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Abstract: The cervical intervertebral disc, a cushion-like element between the vertebrae, plays a
critical role in spinal health. Investigating how to segment these discs is crucial for identifying
abnormalities in cervical conditions. This paper introduces a novel approach for segmenting cervical
intervertebral discs, utilizing a framework based on multi-scale information fusion. Central to
this approach is the integration of multi-level features, both low and high, through an encoding–
decoding process, combined with multi-scale semantic fusion, to progressively refine the extraction
of segmentation characteristics. The multi-scale semantic fusion aspect of this framework is divided
into two phases: one leveraging convolution for scale interaction and the other utilizing pooling.
This dual-phase method markedly improves segmentation accuracy. Facing a shortage of datasets
for cervical disc segmentation, we have developed a new dataset tailored for this purpose, which
includes interpolation between layers to resolve disparities in pixel spacing along the longitudinal and
transverse axes in CT image sequences. This dataset is good for advancing cervical disc segmentation
studies. Our experimental findings demonstrate that our network model not only achieves good
segmentation accuracy on human cervical intervertebral discs but is also highly effective for three-
dimensional reconstruction and printing applications. The dataset will be publicly available soon.

Keywords: cervical intervertebral disc segmentation; deep learning; multi-scale information fusion

1. Introduction

Computer tomography (CT) images, captured through cross-sectional body scans,
enable physicians to promptly identify and address patient lesions. Notably, the prevalence
of cervical spondylosis in younger individuals, primarily caused by the degeneration of
cervical intervertebral discs, has been on the rise [1]. By examining CT images of the cervical
spine, doctors can ascertain the presence of cervical intervertebral disc lesions and consider
interventions like artificial disc replacement. Segmenting these cervical intervertebral discs
and constructing their three-dimensional (3D) models from the images can give doctors a
more detailed understanding of the disc structures, thus potentially decreasing surgical
risks. However, the segmentation process is complicated due to the dense, fibrous nature
of the cervical intervertebral discs, which display grayscale values on CT images similar to
those of tissue fluid.

Traditional image segmentation is mainly based on features such as image gray-level
and contours to segment the target regions [2]. For example, the commonly used threshold
segmentation method [2] segments the target based on the image gray-level value. This
method is easy to implement, but it requires manual determination of the threshold and
the segmentation accuracy is not high. The fuzzy C-means clustering method [3] obtains
several sample points for all class centers by optimizing the objective function, and selects
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the one with the smallest distance to the clustering center as the belonging category. These
traditional image algorithms generally require some post-processing methods for CT
images to refine the segmentation results, such as basic morphological operations: filling
holes, erosion, dilation, and noise reduction.

With the development of computer hardware, there has been increasing research on
using deep learning to segment the regions of interest in medical images [4–19]. For instance,
UNet [4] utilizes an encoder–decoder structure with skip connections to fuse features at
different scales, making it widely applicable in medical image segmentation. Meanwhile,
medical images are typically composed of a sequence of images. A series of images can
be converted into 3D for analysis. Some researchers have used 3D image segmentation to
classify targets, such as V-Net [5], which has a similar overall model structure as UNet and
utilizes Resnet [6] to address the problem of network degradation. However, these networks
are not specifically tailored for cervical intervertebral disc segmentation, highlighting a
need for further research. In addition, there is a lack of comprehensive datasets in the
cervical intervertebral disc segmentation area.

To address the previous issues, a multi-scale information fusion framework for seg-
mentation is proposed and effective datasets are constructed for cervical intervertebral
disc segmentation. A brief illustration of our method is given in Figure 1. The main
contributions of this paper are as follows:

1. A multi-scale information fusion framework for segmentation is proposed. This
framework consists of multi-scale low–high level feature encoding–decoding fusion
module and multi-scale semantic fusion module, with the use of adjacent layer infor-
mation assisted segmentation strategy. Building upon the conventional hierarchical
encoding–decoding framework, it further merges mid-layer semantic information
at multiple scales, achieving progressive precision extraction of segmentation fea-
tures. This framework demonstrates exceptional performance in intervertebral disc
segmentation tasks and is effectively applicable to 3D reconstruction and 3D printing.

2. An effective multi-scale semantic fusion module is introduced, which can be further
divided into two stages: scale interaction based on convolution and scale interaction
based on pooling. This two-stage high-precision fusion method significantly enhances
the final segmentation performance.

