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Abstract: The traditional rat-race coupler comprises a quarter-wavelength transmission line and a
three-quarter-wavelength transmission line. In this design, the slow-wave structure transmission
line is employed to replace the conventional quarter-wavelength transmission line, and the three-
quarter-wavelength transmission line is substituted with the left-handed transmission line. By using
the TSMC CMOS 90 nm fabrication process, a circuit is created with a chip size of 300 µm × 200 µm,
corresponding to the electrical size at 39 GHz of 0.039λ0 × 0.026λ0. The measured results demonstrate
that the operating bandwidth is 35 to 43 GHz, with an amplitude imbalance of around 0 dB, a phase
error within 1◦, a return loss of less than 26 dB, and an isolation better than 40 dB.

Keywords: metamaterial; composite right/left-handed transmission line; rat-race coupler; slow wave

1. Introduction

Electromagnetic metamaterials are extensively employed across diverse domains.
Within the optics field, the implementation of superlenses exhibiting negative refractive
indices is facilitated extensively, thereby enabling super-resolution imaging capabilities [1,2].
Furthermore, these artificial metamaterials find practical applications in optical microscopes
and imaging systems [3,4].

In the domain of RF and microwave technology, electromagnetic metamaterials play
a crucial role in the design of antennas [5–10] and filters [11–16]. By leveraging the novel
characteristics of these materials, antennas can achieve size reduction and gain and di-
rectivity enhancement. Similarly, electromagnetic metamaterials facilitate the stringent
properties of signal transmission and reflection within specific frequency ranges, rendering
them highly suitable for filter design.

Moreover, the negative refractive characteristics of electromagnetic metamaterials
can be effectively utilized in RF invisibility technology [17–20], enabling the transparency
of objects from visible light to radio frequency. This capability creates opportunities for
concealing or mitigating interference arising from RF signals.

This paper focuses on the RF circuit design application of electromagnetic metamateri-
als to create a compact 90 nm CMOS wideband rat-race coupler while maintaining optimal
performance.

When designing a rat-race coupler, several crucial factors are considered, including
impedance matching, phase imbalance, and loss imbalance across the operating bandwidth.
The conventional rat-race coupler consists of three −90◦ quarter-wavelength transmission
lines and one −270◦ three-quarter-wavelength transmission line, as depicted in Figure 1a.
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Figure 1. (a) Traditional rat-race coupler, (b) simplified view of ring hybrid with phase inverter,
(c) equivalent circuit of a folded inductor rat-race coupler, (d) left-hand and right-hand rat-race coupler.

However, this configuration brings undesirable properties. First, the loss is imbalanced
in the differential outputs, which is because one path passes through a −90◦ transmission
line, while the other path passes through a −270◦ transmission line. Second, the variation in
phase difference between the differential outputs is remarkable with different frequencies,
following a linear equation of ∅diffT = ω

ω0
·π. Consequently, the bandwidth is restricted to

a narrow range especially when a phase error requirement is stringent, for example, a 5◦

phase difference. Third, the size of the rat-race coupler is determined by the transmission
line lengths.

Hence, the conventional quarter-wavelength transmission line is usually quite large
with respect to the allowable area, making it difficult to accommodate it within the available
semiconductor chip fabrication. To address these challenges, alternative architectures have
been proposed. Figure 1b shows circuits presented in [21–24], where meander lines and
multi-layer microstrip lines are employed to significantly reduce the length of the quarter-
wavelength transmission lines. Moreover, the phase inverter is adopted to achieve the
required −270◦ transmission lines. Although this approach achieves a compact circuit size,
it may introduce substantial loss imbalance. Figure 1c represents the architecture introduced
in [25,26], which uses folded inductors to simulate the necessary transmission structure for
the rat-race coupler through inductor coupling. However, variations in the manufacturing
process of the inductors can lead to significant differences between the simulated and
measured results. In [27], bridged T-coils are used to replace the transmission line section in
conventional passive circuit designs, thereby reducing the circuit size substantially without
reducing the operating bandwidth. However, the architecture of this circuit employs a
traditional rat-race coupler comprising bridged T-coil structures of varying lengths. As a
result, it still encounters issues such as limited bandwidth and imbalanced losses.

