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Abstract: In underwater navigation of autonomous underwater vehicles (AUVs), communication
delays frequently occur, leading to a reduction in positioning accuracy. To mitigate this challenge,
this work introduces a novel method for relative angle correction, aiming to reconstruct measure-
ment information. Initially, Doppler measurement data are assimilated into the reconstruction of
measurement equations to determine the relative angle between the AUV and the observatory. Sub-
sequently, the obtained angle information is integrated into the Extended Kalman Filter (EKF) for
the reconstruction of measurement equations. The proposed method effectively reduces positioning
errors caused by hydroacoustic communication delays, consequently enhancing AUV positioning ac-
curacy. The efficacy of the proposed method is demonstrated through a simulation study. Simulation
results reveal that the incorporation of Doppler angle correction in the reconstructed measurement
information method significantly decreases the localization error by approximately 50% compared to
EKF and by around 20% compared to the method lacking angle correction.

Keywords: AUV; communication delay; Extended Kalman Filter; Doppler measurement

1. Introduction

An Autonomous Underwater Vehicle (AUV), distinguished by its integration of intelli-
gent technology and advanced computing prowess, emerges as a sophisticated underwater
submersible. This marvel seamlessly incorporates a multitude of modular functions, in-
cluding automatic control, precise navigation and positioning, energy conversion, target
recognition, and fault management. It boasts an array of advantages, including remark-
able autonomy, heightened stealth, broad environmental adaptability, cost-effectiveness,
and effortless expandability. AUVs are now being used for a variety of tasks, including
oceanographic surveys, demining, and bathymetric data collection in marine and riverine
environments. And AUVs play a vital role in ocean information acquisition, requiring
robust and reliable navigation performance [1,2]. For complex and dynamic marine envi-
ronments, self-localization function of AUVs is the foundation for accomplishing potential
applications [3]. At present, there are three main wireless communication methods: radio
communication, optical communication and acoustic communication. Currently, the Global
Navigation Satellite System (GNSS) stands as the fundamental system for high-precision
land and air navigation [4]. Nevertheless, the radio signal experiences rapid attenuation in
water, rendering GNSS inapplicable for underwater navigation [5]. Optical communication
range is short and requires high-quality water. In our operational scenarios, underwater
robots frequently demand long-distance communication in turbid waters. Consequently,
optical communication with shorter latency is not particularly suitable for our specific
context. Acoustic communication is the most effective method because of its slow attenua-
tion speed and long transmission distance [6,7]. However, acoustic communication also
has non-negligible limitations, including delay, path loss, limited bandwidth, multipath
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and so on [8,9]. In practice, the propagation delay is related to the speed and distance of
propagation [10]. The propagation speed of radio waves in air is equivalent to the speed
of light. In contrast, underwater acoustics propagate slowly, resulting in communication
delays when utilizing hydroacoustic communications for localization. The consideration
of delay factors becomes crucial in underwater localization, bearing substantial research
significance. Furthermore, due to the complexity of the underwater environment, there
is still a gap between the navigation and positioning accuracy of underwater vehicles
compared to those of air and land, and for the time being, underwater navigation has
become an important issue in the field of AUV research, and the navigation and positioning
of AUV are very challenging [11–15].

In underwater navigation missions, precise navigation information is the prerequisite
for the aforementioned applications. Location data are not merely employed to determine
spatial coordinates; they also constitute a critical safeguard for the overall effective utiliza-
tion and secure retrieval of AUVs. Utilizing surface positioning robots such as unmanned
boats and smart buoys, alongside the application of relative ranging information, offers
an effective approach to calibrate AUV position data. This calibration process eliminates
cumulative errors stemming from the AUV’s own inertial guidance system, thus facili-
tating long-term accurate navigation and positioning for miniature AUVs [16]. Due to
the significantly lower propagation loss of acoustic signals compared to radio signals,
acoustic navigation emerges as the most effective method. This underscores the essential
role of hydroacoustic positioning systems as an indispensable component for localization
and navigation in automatic underwater vehicles (AUVs). They represent a pivotal key
to the successful execution of underwater navigation missions [17,18]. In addition, the
challenge of striking a balance between the robustness of the control system and the uti-
lization of communication resources equally demands consideration [19]. For instance,
Du et al. [20] addresses an improved co-design method of dynamical controller and asyn-
chronous integral-type event-triggered mechanisms (ETMs) for a class of linear systems
with external disturbances and measurement noises. A tradeoff can be achieved between
the robustness of the control system and the occupancy rate of communication resources.