3. Datasets specifically aimed at cervical intervertebral disc segmentation are devel-
oped. The proposed datasets incorporate inter-layer interpolation to address the
inconsistency in longitudinal and transverse pixel spacing in CT sequence images. By
selecting frames with prominent intervertebral disc regions through data significance
selection and then constructing data groups where three consecutive layer images cor-
respond to one label via manual annotation, the datasets provide important support
for research in cervical disc segmentation.
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2. Related Work

Image segmentation is one of the most important parts in image research. By extracting
the regions of interest in an image, it can be used in many fields such as medical image
analysis, video surveillance, and autonomous driving. Traditional image segmentation
algorithms utilize information such as the grayscale, edges, and shapes of the objects to
be segmented in the image to complete the segmentation task. Traditional segmentation
algorithms require manual interaction to improve segmentation accuracy, and during
execution, they need to continuously iterate to find the optimal solution, which generally
requires a long computation time.

In recent years, with the continuous development of computer hardware technology,
the development of image segmentation algorithms based on deep learning has been
accelerating [7–14]. Long propose the fully convolutional network [20], which applies
convolutional neural networks to the field of image segmentation. This network extracts
key features of the image using convolutional kernels, and then uses these features to
complete the image segmentation task. Ronneberger propose the UNet network [4], which
uses a symmetric encoding–decoding structure and connects low-level image features with
high-level image features through skip connections. PSPNet [21] uses ResNet [6] as the
backbone network and proposed a pyramid pooling module to further expand the receptive
field. Different resolution image features are upsampled to the same size for fusion. The
pyramid pooling module improves the segmentation ability of the network. BiseNet [22]
divides image features into semantic features and contextual features. Semantic features
have high image resolution and contain detailed features such as edges and textures,
while contextual features are highly abstract features obtained by repeatedly extracting
features from the image. Semantic features and contextual features are fused using a
feature fusion module to complete the final image segmentation task. Deeplabv3 [23]
uses Xception [24] as the backbone and used depth-wise separable convolutions to reduce
the number of model parameters. The network also uses the Atrous Spatial Pyramid
Pooling (ASPP) module to improve the receptive field and better extract image features.
ASPP improves the multi-scale feature extraction ability through dilated convolutions of
different kernel sizes. HRNet [25] fuses different scales of image features continuously to
complete the image segmentation task, in contrast to the previous networks that always
first reduced the resolution and then increased it. The popularity of Transformer in image
segmentation has promoted the development of image segmentation [26–32]. Google
proposes the vision transformer [33], which decomposes images into several image blocks
and uses these image blocks as input to the transformer, greatly improving the performance
of semantic segmentation. Chen combines Transform er with Unet network [34], fully
utilizing the local feature extraction ability of convolutional kernels and the self-attention
mechanism of transform. Segformer [35] uses a layered Transformer encoder to obtain
coarse segmentation features with high resolution and high-quality features with low
resolution, and then designs an MLP decoder to fuse multi-level features to complete
semantic segmentation. UNet-2022 [36] designs an encoder network by parallelizing self-
attention and convolution and uses parallel non-isomorphic blocks to enhance the ability
to extract image features. Wan propose SeaFormer [37], which is a lightweight semantic
segmentation network that balances efficiency while ensuring segmentation accuracy. Yuan
propose an effective CNN and Transformer complementary network for medical image
segmentation, and achieve good performance [38]. Recently, the release of SAM has pushed
the boundaries of segmentation and greatly contributed to the development of basic models
for computer vision [39].

The aforementioned deep learning-based image segmentation methods have achieved
good experimental results in their respective tasks. However, there is room for improvement in
their segmentation capabilities, especially through specific enhancements tailored to the needs
of particular applications to further boost performance. Additionally, the scarcity of datasets
specifically for cervical intervertebral disc segmentation also poses challenges for practical
research in this area. In summary, the aforementioned issues urgently need to be addressed.
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3. Proposed Method
3.1. Overview of Proposed Method

To address the previous issues, we propose a new framework as shown in Figure 2.
To the scarcity of datasets specifically for cervical intervertebral disc segmentation, we
construct datasets via inter-layer interpolation, significant data selection, and manual label
construction. More details are provided in Section 3.5.

