the
output SINR in the number of snapshots from 200 to 900 under the SNR is 20dB.

One can see that the proposed algorithm has good performance. Compared to the
optimal output SINR, the proposed method has only a little loss. The main reason is
that we form a deep null at the interference position, which can effectively suppress the
interference signal. Moreover, as the number of snapshots gradually increases, the output
SINR of the proposed method does not change. This phenomenon occurs due to the fact
that the proposed method is data independent. As shown in Figure 7, the output SINR
of the proposed algorithm with different quantization bits is significantly different from
the original output SINR. However, increasing the number of quantization bits brings the
quantized SINR closer to the original performance. Moreover, since the SNBC method is
not phase only, it can be seen that the quantized performance of the algorithm is poor at
nine bits, but our proposed algorithm has better performance.

(a) (b)

Figure 7. The output SINR on different quantization bits. (a) The output SINR versus SNR. (b) The
output SINR versus the number of snapshots.

5. Conclusions

This paper proposed a fast phase-only beamforming algorithm based on Kronecker
decomposition for the FDA-MIMO radar. We decomposed the phase-only weight vectors
into transmit and receive weight vectors with Vandermonde structures. On this basis, the
transmit and receive weight vectors were decomposed into Kronecker factors with uni-
modulus vectors, which were further divided into IS and SE factors. We derived analytical
solutions for both IS and the SE factors. The proposed algorithm is capable of obtaining a
phase-only weight vector with low complexity. And the obtained phase-only weight vector
can effectively form deep nulls at specific locations solely by adjusting the phase of receiver,
thereby reducing the hardware costs of radar systems. As a future work, we will extend
the proposed phase-only beamforming approach to the scenario with localization errors.
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