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Abstract: Paper recommendation systems are important for alleviating academic information over-
load. Such systems provide personalized recommendations based on implicit feedback from users,
supplemented by their subject information, citation networks, etc. However, such recommender
systems face problems like data sparsity for positive samples and uncertainty for negative samples.
In this paper, we address these two issues and improve upon them from the perspective of metric
learning. The algorithm is modeled as a push–pull loss function. For the positive sample pull-out
operation, we introduce a context factor, which accelerates the convergence of the objective function
through the multiplication rule to alleviate the data sparsity problem. For the negative sample push
operation, we adopt an unbiased global negative sample method and use an intermediate matrix
caching method to greatly reduce the computational complexity. Experimental results on two real
datasets show that our method outperforms other baseline methods in terms of recommendation
accuracy and computational efficiency. Moreover, our metric learning method that introduces context
improves by more than 5% over the element-wise alternating least squares method. We demonstrate
the potential of metric learning in addressing the problem of implicit feedback recommender systems
with positive and negative sample imbalances.

Keywords: metric learning; context-sensitive; implicit feedback; computational complexity; paper
recommendation

1. Introduction

Academic recommendation systems have rapidly developed in recent years, and
effective academic recommendation systems can alleviate information overload and help
researchers quickly find relevant literature. Academic resource platforms have developed
content-rich recommendation pages, such as Baidu Scholar, Google Scholar, etc., which
provide lists of related paper recommendations.

Content-based, collaborative filtering, and graph-based recommendation systems are
the most widely used methods for paper recommendation. Hybrid suggestions utilize
two or more different approaches. Content-based approaches compute the text’s similarity
and produce a recommendation list. Typically, they use techniques like topic modeling [1],
word embedding [2], word frequency analysis [3], or a combination of word and sequence
modeling approaches [4]. Collaborative filtering-based approaches assess a user’s reading
records and predict the user’s preferences for unread papers using methods such as nearest
neighbor computation, matrix decomposition [5], and deep learning [6]. Graph-based
approaches, which often use homomorphic graphs, such as citation networks [7–9], or het-
eromorphic graphs [10,11], like those constructed by entities such as authors–conferences–
papers, generate embeddings of the entities. They then create recommendation lists via
meta-path methods [12] or graph neural networks [13].

The main focus of this study is implicit feedback-based collaborative filtering. Methods
relying on explicit feedback, such as ratings, are not suitable for academic paper recommen-
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dations since users do not typically score or rate papers on academic platforms; moreover,
suggestions for academic papers should be based on implicit feedback. Compared to ex-
plicit feedback, like ratings or reviews, implicit feedback is easier to collect, but it has more
uncertainty. Conventional implicit feedback-based recommendation techniques typically
depend on subjective negative sample assumptions, such as establishing a negative sample
using randomized uniform sampling [14] or based on some a priori information [15]. We
contend that the negative sample of academic article recommendations contains outcomes
that are ambiguous when based on such assumptions. Since users only have time to read
a limited amount of papers, the primary cause of the missing data is a lack of access to
the corresponding articles—rather than a lack of interest in the papers’ contents. Con-
sequently, the accuracy of recommender systems is restricted by the subjective negative
sample assumption. Secondly, there is a significant imbalance in the quantity of positive
and negative samples. Because of the system’s high quantity of non-interactive papers
and the severe data sparsity issue, these papers receive little exposure due to inadequate
model training, which hinders the advancement of science and technology as well as the
communication of scholarly findings. Some studies introduce context for implicit feedback
data in an attempt to reduce sparsity. For example, eALS contends that negative samples
should be sorted by hotness [16]. However, we contend that this approach is inappropriate
for the academic setting, where we value innovation and require an unbiased method of
selecting negative samples.

In this work, we tackle the two aforementioned issues and make improvements from a
metric-learning perspective. The following is a summary of this paper’s primary contributions:

1. We offer a context-aware metric learning strategy that effectively modifies the model
to learn from implicit feedback.

2. The loss function is separately modeled by the algorithm for positive and negative
samples. We present the content factor, which improves the data sparsity issue and expe-
dites the objective function’s convergence via the multiplication rule for the positive sample
pull-in operation. We employ the intermediate matrix caching technique to greatly reduce
the computing complexity for the negative sample push-off operation, and we adopt the
unbiased global negative sample method.

3. Experimental results on two real datasets show that our method outperforms
other baselines in terms of recommendation accuracy and computational efficiency. Our
results demonstrate the potential of metric learning in dealing with the problem of implicit
feedback recommender systems with positive and negative sample imbalance.

The rest of this paper is organized as follows. Section 2 focuses on the related work,
including academic resource recommendations, an implicit feedback-based approach, and
metric learning. Section 3 introduces metric learning to model users’ implicit feedback
and optimizes the computational process by applying the alternating element multiplier
method to the negative sampling problems of sparse matrices. Section 4 presents the dataset,
experimental methodology, and metrics, introduces the comparison model, analyzes the
experimental results, and discusses the contribution of different factors in the model. Finally,
Section 5 presents the conclusion of the study and the outlook for future research.