In the proposed design, a compact rat-race coupler is introduced, employing both
a composite right/left-handed transmission line (CRLH) and a right-handed slow-wave
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transmission line, with a center frequency set at 39 GHz, as depicted in Figure 1d. The CRLH
structure enables the achievement of distinct electromagnetic metamaterial properties via
the integration of forward propagation (right hand, RH) and backward propagation (left
hand, LH) characteristics. This integration allows for the generation of advanced phases and
negative group velocities within a specified frequency range. The slow-wave transmission
lines have right-handed characteristics and are designed to keep the electromagnetic wave
group velocity below the speed of light in a substrate to achieve signal delay and thereby
reduce the size of the transmission line.

The proposed design possesses several advantages. Firstly, it results in low loss imbal-
ance as the signals from P1 to P2 and P4 pass through quarter-wavelength transmission
lines, ensuring similar losses in both paths. Additionally, the phase difference between
the CRLH and right-handed slow-wave transmission lines forms a curve with a minimum
value, thereby achieving the minimum phase imbalance. By designing this curve to have
zero slope near the desired center frequency, the overall phase bandwidth can be enhanced.

Furthermore, the use of the +90◦ phase angle CRLH, created by series capacitors
and parallel inductors, along with their inherent parasitic inductance and capacitance,
significantly reduces the length of the transmission line. This is achieved by reducing the
number of stages. The right-handed slow-wave transmission line contributes to the design
by forming the −90◦ phase transmission line, enabling further size reduction.

An additional benefit of this design is its low sensitivity to process variations. By using
CRLH to eliminate the need for an inductor coupling mechanism, the design minimizes
the impact of process variations and packaging effects.

Overall, this approach not only overcomes size limitations but also offers improved
performance in rat-race coupler designs. It provides a compact solution that addresses
challenges related to size constraints, loss and phase imbalances, and process variations.

The structure of this article is as follows: Section 2 carries out a theoretical analysis
and simulation design and is divided into three parts for explanation. The first part of
Section 2 is the design of left-handed transmission lines, which includes the theoretical
analysis, formula derivation, and simulation results of left-handed transmission lines. The
second part of Section 2 is the design of right-handed transmission lines, which includes the
theoretical analysis, formula derivation, and simulation results of right-handed slow-wave
transmission lines. The third part of the second section integrates the results of the first two
parts to form a left-handed and right-handed rat-race coupler and presents the simulation
results. Section 3 presents the actual measurement results, comparisons with simulation
results, and finally comparisons with similar research results. Section 4 provides some
conclusions.

2. Theoretical Analysis and Simulation Results
2.1. Left-Handed Transmission Line Design

The left-handed (LH) characteristic of this structure dominates the phase and ampli-
tude responses. The left-handed transmission line is first considered. Considering that the
area required to implement inductors in 90 nm CMOS technology provided by TSMC is
much larger than that for capacitors, we decided to use a T-model symmetric structure in
the implementation of the unit cell for the left-handed transmission line, where the series
capacitors are cascaded with parallel inductors and then cascaded with series capacitors,
shown in Figure 2.

The characteristic impedance and S21 of this structure can be calculated using the
ABCD Matrix from the T-model.

Zc =

√√√√ LL

CL

(
1 − 1

4ω2LLCL

) (1)
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S21 =
1(

1 − 1
2ω2LLCL

)
− j

(
1

ω
√

LLCL

√
1 − 1

4ω2LLCL

) (2)Electronics 2024, 13, x FOR PEER REVIEW 4 of 20 
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Figure 2. LH equivalent T-model.