The recursive state estimation is a typical problem of discrete-time dynamic systems,
especially in state estimation for navigation system [21]. The Kalman Filter (KF) is a classic
recursive estimation algorithm that divides the navigation process into state prediction
and update [22]. Currently, there are a lot of KF variants aimed at optimizing the state
estimation [23–26]. It is important to note that the traditional KF requires the system
model to be linear. In practical applications, the relationship between state equations and
observation equations established by the Kalman Filter is more prone to nonlinearity. This
characteristic renders the traditional Kalman Filter algorithm inapplicable. [27]. Therefore,
the Extended Kalman Filter (EKF) has been presented and has become the most widely used
algorithm for AUV navigation and nonlinear navigation models [28]. For instance, in [29], a
variational Bayesian-based Adaptive EKF algorithm is proposed for cooperative navigation
of master–slave autonomous underwater vehicles (AUVs), improving the robustness of
unknown or time-varying noises accordingly. Nonetheless, within the practical underwater
navigation environment, underwater acoustic communications are limited by the following
channel impairments: time variability, narrow bandwidth, multipath, frequency-selective
fading [30]. The mutual communication between AUVs and other nodes, along with
the processes of data handling and underwater data transmission, inevitably entail a
specific duration. This results in a delay in information propagation underwater. When
introducing delayed measurement information into the EKF filtering process, the resulting
estimation outcomes can exhibit significant errors, consequently impacting the ultimate
filtering effectiveness. Therefore, for the AUV localization problem under consideration, it
is necessary to take the delay in information propagation underwater into consideration.
This is the motivation of the current study.

In the current literature, prevalent strategies involve enhancing established localization
models by integrating additional aids like Doppler Velocity Logs (DVL), etc., or pursuing
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improved AUV localization through algorithmic refinements and debugging. Wang [31]
proposed a single-beacon navigation method based on direct signal (DS) and surface reflec-
tion signal time delay (SRS), established a tracking model based on DS and SRS, smoothed
the navigation results, and made an observational analysis. The accuracy analysis showed
that the DS-SRS-based method has better navigation accuracy compared with the DS-based
method. Xu [32] proposes a new robust delay filtering algorithm for cooperative localization
of autonomous underwater vehicles (AUVs). The modified measurement equation of non-
linear cooperative positioning system with time-varying delay is derived. The delay caused
by information processing and propagation of the underwater acoustic modem is converted
into measurement deviation. Secondly, the statistical similarity metric (SSM) is introduced
to construct a cost function to improve the robustness of the system to outliers caused by
anomalies in hydroacoustic communication and Doppler velocity (DVL) measurements,
and the proposed robust delay algorithm mitigates the effect of delayed measurements
with outliers on localization accuracy. To solve the problem of DVL failure in AUV mo-
tion, Zhu et al. [33] proposes a hybrid prediction method combining the long-short-term
memory neural network (LSTM) and a machine learning method-assisted adaptive filtering
algorithm. The method can effectively solve the problems of DVL failure and the inability
to provide measurement values and outlier interference in the DVL measurement process.
Yan [34] designs two model-free proportional differential (PD) tracking controllers consid-
ering time-varying communication delays, and gives sufficient conditions for asymptotic
stability. By using a linear matrix inequality (LMI) the relationship between controller gain
and time delay is established, which could calculate an upper limit on the allowable time
delay. Zhang et al. [35] construct an integrated navigation solution model based on the Ex-
tended Kalman Filter (EKF), which uses distance and velocity as measurement information,
to reduce the navigation error due to underwater vehicle motion. Li et al. [36] propose
a Bayesian inference algorithm for long-baseline acoustic localization of a maneuvering
undersea vehicle, which compensates for vehicle motion during the interrogation-reception
time interval between the vehicle and transponders of the LBL system using only acoustic
timing measurements. Thomson et al. [37] develop a linearized Bayesian inversion algo-
rithm for high-precision localization of an AUV on a test range using time difference of
arrival acoustic data in a LBL positioning system. Bo Xu [38] deeply analyzed the broadcast
cooperative navigation time delay error generation and action mechanism, and proposed
a positioning method based on the measurement update. The method models the delay
as a system state quantity, stores all the system state quantities during the filter operation,
directly updates the delay information of the arrival measurement, and reconstructs a new
filtering equation to realize the state filtering estimation, so as to improve the system accu-
racy. Yao [39] introduces the Decomposed Extended Kalman Filter (DEKF), necessitating
the storage of all delay states before conducting filtering processes. In Reference [40], a
technique for underwater acoustic communication and detection delay has been proposed.