2. Related Work

Personalized academic recommendation systems are an important approach to ad-
dressing academic resource overload [17]. This section summarizes the current state of
research on the characteristics of recommender systems and academic paper recommenda-
tions and reviews some applications of metric learning in recommender systems.

2.1. Classification of Academic Paper Recommendations

Based on the way recommendations are generated, recommendation methods can be
categorized into eight groups [18]: collaborative filtering systems, content-based filtering
systems, hybrid filtering systems, demographic recommender systems, knowledge-based
recommender systems, risk-aware recommender systems, social network recommender
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systems, and context-aware recommender systems. ‘Academic paper recommendation’
refers to a subcategory of recommender systems. Current approaches to paper recom-
mender systems can be broadly categorized into content-based, collaborative filtering, and
graph-based recommendations. Hybrid recommendations utilize a combination of two or
more methods.

Common content-based methods include the word frequency model TF-IDF [3], topic
models, such as latent Dirichlet allocation (LDA) [19], and deep learning methods, like
doc2vec and paper2vec [20]. Content-based methods can be computed offline, and the
results of recommended content are highly relevant, but they tend to offer repetitive
recommendations, lacking in diversity and novelty.

Collaborative filtering, which uses the similarity of behavioral records to compute
recommendation lists, has been successful in several domains. Collaborative filtering-based
recommendation suffers from a problem of under-trained samples, where item vectors with
few interaction records are not easily distinguishable in the hidden space. With a large num-
ber of new papers in the system, contextual information must be introduced to alleviate this
under-training problem [21–23]. Contextual information includes potential citations [24],
social connections [25,26], personalized preferences [27], and so on. Reference [28] employs
a textual and structural fusion feature as an example.

Typically, graph-based paper recommendations belong to social network recommender
systems. The graph-based approach relies on the similarity of nodes on the graph. Much
work is based on citation networks, which are homogeneous networks [29], containing only
one type of entity and relation. In addition, some works investigate heterogeneous academic
networks by analyzing distinct entities, such as authors, venues, and publications [30].

Calculating the similarity between two given papers is essential for predicting citation
connections. Recently, methods for learning network representations, which encode struc-
tural information about a graph for citation recommendations, have been developed [28].
Zhu et al. [31] proposed a heterogeneous knowledge embedding-based attentive RNN
for recommending scientific papers and citations, based on the user’s identity and a con-
strained query length. Li et al. [30] examined meta-paths in the network to determine user
preferences and they employed random walks on these meta-paths to calculate the recom-
mendation scores of candidate papers for target users. Using Bayesian personal ranking
(BPR) [15] as the objective function, they employed a personalized weight-learning proce-
dure to determine a user’s personalized weights on different meta-paths. However, the
negative sample noise problem in the paper recommendation system has gone unnoticed.
In addition, the graph-based approach to new entry articles suffers from a long-ignored
undertraining issue.

2.2. Recommendations Based on Implicit Feedback

Handling missing data is crucial for learning from implicit data in recommendation
systems, as they provide a valuable negative signal. Matrix factorization (MF) is a method
for representing a data matrix as two low-dimensional matrices. The decomposition
procedure can extract data co-occurrence patterns [32]. In addition, the reconstructed
low-rank model can be used to recover missing data, such as its applicability in predicting
users’ ratings on unknown items [33]. Based on how negative samples are handled,
previous research can be divided into two categories: sample-based learning and whole-
data-based learning.

The first type uses a homogenized random sampling method or a rule-based sampling
method to extract negative instances from absent data. For instance, the Bayesian person-
alized ranking (BPR) method proposed by Rendle et al. [15] randomly samples negative
instances from missing Bayesian personalized ranking entries to maximize the margin
between the model prediction of observed entries and that of sampled negatives. Recently,
He et al. [34] developed adversarial training methods for BPR to enhance the model’s
robustness. Negative sampling significantly reduces the number of negative instances,
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thereby controlling the overall time complexity. However, while their convergence process
is faster, their performance is highly dependent on the design of the sampler.

The second type considers all absent entries to be negative instances. For instance, Hu
et al. [35] modeled all missing entries as negative instances with the label 0 and assigned
them a decreased weight. Recent research by Ding et al. [36] established a pairwise learning
framework to model the difference between observed entries and all missing entries. These
methods model negative instances with greater coverage, but the learning algorithm may
be very slow.