In order to create a 1/4-wavelength transmission line with an impedance of Zc = 70.7 Ω
that can be used in the frequency band, it is necessary to calculate the required capacitance
and inductance values to obtain the required minimum order. The phase of the left-
hand transmission line can be derived using the ABCD Matrix from the T-model and
transformation to an S-parameter and can be written as [28]

∅L = N·∅S21 = N·arctan


(

1 − 1
4
(
ω
√

LLCL
)−2

)0.5

ω

√
(LLCL)

(
1 − 1

2
(
ω
√

LLCL
)−2

)
 (3)

Here, ∅L represents the phase of the transmission line, N denotes the order of the
T-model, LL indicates the shunt inductance, and CL represents the series capacitance. From
Equation (3), it can be observed that to minimize the area, only one unit cell (N = 1) is
needed to achieve a +90◦ phase shift at the center frequency f0. In this case, the value
inside the arctan function should approach infinity, which means 1

2
(
ω0

√
LLCL

)−2
= 1, and

ω0 = 2πf0.
Then √

LLCL =
1

ω0
√

2
(4)

and the cutoff frequency of the unit cell in Figure 2 is written as

fc =
1

4π
√

LLCL
(5)

The cutoff frequency fc = ω0
√

2
4π is calculated to be 27.6 GHz for a center frequency

of 39 GHz in this design. Additionally, as the number of stages increases, for instance,
when N = 2 as described in Equation (3), the cutoff frequency decreases to 15 GHz, which
indicates a broader operating bandwidth. However, this also results in an increased number
of components, leading to a larger area. Therefore, N = 1 offers a satisfactory bandwidth,
making it suitable for the design and enabling the construction of a compact structure.

The values of inductance and capacitance required for a pure left-handed transmission
line composed of only one T-model can be calculated by solving the simultaneous equations
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in Equations (1) and (3). For a desired phase requirement of +90◦ at a center frequency of
39 GHz and a characteristic impedance of 70.7 Ω, the following values can be obtained.

{
Zc =

√
LL
CL

(1 − 1
4ω2LLCL

) = 70.7
√

LLCL = 1
ω0

√
2

LL = 288pH, CL = 0.0288pF

(6)

The created left-handed transmission line possesses the parasitic characteristics of the
right-handed transmission line, causing a reduction in phase lead. Therefore, a composite
left-handed and right-handed transmission line is proposed in the actual design.

It is crucial to consider the parasitic elements in a 1/4-wavelength CRLH transmission
line, LP and CP. Thus, the actual equivalent circuit model can be represented as shown in
Figure 3. The values of LP and CP are highly dependent on the layout of the circuit. LP
arises from the inductance caused by the interconnecting lines between passive components,
while CP is due to the capacitance between all components and the ground plane, RL is
metal loss, and GL is substrate loss.
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The parasitic inductance and capacitance are generally very small, so the resulting
phase can be simplified as ∅p = −ω

√
LpCp [28]. And the actual phase of the left-handed

transmission line is

∅CRLH = arctan(

(
1 − 1

4
(
ω
√

LLCL
)−2

)0.5

ω
√

LLCL

(
1 − 1

2
(
ω
√

LLCL
)−2

) )−ω
√

LPCP (7)

In Equation (7), LP and CP represent the parasitic inductance capacitance, respectively.
The parasitic right-handed circuits would cause a reduction in the leading phase mag-
nitude formed by the left-handed line. The values of inductance and capacitance of the
left-handed transmission line need to be reduced to maintain the desired +90◦ phase at
the center frequency. Utilizing these parasitic right-hand circuits appears to reduce the
capacitance and inductance values required for the left-hand transmission line. According
to Equation (5), if the capacitance and inductance required for the left-hand transmission
line are reduced, the cutoff frequency of the circuit is increased, and the increase in the
cutoff frequency leads to a reduction in bandwidth. Although the circuit area is decreased,
an increase in cutoff frequency results in a reduction in bandwidth.