Electronics 2024, 13, 432 4 of 16 
 

 

improvement in their segmentation capabilities, especially through specific enhancements 
tailored to the needs of particular applications to further boost performance. Additionally, 
the scarcity of datasets specifically for cervical intervertebral disc segmentation also poses 
challenges for practical research in this area. In summary, the aforementioned issues ur-
gently need to be addressed. 

3. Proposed Method 
3.1. Overview of Proposed Method 

To address the previous issues, we propose a new framework as shown in Figure 2. 
To the scarcity of datasets specifically for cervical intervertebral disc segmentation, we 
construct datasets via inter-layer interpolation, significant data selection, and manual la-
bel construction. More details are provided in Section 3.5. 

To improve the performance of segmentation for cervical intervertebral disc, we pro-
pose an effective network with multi-scale information fusion. We can see from Figure 2 
that the input of the network is not a single image, instead, adjacent layer images are used 
as input with a sliding window of with a width of 3 frams to guide the segmentation 
results of the middle layer image. Then, the input images are input into the multi-scale 
low-level feature encoder to extract the low-level feature. After that, the feature is input 
into the multi-scale semantic feature mapping module for further segmentation semantic 
feature extraction. Based on the encoding–decoding framework, the multi-scale semantic 
feature mapping module further merges mid-layer semantic information at multiple 
scales, achieving progressive precision extraction of the segmentation features. Finally, 
the semantic feature is projected into pixel space to obtain the predicted segmented result 
via the multi-scale high-level feature decoder module. 

 
Figure 2. The framework of the proposed method, with cervical intervertebral disc segmentation 
dataset construction, cervical intervertebral disc segmentation network, 3D reconstruction. 

For training the proposed network, the binary cross-entropy (BCE) function was used 
as the loss function for evaluating the similarity between the label value and the predicted 
value in the semantic segmentation model. The BCE function is expressed as follows, 
where p  represents the label value and q  represents the predicted value: 

log( ) (1 ) log(1 )Loss p q p q=- ´ - - ´ -  (1)

After the model is trained, the test CT sequence can be input into the network with 
sliding window scheme, and the segmented results of all images can be obtained. Thus, 
we can further obtain the 3D reconstructed cervical intervertebral disc with the segmented 
results. 

3.2. Adjacent Layer Information Assisted Segmentation 
Due to the identical gray information between cervical intervertebral discs and tissue 

fluids in CT images in Figure 3, it is difficult to distinguish the intervertebral disc region 

Figure 2. The framework of the proposed method, with cervical intervertebral disc segmentation
dataset construction, cervical intervertebral disc segmentation network, 3D reconstruction.

To improve the performance of segmentation for cervical intervertebral disc, we pro-
pose an effective network with multi-scale information fusion. We can see from Figure 2
that the input of the network is not a single image, instead, adjacent layer images are used
as input with a sliding window of with a width of 3 frams to guide the segmentation
results of the middle layer image. Then, the input images are input into the multi-scale
low-level feature encoder to extract the low-level feature. After that, the feature is input
into the multi-scale semantic feature mapping module for further segmentation semantic
feature extraction. Based on the encoding–decoding framework, the multi-scale seman-
tic feature mapping module further merges mid-layer semantic information at multiple
scales, achieving progressive precision extraction of the segmentation features. Finally, the
semantic feature is projected into pixel space to obtain the predicted segmented result via
the multi-scale high-level feature decoder module.

For training the proposed network, the binary cross-entropy (BCE) function was used
as the loss function for evaluating the similarity between the label value and the predicted
value in the semantic segmentation model. The BCE function is expressed as follows, where
p represents the label value and q represents the predicted value:

Loss = −p × log(q)− (1 − p)× log(1 − q) (1)

After the model is trained, the test CT sequence can be input into the network with
sliding window scheme, and the segmented results of all images can be obtained. Thus, we
can further obtain the 3D reconstructed cervical intervertebral disc with the segmented results.