Introducing context to complement machine learning algorithms is a classic but never
outdated practice [37,38]. He et al. [14] believe that when all other factors are equal, popular
items are more likely to be known by users in general; thus, it is reasonable to assume that
a miss on a popular item is more likely to be truly irrelevant (as opposed to unknown) to
the user. He et al. proposed the use of a popularity-aware weighting strategy for negative
samples and used the idea of caching matrices to reduce the amount of computation. In
further work, He et al. [16] proposed dynamic negative sample weighting methods for more
themes. Their work addressed a research gap by devising efficient learning algorithms for
any weighting scheme on missing data. However, most of the above methods are based on
collaborative filtering and do not fully utilize the rich contextual information provided by
academic platforms, which is the second problem.

In pursuit of model effectiveness and thorough mining of contextual data, we empha-
size whole-data-based learning in this work with the aim of developing an effective solution
to address inefficiencies. Unlike the aforementioned work, we introduce the contextual
information factor from the perspective of metric learning, which similarly improves the
model’s performance and computational efficiency.

2.3. Metric Learning and Recommender Systems

Recently, recommendation algorithms based on metric learning have attracted con-
siderable attention. Metric learning is able to find an appropriate distance metric between
users and items. Based on the Euclidean distance metric, Hsieh et al. [39] first proposed
collaborative metric learning (CML), which is similar to Bayesian sorting; it adjusts the
distances between users and positive samples, as well as users and negative samples,
through drawing-in and pushing-out operations. It models user–item similarity while
also considering user–user and item–item similarities. The model was successful, and
subsequent studies used it as a benchmark for corresponding improvements. For example,
Tay et al. [40] improved the potential user–item interactions using memory networks and
attention mechanisms to improve the convergence problem of the model.

Optimization strategies for metric learning are mostly based on loss functions with
uniform sampling. Compared to the field of computer vision [41,42], where difficult sample
mining is widely used to improve the positive and negative sample imbalance in metric
learning, difficult samples in recommender systems are difficult to survey. Tran et al. [43]
proposed the use of the two-stage negative sampling method, instead of uniform sampling,
to mine informative-containing triples by secondary filtering. Zhang et al. [44] adjusted the
distance of negative samples with an adaptive distance function.

The large means nearest neighbor (LMNN) [45] is a widely adopted pairwise loss func-
tion that incorporates a ternary loss, including a “push” operation and a “pull” operation.
This idea is widely adopted by subsequent models, such as CML, with a loss function as in
Equation (1):

Lm(d) = ∑
(i,j)∈R

∑
(i,k)/∈R

[
α + d(i, j)2 − d(i, k)2

]
(1)

where d(i, j) is the distance between the user, ui, and positive sample vj, and d(i, k) is the
distance between the user, ui, and positive sample vk. R is the record of interaction between
the user and the item. The ternary loss is an intuitive loss function that “pushes” negative
pairs of samples away from positive pairs of samples by a distance greater than or equal to
the interval α.
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Although ternary loss has seen good success in metric learning, the model still suffers
from the following problems: First, the method of negative sampling is not specified in the
loss function. To avoid excessive computational overhead, traditional metric learning mod-
els adopt a random sampling method for negative samples, and the ternary information
content collected in this way is random. In the severely unbalanced essay recommenda-
tion dataset, pure random sampling leads to the selection of triples, which are samples
with little informative content, which minimally benefits the model. Second, for essay
recommendation datasets, a large amount of content information is non-negligible a priori
information. Methods relying solely on user behavior data obviously underutilize the data.
In this paper, we conduct research on metric learning to address these two issues.

3. Context-Aware Element-Wise Alternating Least Squares
3.1. Problem Statement and Modeling Framework

This section defines the data structure, describes the research problem, and shows the
modeling framework. Table 1 lists the key notations of this paper.

Table 1. Key symbols in this paper.

Symbol Symbol Definition

U users
ui a user: ui ∈ U
V papers
vi a paper: vi ∈ V
D degree matrix for all papers
dv degree is the number of times an article v is cited: dv ∈ D
W bag of words for articles
wi bag of words for an article: wi ∈W
G|U|×|V| User-article reading record matrix
G|V|×|V| Adjacency matrix for citation networks
G|V|×|W| Thesis-keyword matrix

In the following, we build the model from a metric learning perspective, discuss the
optimization of the model, and finally describe a method for computing the context factor.

As shown in Figure 1, our approach aims to combine multiple contexts to generate
paper recommendations. First, we use user profiles to compute the relevance of the user’s
visited and unvisited papers in the citation network. Then, the user profile is utilized
to compute the topic similarity score between the user and the target paper. Finally,
we combine the above a priori information to compute the context factor of the user’s
unread papers.