Therefore, it is essential to propose a method that can effectively alleviate the position-
ing errors induced by underwater communication delays, thereby augmenting the precision
of localization. This article addresses the issue of communication latency in underwater
navigation systems. Building upon the research of AUV underwater navigation systems, it
introduces Doppler measurement information to reconstruct measurement data. A refined
EKF algorithm based on reconstructed measurement data is proposed. This approach
proves efficacious in addressing the cumulative errors arising during the measurement
process, thereby enhancing the precision of AUV positioning. Its effectiveness is evaluated
through simulated experiments.

• To enhance the accuracy of AUV positioning, this work introduces the issue of com-
munication delays during underwater positioning and analyzes its impact on EKF
nonlinear filtering.

• To address the localization error induced by communication delay, we propose a
localization compensation algorithm. This algorithm compensates for the localization
information by reconstructing the measured data, resulting in a more accurate position.
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• To optimize the reconstructed measurement information, we propose a Doppler-
corrected angle method. This approach corrects the heading angle of AUV motion
using Doppler measurement information, effectively mitigating the issue of cumula-
tive angular errors in the reconstructed measurement information.

• The efficacy of the proposed metrology update algorithm, incorporating Doppler
correction, is validated through simulation experiments. In contrast to traditional
algorithms, the proposed algorithm proficiently mitigates the issue of cumulative
errors in angle measurements, thereby elevating the precision of localization.

The remainder of this paper is organized as follows. The underwater positioning
model without latency and EKF nonlinear filtering method are introduced in Section 2.
Section 3 presents the compensation algorithm based on measurement update and the
Doppler correction method, The simulation results are analyzed in Section 4. The conclu-
sions and future works are presented in Section 5.

2. Underwater Positioning Methods

In practical applications, AUVs are typically equipped with highly accurate depth
sensors, because given that the depth information of underwater vehicles tends not to un-
dergo abrupt changes, the influence of depth information can be momentarily disregarded
in the navigation and localization systems outlined in this study. Consequently, three-
dimensional spatial localization can be simplified into a two-dimensional plane localization
problem. The formulas in this chapter are referenced from the literature [41].

2.1. Positioning Model without Latency

To solve the AUV localization problem, we establish a northeast ground localization
coordinate system. To illustrate the localization problem more conveniently, in this thesis,
we consider the use of only one observatory node and one AUV. The AUV motion model is
shown in Figure 1. We assume that the initial position of the observatory is known and
set as (x0, y0). By creating a two-dimensional discrete-time model with sampling interval
Ts, the real-time estimation of the AUV’s position at time tk can be described using the
following state information:

xk = xk−1 + vk−1Ts cos φk−1
yk = yk−1 + vk−1Ts sin φk−1
φk = φk−1 + ωk−1Ts

(1)

where xk, yk, and vk denote the positional coordinates of the AUV at time tk and the forward
travel speed, respectively. φk denotes the heading angle, ωk denotes the angular velocity of
the heading, and Ts denotes the sampling interval of the sensor.

Figure 1. AUV motion model.
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The position of the AUV is influenced by system inputs vk and ωk, and system inputs
uk are

uk =

[
vk − wvk
ωk − wωk

]
=

[
vk
ωk

]
− wk (2)

where wvk denotes the zero-mean Gaussian white noise of the forward velocity and wωk
denotes the zero-mean Gaussian white noise of the angular velocity of the heading.