3.2. Adjacent Layer Information Assisted Segmentation

Due to the identical gray information between cervical intervertebral discs and tissue
fluids in CT images in Figure 3, it is difficult to distinguish the intervertebral disc region
from the surrounding fluid region. For better visualization, we have circled the interver-
tebral disc area in Figure 3. Using only one image for intervertebral disc segmentation
provides limited information and cannot accurately locate the external contour edge points
of the intervertebral disc region. However, after CT slice scanning, the human cervical spine
CT sequence image is composed of a series of horizontal plane images. Each image, along
with its two adjacent images, not only reflects the change trend of the cervical intervertebral
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disc but also embodies the overall morphological contour characteristics of the cervical
intervertebral disc as a whole. The shape of the intervertebral disc gradually changes in
the adjacent three images, and these external contour edge points can be located by using
the adjacent images. If the network can learn these gradually changing external contour
features, it will be more helpful for accurate intervertebral disc segmentation. Therefore,
this study inputs three adjacent images into the network, and the segmentation result of
the middle layer image is used as the output for the intervertebral disc segmentation task.
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3.3. Multi-Scale Low–High Level Feature Encoding–Decoding Module

To extract the multi-scale feature from input images and project the mapped feature
into a segmentation result, the multi-scale low–high level feature encoding–decoding
module is adopted. As shown in Figure 4, the multi-scale low-level feature encoder consists
of three sequent “CBR + CBR” blocks (CBR means 3 × 3 Conv layer, BatchNorm layer,
and ReLU layer) of different scales. The Down layer is used after each CBR block to
obtain the coarse-level feature with a larger perceptive field. Specifically, the Down layer
is implemented by a 3 × 3 Conv layer with stride 2. Similarly, the multi-scale high-level
feature encoder also consists of three sequent “CBR + CBR” blocks of different scales. The
UP layer is used before each CBR block to obtain the fine-level feature with a smaller
perceptive field. Specifically, the UP layer is implemented by a Bilinear interpolation layer
with factor 2. Two long skip connections are used to achieve residual operations between
low- and high-level features.
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3.4. Multi-Scale Semantic Feature Mapping Module

Since the feature extracted by the multi-scale low-level feature encoder is relatively
coarse, finer features still need to be extracted. Thus, an effective multi-scale semantic
fusion module is proposed in this section, which can be further divided into two stages.
This two-stage fusion scheme significantly enhances the final segmentation performance.

Multi-scale semantic feature mapping module, Stage 1: The segmentation of the
cervical intervertebral disc needs to identify the target area in the original image, and the
semantic information can enrich the edge structural features of the image, making the
segmentation result more precise. By using the Stage 1 module, we can achieve feature
extraction by continuously integrating information from different scales by convolutional
operators, while maintaining high-resolution feature maps, which is inspired by [11].
During the feature extraction process, it continuously fuses and exchanges information
between feature maps of different scales. High-resolution features enable more precise
segmentation of boundaries and contours, while low-resolution features provide more
abundant contextual information.

Specifically, as shown in Figure 4, the Stage 1 module is used to obtain various 1×,
2×, 4×, and 8× down-sampled features, and fuse them via at the end of each scale via
up-sample and down-sample operators. The down-sample is implemented by a 3 × 3 Conv
layer with stride 1 or 2 or 4 or 8, and the up-sample is implemented by a Bilinear interpola-
tion layer with the factor 1 or 2 or 4 or 8. The Conv unit is implemented by “3 × 3 Conv
layer + ReLU + 3 × 3 Conv layer” for extracting features. Finally, features of all scales are
summed together via up-sample operators.

Multi-scale semantic feature mapping module, Stage 2: In order to further increase the
receptive field and extract features of different scales, this paper uses the Stage 2 module,
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which can further fuse multi-scale contextual information. Different from Stage 1 which
uses convolutional operators for obtaining multi-scales, Stage 2 use average pooling op-
erators (the global average pooling operator is also included) inspired by [14], which can
largely increase the receptive field. Specifically, this module extracts features of differ-
ent scales using different sizes of pooling kernels, adjusts the channel number through
1 × 1 convolutions, and performs up-sampling via Bilinear interpolation layers. Finally, all
scale features are concatenated and convolved to obtain the feature fusion map of different
scales, as shown in Figure 4.