Citation

12345
123123
1515
13415
……

Text feature

Positive case

Negative case

Citation
similarity

LDA similarity

𝐶𝐶𝑢𝑢𝑢𝑢

Paper

Figure 1. Context-aware paper recommendation by metric learning based on push and pull opera-
tions. Context factors were used to speed up the pull operation for positive samples to accelerate
convergence. For negative samples, unbiased global sampling was utilized.
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3.2. Starting with Metric Learning

Referring to the simple idea of metric learning, we build the objective function based
on the “push” and “pull” operations:

minu∗ ,v∗ Lpush(s) + ω Lpull(s) (2)

s.t. ||p∗u|| ≤ 1 and ||q∗i || ≤ 1 (3)

3.3. User Preference Modeling and Algorithm Optimization

Lpull(s) as the “pull operation”, we take the dot product as the distance measure;
the closer the dot product is to 1, the closer the vectors are, subject to the modulus
constraints||p∗u|| ≤ 1 and||q∗i || ≤ 1 . We take Lpull(s) = ∑(i,j∈R) ||1− pu

Tqi||
2
2. For positive

feedback from users, the user is clearly influenced by contextual information. For papers
that the user has not accessed, it is predominantly because the user is unaware of the
paper’s existence. Of course, there are users who have already seen the paper but are
not interested. In this case of uncertainty about the user’s interest preference, it is not
appropriate to use contextual information to determine the user’s reading. Therefore, in
this paper, we refer to eALS [3] and TGSC-PMF [31], and use different fusion strategies
to adopt varied contextual information strategies for the two cases of already-read and
unread papers. To accelerate convergence, a content relevance factor Cui is introduced to
perform a stretching operation on the dot product.

Lpull(s) = ∑
(u,i∈R)

||1− Cui pu
Tqi||

2
2 (4)

where ||Cui||22 ≤ 1; the more relevant the content is, the closer ||Cui||22 is to 1. When
||Cui||22 is much smaller than 1, the model enables pu and qi to converge to each other’s
neighborhood at a faster rate. This introduction of contextual parameters is intuitive: the
fact that user u chooses item i with little content relevance suggests that, in some way,
this item particularly fits the user’s needs. By quickly bringing such positive sample pairs
closer together, the system can quickly capture the user’s particular preferences.

Similarly, in this case of uncertainty about the user’s interest preference, it is inappro-
priate to use contextual information to determine the user’s reading interest. The closer the
dot product is to 0, the further away the vectors are. Therefore, without introducing the
content relevance factor in the “push” operation, then Lpush(s) = ∑(u,i/∈R) ||0− pu

Tqi||
2
2.

ωui uses the weight setting method of ALS [32], ωui = 1 + log (1 + 10εrui)). Then, the
objective function can be abbreviated as

L = ∑
(u,i∈R)

ωui||1− Cui pu
Tqi||

2
2 + ∑

(u,i/∈R)
||0− pu

Tqi||
2
2 (5)

s.t. ||p∗u|| ≤ 1 and ||q∗i || ≤ 1 (6)

According to the Lagrange multiplier method, the objective function can be optimized
in the following way:

L = ∑
(u,i∈R)

ωui||1− Cui pu
Tqi||

2
2 + ∑

(u,i/∈R)
||0− pu

Tqi||
2
2 + λ||pu||22 + λ||qi||22 (7)

We can optimize the objective function using the stochastic gradient descent (SGD)

method. We set r̂ui = pT
u qi, r̂ f

ui = r̂ui − pu f qi f , r̂ui = r̂ f
ui + pu f qi f . Using the derivative of

the objective function L with respect to ui f , the following equation is obtained: ∂L
∂pu f

=

2 ∑(u,i)∈R ω

(
1− Cui r̂

f
ui + Cui pu f qi f

)
∗
(
−αqi f

)
+ 2 ∑(u,i)/∈R

(
r̂ f

ui + pu f qi f

)
qi f + 2λpu f .
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We let ∂L
∂pu f

= 0, and obtain Equation (8):

pu f =
∑(u,i)∈R ω

(
1− Cui r̂

f
ui

)
Cuiqi f −∑(u,i)/∈R r̂ f

uiqi f

∑(u,i)∈R ωCui
2q

2
i f + ∑(u,i)/∈R q2

i f + λ
(8)

Observing pu f , we can see that the computational complexity mainly comes from the

negatively sampled terms ∑(u,i)/∈R r̂ f
uiqi f and ∑(u,i)/∈R q2

i f . Referring to the eALS, the use
of cache matrices in the optimization process can significantly reduce the computational
complexity. We set

∑
(u,i)/∈R

r̂ f
uiqi f =

|I|

∑
i=1

qi f ∑
k ̸= f

pukqik − ∑
(u,i)∈R

r̂ f
uiqi f = ∑

k ̸= f
puk

|I|

∑
i=1

qi f qik − ∑
(u,i)∈R

r̂ f
uiqi f (9)

We define the cache matrix:

Xq =
|I|

∑
i=1

qi f qik (10)

then we obtain Equation (11):

∑
(u,i)/∈R

r̂ f
uiqi f = ∑

k ̸= f
pukxq

f k − ∑
(u,i)∈R

r̂ f
uiqi f (11)