Within the navigation coordinate system, the AUV’s position is characterized by
components along both the x- and y-axes. The dynamic state variables encompass x-,
y-, and forward-heading angles φk. The position information and heading angle in the
coordinate system are selected as the system state quantities X. The system state of the
AUV at time tk is defined as Xk, and the state quantity of the system is

Xk = [xk yk φk]
T (3)

The AUV’s x-coordinate is the sum of its previous x-coordinate and x-axis projection
of the distance covered during the time interval. Specifically, the AUV traverses a distance
of v ∗ ts in each time segment projected as v ∗ ts ∗ cos(φ) on the x-aixs. The y coordinates
follow a similar principle. The angle is derived by integrating the angular velocity at each
moment. Consequently, referring to Equation (1), the state equation of the system can be
expressed as

Xk = f (Xk−1, uk−1) (4)

In a real underwater sports environment, an observatory detects and localizes the
AUV for tracking purposes. The relative distance information between the observatory and
the AUV is integrated into the EKF process as observation data for correction. Assuming
that the observatory coordinates are

(
xM

k , yM
k
)
, the relative distance is calculated as follows:

dk =

√(
xk − xM

k
)2

+
(
yk − yM

k
)2 (5)

Taking dk as the observation information of the system, the observation equation of
the system is

zk =

√(
xk − xM

k
)2

+
(
yk − yM

k
)2

+ ψ
p
k (6)

where ψ
p
k denotes the observation noise of the system.

Based on the information provided, the nonlinear model of the system in the discrete-
time state space is expressed as{

Xk = f (Xk−1, uk−1) + Γk−1Wk

zk =
(

xk − xM
k
)2

+
(
yk − yM

k
)2

+ ψ
p
k

(7)

where Γk−1 denotes the system noise transfer matrix and Wk denotes the system process noise.

2.2. Extended Kalman Filter Estimation

Based on the system state model established in the previous section, it is evident that
both the state and observation equations of the system incorporate nonlinear terms, render-
ing the conventional KF algorithm unsuitable. A typical approach to filtering problems
within nonlinear systems involves transforming them into approximate linear filtering
problems using linearization techniques. Among these, the EKF method is the most ex-
tensive method. The fundamental concept is as follows: In the case of a typical nonlinear
system, the nonlinear functions f (∗) and h(∗) are initially expanded into a Taylor series
around the filter’s value X̂k, with the omission of second-order and higher-order terms to
yield an approximately linearized model. Subsequently, a Kalman Filter is employed to
accomplish filtering and estimation of the target.

The precise steps for the estimation employing the Extended Kalman Filter are as follows:
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Step 1: State Prediction
X̂k|k−1 = f

(
X̂k−1, uk−1

)
(8)

Step 2: Observation Prediction

Ẑk|k−1 = h(X̂k|k−1) (9)

Step 3: Linearize the state equation. According to Equation (4), taking the partial
derivative of f (∗) with respect to X̂k−1, we obtain the Jacobian matrix with respect to X̂k−1,
denoted as the state transition matrix Φk, which expands as follows:

Φk|k−1 =
∂f

∂XK−1

∣∣∣∣∣∣XK−1=X̂k−1
=

 1 0 −vk−1Ts sin φk−1
0 1 vk−1Ts cos φk−1
0 0 1



Γk−1 =
∂f

∂uk−1

∣∣uk−1=ûk−1 =

 Ts cos φk−1 0
Ts sin φk−1 0

0 Ts


Step 4: Linearize the observation equation. According to Equation (6), taking the

partial derivative of h(∗) with respect to X̂k|k−1, we obtain a Jacobian matrix with respect
to X̂k|k−1, denoted by the state transition matrix Hk, which is expanded as follows:

Hk =

 xk − xM
k√(

xk − xM
k
)2

+
(
yk − yM

k
)2

,
yk − yM

k√(
xk − xM

k
)2

+
(
yk − yM

k
)2

, 0

 (10)

Step 5: Calculate covariance matrix.

Pk|k−1 = Φk|k−1Pk−1ΦT
k|k−1 + Γk−1Qk−1ΓT

k−1 (11)

Step 6: Calculate Kalman gain.

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1 (12)

Step 7: State update.

X̂k = X̂k|k−1 + Kk(Zk − Ẑk|k−1) (13)

Step 8: Covariance update.

Pk = (I − KkHk)Pk|k−1 (14)

This constitutes the computational cycle of EKF. The treatment of nonlinear systems
using EKF involves the continuous iterations of the computational cycle. Within this
iterative process, the AUV receives range information from the observatory, integrates
it into the EKF update process, and consequently acquires the position information to
continuously refine its position.