The final fine-tuned values obtained from this process are LL = 260 pH, CL = 0.025 pF,
LP = 88 pH, CP = 5.5 fF, RL = 7.6 Ω, and GL = 700 Ω. The full-wave simulation model
is shown in Figure 4, while the extracted values agree well with the results of the 3D
full-wave simulation, as shown in Figure 5a,b. Moreover, the phase is close to +90◦ at the
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center frequency of 39 GHz. The equivalent µ and ϵ of the left-handed quarter-wavelength
transmission line can be calculated through the formula [29].

µeff = µ′
eff − jµ′′

eff = ±(
1 + Γ
1 − Γ

)
ZTL

Za
TL

1
jL
(

c
ω
)cosh−1(

1 − S11
2 + S21

2

2S21
). (8)

ϵeff = ϵ′eff − jϵ′′
eff = ±(

1 − Γ
1 + Γ

)
Za

TL

ZTL
1
jL
(

c
ω
)cosh−1(

1 − S11
2 + S21

2

2S21
). (9)
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As shown in Figure 6, it can be seen that µ′
eff and ε′eff are −40 and −15 at 39 GHz,

respectively. The negative values confirm that the structure under consideration is a left-
handed transmission line. Furthermore, these values are considerably higher than the εr
(∼=3.8) of the CMOS process, resulting in a substantial reduction in the effective wavelength
(λg = 2π

|β| =
2π

|ω√
µε| ) [30]. Additionally, µ′′

eff and ε
′′
eff are both close to zero, indicating a

low-loss structure. Compared to a traditional transmission line, the length of the CRLH
transmission line is significantly shortened to 80 µm, which is about 8% of the length of a
conventional transmission line.
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2.2. Right-Handed Transmission Line Design

When designing the transmission line for the right-handed (RH) component, the para-
sitic circuit of each stage follows the same form as the inherent right-handed transmission
line, consisting of series inductors and parallel capacitors. Therefore, there is no need
to restrict the design to a single stage. Multi-stage transmission lines have very small
capacitance and inductance values. Therefore, the calculated cutoff frequency will be much
higher than the center frequency. Thus, the phase calculation formula can be simplified
as [28]

∅R = −N2

(
ω
√

LRCR

)
(10)

∅R represents the phase of the transmission line, N2 represents the order of the right-
handed transmission line model, LR represents the series inductance, and CR represents
the shunt capacitance.

The right-handed slow-wave transmission line is achieved through a series of multi-
order inductors and parallel capacitors, as shown in Figure 7a. In order to consider a circuit
with a compact size and symmetry, this periodic structure is connected by a transmission
line (TL), allowing it to be folded and thus reducing the overall space required. This struc-
ture can be simplified as two right-handed structures (RH1 and RH2) connected together;
each structure is formed by 11 series of serial inductors and parallel capacitors, as shown in
Figure 7b. The values of the extracted inductance and capacitance are LR = 21.5 pH and
CR = 4.45 fF, respectively. The resistance RR is 0.2 Ω, and the conductance GR is 6000 Ω.

The comparison between the S-parameters and the phase of the extracted equivalent
circuit and the full-wave simulation is shown in Figure 8a,b. A good agreement is obtained,
and the phase is close to −90◦ at the center frequency of 39 GHz.