We substitute the above conclusion into Equation (9) to obtain Equation (12):

pu f =
∑(u,i)∈R (ωCui − (ωCui

2 − 1)r̂θ
ui)qi f −∑k ̸= f pukxq

f k

∑(u,i)∈R (ωCui
2 − 1)q

2
i f + xq

f f + λ
(12)

Similarly, We define the cache matrix:

Xp =
|U|

∑
u=1

pu f puk (13)

we obtain Equation (14):

qi f =
∑(u,i)∈R (ωCui − (ωCui

2 − 1)r̂θ
ui)qi f −∑k ̸= f qikxp

f k

∑(u,i)∈R (ωCui
2 − 1)p

2
u f + xp

f f + λ
(14)

By reusing Xq and Xp, and optimizing parameters at the element level, which involves
optimizing one of the latent vectors while leaving the others fixed, we can ensure that
the context-fused model retains the computational complexity of eALS. Algorithm 1 sum-
marizes our method. The whole model optimization process can be easily visualized in
Figure 2.

3.4. Context Factor

Aiming at the context factor Cij, which is specific to the paper recommendation
system, this paper proposes a feasible method through experiments. The text and citation
relationship of the paper itself contains a large amount of relevant a priori information.
In this paper, we start with the self-supervised method of text and citation to compute
the relevance of users and papers in these two domains. At the same time, in the real
engineering environment, this process is carried out offline and does not increase the
complexity of the online recommendation process.
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Algorithm 1 Context-aware element-wise alternating least squares algorithm

Input: {rui}: interaction matrix;
{

ωuj
}

:weight matrix; D
(
ui , vj

)
: user’s text preference matrix for papers;

N
(
ui , vj

)
: user citation preference matrix for papers; Kd: latent vector dimension

Output: optimal {p}: latent vector matrix for users; {q}: latent vector matrix for papers
1: Randomly initialize {p},{q};
2: repeat
3: compute cache matrix for {q} Xq = ∑|I|i=1 qi f qik ;
4: For u from 1:|U| Do
5: For f from 1:K Do
6: pu f ← (10)
7: END
8: END
9: compute cache matrix for {p} Xp = ∑|U|u=1 pu f puk ;

10: For u from 1:|I| Do
11: For f from 1:K Do
12: qi f ← (13)
13: END
14: END
15: until CONVERGE

Input training samples

Set hyperparameters

Initialize the latent feature 
matrix P,Q

Fixed Q, precomputed matrix Χ𝑞

Fix Q, read the elements of matrix 
Χ𝑞, update P by element

convergence or 
not?

Output matrix P, Q

Fixed P, precomputed matrix Χ𝑝

Fix P, read the elements of matrix 
Χ𝑝, update Q by element

Yes

NO

Pre-processing

Metadata (content, 
citation network)

Figure 2. The image shows the optimization of context-aware element-wise alternating least squares,
where we use the cache matrix to improve computational efficiency.

3.4.1. Self-Supervised Relevance Modeling Based on Citation Networks

To learn the vector representation of an article within a citation network, we uti-
lize a generative model. Each article, represented as a node in this network, has a low-
dimensional vector representation of itself, p, as well as a low-dimensional vector repre-
sentation of the article when it serves as a context, denoted as p′. Moreover, p′ should
converge to p. The citation network can be thought of as a directed graph network. The
contexts of two article nodes are more closely related and, hence, more relevant, when they
have more neighbors. The conditional probability of producing vj from node vi for every
edge <i, j> in the citation network can be written as follows:

P
(

v′j|vi

)
=

exp(p′Tk ∗ pi)

∑
|V|
k=1 exp(p′Tk ∗ pi)

(15)
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where |V| is the number of neighbors. Intuitively, two nodes whose context distributions
are more similar should be more similar, so the context distributions should approximate
their empirical distributions. The empirical distribution P̂ can be defined as follows:

P̂
(
vj
∣∣ vi

)
=

1
di

(16)

where di is the weight of edge <i, j>. Here, we choose the degree of node vi as the value of
di. We use KL divergence as the objective function to measure the difference between the
contextual and empirical distributions. Since the number of negative edges overwhelms the
computational power, random negative sampling is introduced into the model computation
process to reduce computational effort. Randomized negative sampling involves sampling
several negative edges according to the noise distribution for each edge <i, j>. In this paper,
positive and negative samples are used to optimize the objective function. The objective
function can be simplified as follows:

O = − ∑
(i,j)∈E

{
log σ

(
p′Tj pi

)
+

K

∑
k=1

Evn∼Pn(v)

[
log σ

(
p′Tn pi

)]}
(17)

where σ(·) is the sigmoid function and Pn(v) ∝ (dv)
0.75. E is the mathematical expectation.

Each time the computational model collects an edge <i, j> from the citation network as a
positive sample, it samples K nodes from the noise distribution, Pn(v), to form the negative
sample <i, n>.