3.5. Construction of Cervical Intervertebral Discs Segmentation Datasets

The human cervical spine constitutes a complex integrated structure. In the medical
imaging processing of cervical intervertebral discs, using adjacent layer images for auxiliary
segmentation not only can significantly enhance the interlayer continuity of the segmen-
tation results but also plays a crucial role in accurately determining the upper and lower
boundaries of the cervical discs. Based on this, our study proposes an effective strategy
for creating segmentation datasets for cervical intervertebral discs, which involves using
three adjacent layer CT images (i.e., upper ((t − 1)-th layer), middle (t-th layer), and lower
((t + 1)-th layer) images) to predict the single label of the middle image. This process is
illustrated in Figure 5.
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adjacent layer images ((t − 1)-th layer, t-th layer, (t + 1)-th layer) group corresponds to one label. The
red mark indicates “the single label of the middle image.” in the text.

Due to the performance limitations of CT scanners’ detectors, when scanning human
tissues with the same radiation dose, the thinner the slice thickness of the CT images,
the greater the image noise. In addition, the slice thickness of a CT image essentially
corresponds to the longitudinal pixel spacing between sequence images. To reduce radiation
dosage and image noise, usually, the longitudinal pixel spacing in CT sequence images is
significantly larger than the transverse pixel spacing within each slice. If left unaddressed,
this disparity in pixel spacing can lead to noticeable deformations of the cervical spine
structure in sagittal and coronal plane images, deviating from the spine’s actual anatomy.
The deformed cervical spine structure appears overly flattened in the images (as shown
in Figure 6), adversely affecting the segmentation of cervical vertebrae and intervertebral
discs, as well as their subsequent three-dimensional (3D) reconstruction.
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To resolve this issue, we propose using an interpolation method [15] for inter-slice
interpolation of human cervical spine CT sequence images, which not only reduces the
difference in the length of the horizontal and vertical points but also reduces the drastic
changes in the adjacent layers. The interpolated image is shown in Figure 7, and the image
information in Figure 7 is more detailed than that of Figure 6 without interpolation. The
cervical spine CT sequence images, post-interpolation, more closely resemble the true structure
of the human cervical spine in sagittal and coronal views. Subsequently, the vertebrae and
intervertebral discs in the processed images are segmented and 3D reconstructed. This
approach leads to richer morphological information of the cervical vertebrae and discs,
facilitating more detailed studies of the morphology of the cervical endplates.
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More specifically, in the segmentation of cervical intervertebral discs in human cervical
spine CT images, considering that the cervical intervertebral discs are located only in the
gaps between two cervical vertebrae, we initially selected CT images that prominently feature
cervical intervertebral discs. Subsequently, accurate labels were created manually by profes-
sionals. Our work produces labels for the cervical intervertebral discs of 100 sets of patient
data. Each set consists of CT images of uniform size of 512 × 512, and every three adjacent
layer images are combined with one label, forming a data group. The dataset is divided into
training, validation, and test sets, in a 6:2:2 ratio. Specifically, the training dataset comprises
7920 image pairs, the validation dataset 2167 pairs, and the test dataset 2338 pairs (general
test dataset). The entire dataset construction process is referenced in Figure 8.
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4. Experiments
4.1. Experimental Settings

In the experiments, the operating environment is Ubuntu 20.04, the CPU is Intel(R)
Core(TM) i7-9700 with 32 GB of memory, and the GPU is NVIDIA RTX2080Ti with 11 GB
of display memory.

The network is built on the PyTorch 1.7.0 platform and trained on the constructed cervical
intervertebral disc dataset. The learning rate is set to 0.0001 and the batch size is set to four.
The ADAM optimizer is used for gradient backpropagation to optimize the network model
parameters, and the network can converge after about 30 epochs during training.

During testing, we compare the proposed method with other typical methods like
PSPNet, Deeplabv3, HRNet, and UNet-2022 on the testing dataset. For further validation
on the generalization of our method, we compare our method with other baselines on a
different testing dataset called T1500.