Similarly, the equivalent µ and ε of the right-handed slow-wave transmission line can
be calculated by Equations (8) and (9), as shown in Figure 9. ε′eff and µ′

eff are approximately
18 and 8, respectively. The positive values indicate that this transmission line possesses the
right-handed characteristic, and the values are much larger than the substrate permittivity
εr = 12.9, ensuring that the group velocity of this structure is significantly less than the
speed of light in free space and thus demonstrating a good slow-wave effect. Additionally,
µ
′′
eff and ε

′′
eff are 1.5 and 0.5, respectively, indicating a low-loss structure. Furthermore, the

length of this transmission line is only about 30% of the traditional transmission line.
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2.3. Left-Handed and Right-Handed Rat-Race Coupler

By combining the three designed CRLHs (+90◦) and one right-handed slow-wave
transmission line (−90◦) shown in Figure 10, the left-handed and right-handed rat-race
coupler is proposed. The ground is constructed using two bottom metal layers in an
alternating slot pattern to comply with the metal density rule of TSMC CMOS 90 nm
technology.
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For traditional rat-race couplers, the frequency-dependent phase difference between
the differential outputs can be expressed as ∅diffT = ω
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It can be observed that ∅diff in the proposed CRLH coupler exhibits a parabolical
frequency response compared to the traditional structure with linear response shown in
Figure 11, indicating that the operating bandwidth of the presented structure is significantly
extended.
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3. Implementation and Measurement Results

To validate the usefulness of the CRLH structure design, the miniaturized rat-race
coupler is implemented by using a 90 nm CMOS process at a center frequency of 39 GHz to
achieve good matching, phase balance, and low-loss imbalance over a wide bandwidth.
The CRLH transmission line is created as a one-stage T-model structure with a Metal–
Insulator–Metal (MIM) capacitor and a coiled inductor without underlying metal ground.

For the right-handed slow-wave transmission line design, a multi-stage slow-wave
structure is created by combining the square-shaped inductors with short stub structures
that provide sufficient capacitance. This arrangement enables a compact arrangement of
periodic patterns, thereby reducing the overall layout area of the transmission line. In order
to reduce the overall area more effectively, it is designed as a bent slow-wave transmission
line. The chip photo of the four-port rat-race coupler is depicted in Figure 12, featuring a
core circuit area of 200 µm × 300 µm.

Figure 13 shows the measurement results of return loss and isolation. Since the
proposed rat-race coupler is symmetrical in design, the return losses for port 1 and port 4
are the same, and the return losses for port 2 and port 3 are the same, so only the return
losses of port 1 and port 2 are shown in Figure 13. By analyzing the return loss measurement
results, it can be seen that S11 and S22 are both less than −15 dB in the frequency range
from 35 GHz to 43 GHz. S24 represents the isolation of the proposed rat-race coupler; it can
be seen from Figure 13 that the isolation is greater than 25 dB in the frequency range from
35 GHz to 43 GHz.

The proposed rat-race coupler can be used in two modes: differential mode and
common mode, so Figure 14 shows the insertion loss of the two modes. Port 1 is the
differential mode input, and port 2 and port 4 are the differential mode output, so S21 and
S41 represent the insertion loss of the differential mode. Port 3 is the common mode input,
and port 2 and port 4 are the common mode output, so S23 and S43 represent the common
mode insertion loss. Since the proposed rat-race coupler is symmetrical in design, S21 and
S43 are the same, so Figure 14 only shows three curves S21, S41, and S23. In Figure 14, the
insertion loss of the three curves S21, S23, and S41 at 39 GHz is about 4.4 dB, and the loss
variation is within 1 dB in the frequency range of 36 GHz to 48 GHz.
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Figure 15 shows the phase difference for the differential port and common port, with
targets of 180◦ and 0◦, respectively. In the frequency range of 32 GHz to 60 GHz, the
differential port phase error is maintained within the range of plus or minus 5◦ of 180◦.
In the frequency range of 34 GHz to 60 GHz, the common port phase error is maintained
within the range of plus or minus 5◦ of 0◦.
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Table 1 shows the performance comparison of the proposed CRLH rat-race coupler
with other millimeter-wave rat-race coupler designs. The data in the table are differential
mode measurement results.

Table 1. Performance summary and comparison among the state-of-the-art integrated couplers.