Insufficient training of the related embedding vectors will impair the quality of sug-
gestions because new papers are rarely cited. To address this issue, higher-order neighbors
are introduced in this study. Second-order neighbor sampling is utilized for less frequently
referenced papers. As illustrated in Figure 3, if the empirical distribution at this moment is
expanded as follows for the path i→ k→ j:

P̂
(
vj
∣∣ vi

)
= P̂(vk| vi)× P̂

(
vj
∣∣ vk

)
=

1
didk

(18)

Finally, we model the citation network correlation score through the above computa-

tional process. N
(
ui, vj

)
= σ

(
∑
|Nui |
j=1 p′Tj pi

)
, where Nui is the set of papers in the reading

record of user ui.

�𝑃𝑃 𝑣𝑣𝑗𝑗 𝑣𝑣𝑖𝑖

�𝑃𝑃 𝑣𝑣𝑘𝑘 𝑣𝑣𝑖𝑖

�𝑃𝑃 𝑣𝑣𝑗𝑗 𝑣𝑣𝑘𝑘 𝑣𝑣𝑖𝑖
𝑣𝑣𝑗𝑗𝑣𝑣𝑘𝑘

Figure 3. Embedding based on first-order sampling, and for sparse nodes supplemented with the
second-order sampling of nodes. When a paper has fewer citations, we collect its second-hop nodes
on the citation network as a supplement.

3.4.2. Topic-Based Model for Text Relevance

We use topic modeling to generate textual representations. First, we aggregate the bag
of words dl j for any paper l. Similarly, we aggregate all papers in the profile of a given user
to form the bag of words dui for one. Then, we can obtain the bag of words for any user
or paper.
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Naturally, the topic distributions of papers and readers may be similar. As we can see
in Figure 4, the generation of topic distribution is as follows:

For any bag of words dui,
(a) Draw topic proportions θdui

∼ Dir(α).
(b) For each word wd,n in dui :

Draw topic assignment zd,n ∼ Mult
(

θdui

)
Draw word wd,n ∼ Mult

(
ϕzd,n

)

�⃗�𝛼 𝜃𝜃𝑑𝑑 𝑍𝑍𝑑𝑑,𝑛𝑛 𝑊𝑊𝑑𝑑.𝑛𝑛

𝜂𝜂 𝛽𝛽𝑘𝑘

𝑁𝑁
𝐷𝐷

𝐾𝐾

Figure 4. The topic model for users and articles; essentially, each user or paper is represented by a
polynomial distribution of the topics.

We use variational inference to estimate the topic–word distribution versus the topic
distribution. We use cosine similarity to measure the similarity between two subject
distributions. The formula for cosine similarity is as follows:

sc(Tu, Ti) =
Tu ∗ Ti

||Tu|| ∗ ||Ti||
=

∑N
k=1 TukTik√

∑N
k=1 T2

uk

√
∑N

k=1 T2
ik

(19)

The closer the article is to the users on topic distribution, the closer cosine similarity is
to 1.

3.4.3. Contextual Fusion Methods Based on the Multiplication Rule

Based on the multiplication rule [46–48], we integrate these relevance scores into a
unified preference score Cui, which is defined as follows:

Cui = D(ui, vj)N(ui, vj) (20)

where D(ui, vj) is the text relevance between the user topic distribution θi and article vj, as
well as the article topic distribution πj, and N(ui, vj) is the citation relevance between user
ui and article vj. The computation of contextual relevance Cui is performed offline, thus not
increasing the computational complexity of the online recommendation process.

3.5. Complexity Analysis

Algorithm 1 shows the optimization of context-aware eALS. Line 3 precomputes the
cache matrix Xp according to Equation (10), whose computational complexity is O(|I|K2),
and lines 4–8 compute the user’s hidden feature matrix, whose computational complexity
is O(|U|K2 + |R|K). Line 9 precomputes the cache matrix Xq according to Equation (13),
whose computational complexity is O(|U|K2). Lines 10–14 compute the thesis hidden fea-
ture matrix q with computational complexity O(|I|K2 + |R|K). So, the online computational
complexity of the whole model is O((|U|+ |I|)K2 + |R|K), proportional to the size of the
dataset |R|, the size of the set of users |U|, the size of the set of papers |I|, and the square of
the dimension of the hidden features K. It can be seen that the optimization proposed in this
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paper has the same order of magnitude of complexity as the eALS algorithm [16] without
introducing context. Thus, with the preprocessing of the context factor, the computational
complexity of the model proposed in this paper remains consistent with the complexity
of the eALS algorithm without fusing content information. Therefore, this is currently the
more advanced algorithm in terms of computational efficiency. The complexity of these
models is listed in Table 2.

Table 2. Time complexity of methods with implicit feedback.