4.2. Evaluation Indicators

To objectively evaluate the segmentation results of cervical intervertebral discs, the
intersection over union (IOU) and the Dice similarity coefficient (DICE) are used in this
study. FN is an area “labeled as true but predicted as false”. TP is the area “labeled as true
and predicted as true”. FP is an area where “the label is false but the prediction is true”.
TN is an area where “the label is false and the prediction is false”. These are illustrated in
Figure 9. In order to measure the model size of the proposed network in this paper, the
parameter number (Params) is introduced.
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IOU can be represented by the following equation:

IOU =
TP

TP + FN + FP
(2)

The DICE similarity coefficient is represented by the following equation:

DICE =
2 × TP

(TP + FN) + (TP + FP)
(3)

4.3. Comparison with Other Methods

In order to verify the effectiveness of the proposed method, comparative experiments
are conducted with current mainstream segmentation algorithms. The network models in
the compared methods are trained on the dataset constructed in this study and tested on
the constructed test dataset. The comparison methods in this study include PSPNet [15],
Deeplabv3 [17], HRNet [19], and UNet-2022 [30]. The segmentation results of cervical
intervertebral discs are shown in Table 1, and Figure 10.

Table 1. Experimental results of different networks on the general test dataset.

Network
Index

IOU (%) Dice (%) Params (M)

PSPNet [16] 59.22 79.61 46.70
Deeplabv3 [18] 70.00 78.99 54.71

HRNet [20] 70.93 79.61 63.59
UNet-2022 [31] 69.06 79.16 41.90

Ours 73.63 82.98 63.83
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As shown in Table 1, the proposed model outperforms the other compared methods
in three aspects: IOU, DICE coefficients and Params. For example, compared with HRNet,
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the parameter numbers are similar, i.e., 63.83 M vs. 63.59 M, but our method still achieves
higher objective results. For the other methods, e.g., Deeplabv3, although it has slightly
smaller parameter number, its IOU and Dice indices are much lower. In addition, according
to Figure 10, our method achieves better visual segmentation results. For better visualization,
we also provide the difference map (DM) and difference indicator (DI). DM is calculated by:

IDM =
∣∣MGT − MSeg

∣∣ (4)

where IDM is the DM, MGT is the ground-truth segmentation label, and MSeg is the pre-
dicted segmentation label.

DI is calculated by:

DI =
SUM(IDM)

SUM(MGT)
(5)

where SUM is the summation function. This formula calculates the ratio of the difference
area between the segmentation result and the ground-truth segmentation label to the total
area of the ground-truth segmentation label. It is used to determine the degree of difference
between the segmentation result and the ground-truth segmentation label. The larger the
DI value, the greater the difference between the two, and the worse the segmentation result,
and vice versa.

Both DM and DI also show that the proposed method can obtain better segmentation
results with lower difference to the ground-truth label. This is because the adjacent three-
layer images increase the interlayer constraint of cervical disc segmentation, and the
multi-scale information extraction and fusion module improves the details of cervical discs,
and thus enhances the accuracy of cervical disc segmentation.

At the same time, this paper also uses the marching cubes (MC) algorithm to perform
iterative reconstruction of cervical intervertebral disc segmentation results from this net-
work, and the 3D reconstruction results of two samples of different surfaces are shown in
Figure 11. MC is a representation of 3D objects and is used for volume painting or surface
reconstruction. It is to rasterize a 3D object and then use cubes (voxels) to represent it. The
details are explained later in Section 4.6. We can observe that the 3D models are reasonable
and can well reflect 3D shapes.
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4.4. Generalization to Other Dataset

To further validate the effectiveness of our proposed method, we conduct tests on
a new intervertebral disc segmentation test dataset using the previously trained model
in Section 4.3. The construction of this test dataset is as follows: CT sequence images of
cervical spines from 30 additional patients are selected to create the dataset. Each image
size is 512 × 512 pixels, and every three adjacent images are paired with one label, forming
a group. There are a total of 1500 sample groups, and we call it T1500 dataset. The test
results are shown in Table 2. The performance on this test dataset still surpasses that of
comparative methods, demonstrating the strong generalizability of the proposed approach.
The segmentation results on the new testing dataset are displayed in Table 2 and Figure 12.

Table 2. Experimental results of different networks on the T1500 dataset.