Process

Center
Frequency (fc)/

Fractional
Bandwidth

Coupled
IL@fc

Through
IL@fc

Isolation
Isolation@fc

Return
Loss
@fc

Phase
Error @fc

Amplitude
Error @fc

Electrical
Size

[21]
130 nm

SiGe
BiCMOS

60 GHz/* 4.1 dB 5.7 dB 21 dB 18 dB 4
◦ ~1.6 dB 0.00446 λ0

2

[22] 130 nm
BiCMOS 60 GHz/10% 6 dB 6 dB 27 dB 26 dB 5

◦ ~0 dB 0.01102 λ0
2

[23] 250 nm
CMOS 30 GHz/* 3.1 dB 5.7 dB 17 dB 18 dB < 5

◦ ~2.6 dB 0.00086 λ0
2

[24] GaAs 43 GHz/17% 5 dB 5 dB 28 dB 20 dB 5
◦ ~0 dB 0.0263 λ0

2

[25]
45 nm

SOI
CMOS

33 GHz/** 5.3 dB 5.4 dB 22 dB 10.5dB 3
◦ ~0.1 dB 0.00292 λ0

2

[26] 130 nm
CMOS 70 GHz/15.7% 4.1 dB 4.1 dB 20 dB 16.2 dB < 3

◦ ~0 dB 0.00203 λ0
2

[27] 180 nm
CMOS 60 GHz/9.8% 7.07 dB 6.04 dB 28 dB 18.4dB 3

◦ 1 dB 0.00292 λ0
2

This work 90 nm
CMOS 39 GHz/19.4% 4.4 dB 4.4 dB 40 dB 26 dB < 1

◦ ~0 dB 0.00101 λ0
2

All results correspond to the case with the input at ∆ – port. Fractional bandwidth defined under a phase error < 5◦

and input return loss > 15 dB and amplitude error < 1 dB. *: Amplitude error > 1 dB **: return loss < 15 dB.

To make a consistent comparison of different designs, the calculation of fractional
bandwidth follows some conditions under phase error < 5 degrees, return loss > 15 dB,
and amplitude error < 1 dB. In addition to the comparison of electrical characteristics, the
usage area is also a very important indicator. Moreover, to make the area comparison fair,
the chip area is divided by the wavelength of the central operating frequency. Therefore,
by analyzing these two parameters, it can be concluded that the proposed CRLH rat-race
coupler possesses the optimal performance.
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Since the amplitude error in [21,23] is greater than 1dB, and the return loss in [25] is
<15 dB, these three designs do not have fractional bandwidth. By comparing the fractional
bandwidths, the proposed CRLH rat-race coupler has the widest bandwidth. In addition
to the comparison of electrical characteristics, the size of the core circuit is also a very
important indicator. To make the size comparison fair, the size of the core circuit is divided
by the wavelength of the central frequency. It can be seen from Table 1 that the proposed
CRLH rat-race coupler has the second smallest area, second only to [23], but the amplitude
error of [23] is also the largest in the comparison table. Therefore, considering the two
factors of fractional bandwidth and chip area, the proposed CRLH rat-race coupler has the
best performance.

4. Conclusions

Theoretical and experimental studies were conducted on the rat-race coupler consist-
ing of CRLH and RH transmission structures. The circuit was manufactured using TSMC
CMOS 90 nm process, the operating frequency is 35 to 43 GHz, and the core circuit size is
300 µm × 200 µm, corresponding to the electrical size of 0.039λ0 × 0.026λ0. Measurement
results show that the CRLH rat-race coupler achieves an amplitude error < 1 dB, phase
error < 5◦, return loss > 15 dB, and isolation > 25 dB in the frequency range from 35 to
43 GHz. Through the comparison table, the proposed CRLH rat-race coupler has the best
fractional bandwidth and achieves excellent results in area reduction. Measurement results
and comparisons with different designs demonstrate the effectiveness of the CRLH and RH
transmission structures, which feature a wide bandwidth, low loss, good port imbalance,
and compact size.
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