Method Time Complexity

BPR O(|R|K)
PMF O(MNK)
ALS O

(
(M + N)K3 + |R|K2)

eALS O
(
(M + N)K2 + |R|K

)
our method O

(
(M + N)K2 + |R|K

)
4. Experiments

This section describes the details of the experiment, including the dataset, parameter
settings, metrics, evaluation methods, experimental results, and efficiency analysis.

4.1. Dataset

We used the citeUlike [49] dataset to verify the effectiveness of our method. The
citeUlike dataset contains profiles of users, citation networks, titles, abstracts of articles,
and tags of articles. The statistical information of the citeUlike dataset is shown in Table 3.

Table 3. Statistics of datasets.

citeUlike-a citeUlike-t

Users 5551 7947
Items 16,980 25,975
tags 46,391 52,946
citations 44,709 32,565
User–item pairs 204,987 134,860

4.1.1. Metrics

We recommend K articles to users based on the ranking of predicted values. We choose
two metrics to evaluate the quality of the ranked list: NDCG@K and Recall@K, which are
defined as follows:

NDCG = na ∑
j

2r(j) − 1
log(1 + j)

(21)

Recall =
∑u R(u) ∩ T(u)

T(u)
(22)

where K is the number of articles recommended to the user, R(u) is the Top − K list of
articles recommended to the user, and T(u) is the number of articles actually visited by
the user.

4.1.2. Baselines

To verify the effect of contextual factors and the optimization method, we selected
the following recommended techniques to compare with our own. We chose two memory-
based algorithms, userKNN [50] and itemKNN [51], the probabilistic matrix factorization
method (PMF) [52], which computes only positive samples, Bayesian personalized ranking
(BPR) [15], which is based on stochastic negative sampling, collaborative deep ranking
(CDR) [53], and collaborative topic regression (CTR) [54], combining the topic distribution
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and the implicit behavior of the user, as well as two more advanced context-aware methods:
alternating least squares (ALS) [35] and elemental alternating least squares (eALS) [14,16].

We randomly extracted 80% of the data from the user–paper interaction records
as training data and the remaining 20% as test data. For a fair comparison, we set the
parameters of different algorithms with reference to the corresponding literature.

4.2. Result
4.2.1. Performance Comparison

Tables 4 and 5 show the experimental results of the baseline on the citeUlike-a and
citeUlike-t datasets. And we can draw the following conclusions:

Based on two datasets of academic papers, the model proposed in this paper achieves
optimal performance in almost all the metrics. This shows that the model has some
advantages in implicit feedback-based paper recommendations.

Our models, ALS and eALS, outperform models such as CDR and CTR. Because our
models, ALS and eALS, take into account both positive and negative sample sampling,
they are somewhat better than models that do not take into account negative samples.

Our method shows more than a 5% improvement over the alternating element multi-
plier method. We believe this is due to two main reasons: (1) our model uses a more rational
approach to compute the trust strength, and (2) our model successfully combines two con-
texts to mitigate the data sparsity problem. The ALS and eALS models do not model users’
implicit feedback well, owing to the extremely sparse data in paper recommendations.

Although the CDR and CTR models explore both implicit user feedback on papers and
paper topics, the model proposed in this paper still outperforms the CDR and CTR models.
Unlike the CDR and CTR models, which use thesis topics as the bias in their latent vectors,
our model employs topic similarity and citation similarity as the context, emphasizing the
role of context in enhancing recommendation performance.

Table 4. Performance comparison on citeUlike-a.

ND@5 ND@10 re@5 re@10

userKNN 0.0235 0.0326 0.0191 0.0429
itemKNN 0.0106 0.0138 0.0067 0.0151
PMF 0.0168 0.0200 0.0151 0.0228
BPR 0.0196 0.0252 0.0199 0.0333
ALS 0.0593 0.0714 0.0408 0.0824
eALS 0.0583 0.0702 0.0451 0.0765
CDR 0.0364 0.0442 0.0262 0.0497
CTR 0.0545 0.0637 0.0377 0.0710
ours 0.0612 0.0744 0.0439 0.0873

Superior results are bolded.

Table 5. Performance comparison on citeUlike-t.

ND@5 ND@10 re@5 re@10

userKNN 0.0226 0.0334 0.0287 0.0585
itemKNN 0.0089 0.0157 0.0130 0.0317
PMF 0.0483 0.0509 0.0542 0.0613
BPR 0.0178 0.0232 0.0167 0.0332
ALS 0.0510 0.0598 0.0334 0.0696
eALS 0.0507 0.0614 0.0367 0.0728
CDR 0.0324 0.0411 0.0245 0.0476
CTR 0.0497 0.0547 0.0345 0.0695
ours 0.0507 0.0634 0.0388 0.0773

Superior results are bolded.
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In addition, the performance of the BPR model is slightly stronger than that of the
PMF model, which is due to the fact that the ratio of positive and negative examples in
the two datasets is extremely unbalanced. It also shows that the Bayesian decomposition
model is more suitable for modeling the implicit feedback from users on activities. The
memory-based approach leads to the worst performance, while the item-based approach
is weaker than the user-based approach, which suggests that the sparsity of the items far
exceeds the sparsity of the users.