Network
Index

IOU (%) Dice (%) Params (M)

PSPNet [16] 58.77 67.30 46.70
Deeplabv3 [18] 69.94 77.53 54.71

HRNet [20] 72.39 80.11 63.59
UNet-2022 [31] 68.93 76.95 41.90

Ours 73.67 81.07 63.83
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4.5. Ablation Experiments

In order to verify the effectiveness of the adjacent layer information aided segmentation,
multi-scale low–high level feature encoder–decoder, and multi-scale semantic information
mapping module proposed in this paper, this paper compares four variants, including Model0
(without multi-scale low–high level feature encoder–decoder, and without Stage 2), Model1
(without multi-scale low–high level feature encoder–decoder), Model2 (without adjacent layer
information assisted segmentation), Model3 (Ours). The results obtained on the test dataset
are shown in Table 3. The results show that by removing adjacent layer information assisted
segmentation, i.e., only using one image as input, the IOU and Dice will decrease by 0.28 and
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0.32, respectively. By removing multi-scale low–high level feature encoder–decoder, the IOU
and Dice will decrease by 1.05 and 0.71, respectively. By removing multi-scale low–high level
feature encoder–decoder and without Stage 2, the IOU and Dice will significantly decrease by
2.70 and 3.37, respectively. These results verify that the main components of the proposed
method are crucial for the segmentation performance.

Table 3. Ablation experiments on adjacent layer information assisted segmentation, multi-scale
low–high level feature encoder–decoder, and multi-scale semantic information mapping module
(Stage 1 and Stage 2) on the general test dataset.

Module
Index

IOU (%) Dice (%)

Baseline (Model0) 70.93 79.61
Model1 72.58 82.27
Model2 73.35 82.66
Model3 73.63 82.98

4.6. Application to 3D Reconstruction and 3D Printing

This section sequentially introduces the Marching Cubes (MC) algorithm involved in
3D reconstruction, the visualization toolkit (VTK) pipeline, and 3D printing technology,
along with a specific example of 3D reconstruction and printing.

MC algorithm based on isosurface extraction. This algorithm generates intermediate
geometric primitives by extracting isosurfaces between two-dimensional sequence im-
ages, and these primitives are then assembled and displayed using visualization software.
Therefore, this method is also known as the indirect rendering method. The intermediate
geometric primitives include triangular and square patches. The MC algorithm constructs
these primitives only for the object’s surface and cannot display the internal structure. The
moving cubes algorithm proposed by Lorensen and others, known for its high precision
and wide applicability, is one of the most popular methods in 3D display. We have adopted
this method for our 3D reconstruction.

Introduction to VTK 8.2.0 and its visualization pipeline. VTK is an open-source soft-
ware library specifically for 3D image processing and visualization. Its core is written in C++
using object-oriented principles. Thanks to its open-source nature, many researchers have
further developed VTK, enriching its functional interfaces and promoting its development.
VTK has now been widely used in various fields such as medicine, geological exploration,
and fluid dynamics, facilitating the processing and visualization of three-dimensional data.
Thus, we have chosen VTK for 3D visualization.

3D printing technology. 3D Printing is a technique that constructs objects layer by
layer using powder-like metal or plastic materials that can be bonded together, based on
digital model files. 3D printing plays a significant role in intervertebral disc replacement
surgeries. We attempt to 3D print the results of our segmentation. A specific example
of 3D reconstruction and printing is shown in Figure 13. The left side displays the 3D
reconstructed cervical vertebrae and intervertebral discs, while the right side shows the
corresponding 3D printed models of the cervical vertebrae and intervertebral discs. The
3D models printed based on the segmentation results demonstrate good effectiveness,
providing significant technical support for surgeries like intervertebral disc replacement.
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5. Conclusions

This paper introduces a significant advancement in the field of cervical intervertebral
disc segmentation, employing a multi-scale information fusion method. This method
uniquely combines multi-scale feature encoding–decoding with semantic fusion modules,
facilitating an enhanced precision in the extraction of segmentation features. The two-stage
process of the semantic fusion module, which involves convolution and pooling-based
scale interactions, has been instrumental in improving the segmentation accuracy. The de-
velopment of a specialized dataset for cervical intervertebral disc segmentation represents
a critical contribution of this study, addressing the previously existing gap in this area. By
incorporating inter-layer interpolation, this dataset effectively mitigates issues related to
pixel spacing inconsistencies in CT images, thereby bolstering the reliability of segmen-
tation results. Our experimental findings underscore the high segmentation accuracy of
the proposed network model in the context of human cervical intervertebral discs. The
potential applications of this model in 3D reconstruction and printing further highlight its
practical utility. This research not only provides a robust methodological framework for
cervical disc segmentation but also lays the groundwork for future explorations in spinal
health diagnostics and treatment planning. In the future, we will explore how to further
decrease the inference complexity.
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