4.2.2. Convergence Analysis

We compared the convergence of four representative methods: BPR, CTR, ALS, and
our method. We recorded the NDCG and recall metrics when the models were trained for
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 epochs.

Figure 5 shows the convergence process of the four models. First, our method performs
the best after convergence, confirming that the introduction of contextual information
significantly enhances the eALS model’s performance. Second, the BPR method achieves
convergence before 10 epochs, demonstrating high computational efficiency, but its metrics
are not as strong as the other three methods. In addition, there is no significant difference
between the convergence of our method and eALS, which confirms the rationality of our
method in treating the background information of positive and negative samples differently.
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Figure 5. Prediction accuracy of four implicit feedback methods (Kd = 50).

4.2.3. Accuracy vs. Number of Factors Kd

The dimensionality, Kd, of the hidden feature vector is an essential parameter affect-
ing the performance of academic paper recommendations. We progressively increased
the value of Kd from 10 to 150 in order to observe the recall and NDCG trends on the
citeUlike-a dataset.

The results of the experiment are depicted in Figure 6. As shown in the figure, recall
and NDCG values initially increase as Kd increases; however, once the optimal value is
reached, recall and NDCG values decrease as Kd increases. On the citeUlike-t dataset, the
effect of parameter Kd on recall and NDCG exhibits a similar trend, so we are not going to
offer more details. This observation suggests that unduly increasing the value of Kd may
introduce noise that reduces the algorithm’s precision.
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Figure 6. Prediction accuracy of four implicit feedback methods across Kd.

4.2.4. Ablation Experiments

In our method, the parameters C(u, i) are multiplicatively combined based on the
relevance scores of the content and citation networks. In this section, we fix the values of
content relevance and citation relevance to 1 and compare the changes in NDCG and recall
with and without the regularization of the context factor, in order to demonstrate the utility
of multiple contextual information.

On the citeUlike-a dataset, Table 6 displays the sensitivity of the metrics to the reg-
ularization terms of content relevance and citation relevance. It is evident that citation
relevance has the most significant influence on the model.

Table 6. Ablation experiment (citeUlike-a).

Metric eALS +Topic +Citation Our Method

NDCG@5 0.0593 0.0595 0.0604 0.0612
NDCG@10 0.0714 0.0724 0.0738 0.0744
recall@5 0.0408 0.0425 0.0426 0.0439
recall@10 0.0824 0.0824 0.0858 0.0873

4.2.5. Efficiency

In this part, we compare the running costs across multiple models. The average run
time over 30 epochs for many runs on the citeUlike-a dataset is shown in Table 7. For a fair
efficiency comparison, all methods were implemented in Python and ran on a single thread
on the same computer (Intel i5 8500 3.0 GHz, 8 GB RAM, Geforce 1060 Ti).

We began by contrasting our approach with previous collaborative filtering-based
approaches. We discovered that when dimension K rises, each model’s running time
increases dramatically. Our method’s runtime is considerably shorter than that of ALS,
which is also based on negative sample full sampling, and is always on the same order of
magnitude as eALS, with preprocessed text and citation network similarities. This confirms
our estimation of the computational complexity of the models.

Then, we evaluated our approach against other hybrid models. Our approach suc-
cessfully completed the model’s training in a fraction of the time required by the topic
regression model CTR and substantially more quickly than the deep learning-based model
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CDR. Unexpectedly, we find that CDR converges more quickly when the vector dimension
is 50; it will be important to look into this oddity in the future.

Table 7. Training time of 30 iterations for different methods with varying Kd. We compare the running
time of models in this section.

K ALS eALS CDR CTR Our Method

10 165 25 3485 208 47
20 174 28 4639 232 54
30 192 32 4723 260 61
50 212 42 3773 310 73
100 336 66 5129 490 109
150 433 78 6045 724 148

5. Conclusions and Future Work

Addressing the uncertainty of implicit feedback and the positive and negative sample
imbalance in academic paper recommendations, this paper proposes a context-sensitive
recommendation method from the perspective of metric learning, which, in addition to
taking into account factors such as textual information and citation networks, improves
the accuracy of the model while greatly reducing the computational complexity through
the introduction of process matrix caching. Experimental results on two real paper rec-
ommendation datasets demonstrate the effectiveness of context introduction, with the
proposed method showing more than a 5% improvement over the alternating element
multiplier method.

In recent years, knowledge graph has shown great potential in recommender sys-
tems, and some researchers have combined knowledge graph techniques with traditional
collaborative filtering techniques to improve the performance of recommender systems.
Combining knowledge graph techniques with the context-sensitive paper recommendation
algorithm proposed in this paper will be an interesting research direction.
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