3. Communication Delay Compensation Algorithm

AUVs are used in complex marine environments, where their navigation and posi-
tioning can be affected by harsh conditions and the instability of measurement sensors,
leading to unknown system noise, and thereby, resulting in unknown measurement system
errors [42]. For instance, mutual communication between the AUV and the observatory is
a fundamental requirement for achieving navigation and positioning based on distance
information. However, owing to the AUV’s operation in underwater environments, signal
transmission naturally incurs a certain amount of time delay. Consequently, there is an
inevitable time lag in the relative positioning information transmitted from the observatory
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to the AUV. The impact of the signal transmission delay on navigation performance is
often a factor that cannot be overlooked. The communication delay between the AUV and
navigation system of the observatory is illustrated in Figure 2. The observatory transmits
distance information to the AUV at time moment t1; however, the AUV receives the com-
munication signal at time moment t2 with time δt = t2 − t1. During this period, the AUV’s
position can change with in relation to time t1. If range information is incorporated into the
filter for measurement and updating, then a substantial error may be introduced, adversely
affecting the navigation performance.

Figure 2. Positioning system communication delay schematic.

3.1. Compensation Algorithm Based on Measurement Update

In response to the communication delay problem in AUV underwater localization,
a time delay is introduced into the measurement equation of EKF, and the optimal state
estimation is deduced according to the principle of minimum variance estimation [38].

The relative motion between the AUV and observatory is depicted in Figure 3. As-
suming that at time t1, the coordinates of the observation station are represented by
PM

1 = (xM
1 , yM

1 ), and the AUV’s position coordinates are denoted as p1 = (x1, y1), the
observed distance between the AUV and the observation station at this moment is d1. At
time t2, the AUV’s position coordinates, denoted as p2 = (x2, y2), are obtained after the
AUV has moved for a duration of δt. The observed distance between the AUV and the
observation station is d2. According to Equation (5), we can calculate the values of d1 and
d2, as illustrated in Equation (15). d1 =

√
(x1 − xM

1 )
2
+ (y1 − yM

1 )
2

d2 =
√
(x2 − xM

1 )
2
+ (y2 − yM

1 )
2

(15)

From Figure 3, we can infer that due to the presence of delays, when computing the
measurement information of the AUV at time t1, the AUV has already moved from p1
to p2. At this point, the obtained measurement information is no longer accurate, and
Equation (5) is no longer applicable. To address this issue, it is necessary to reconstruct
the measurement equation to obtain more accurate measurement information. Assuming
that the AUV maintains a constant speed during the communication delay δt, it covers a
distance represented by dδt = v2δt. Based on the AUV’s position at the moment of signal
reception t2, we can calculate and infer its position at time t1. The coordinates of this
inferred position can be denoted as P′

1 = (x′1 y′1), which fulfills the following equation:{
x′1 = x2 − dδt cos φ2
y′1 = y2 − dδt sin φ2

(16)
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The relative distance between P′
1 and the observatory is expressed as

d′1 =

√(
x′1 − xM

1
)2

+
(
y′1 − yM

1
)2 (17)

As depicted in Figure 3, we deduce that β = α+φ. The relative azimuth between the
station and AUV at time t1 is as follows:

α = arctan

(
x′1 − xM

1

y′1 − yM
1

)
(18)

The reconstituted measurement data are as follows:

Zk = d′1
2
+ d2

δt − 2d′1
2d2

δt cos β (19)

Subsequently, the reconstructed measurement information undergoes a measurement
update within the filter. Through the acquisition of more precise relative positional informa-
tion at time t2, this method compensates for communication delay-induced positioning er-
rors. Additionally, this approach reconstructs the measurement equation on the foundation
of EKF, thereby obviating the necessity for extra data storage and computational resources.

Figure 3. AUV movement schematic.

3.2. Doppler Correction
3.2.1. Usability Analysis

In practical application environments, the velocity information obtained from the
AUV’s own sensors is already relatively accurate, while the angles, influenced by the
underwater environment, can lead to positioning errors. The Doppler Velocity Log (DVL) is
a commonly used acoustic velocity measurement instrument that can measure the velocity
of the carrier in real time [43]. The navigation method based on the Doppler effect has
the advantage that the navigation error does not increase cumulatively [44]. Based on this
characteristic, we can rectify the angles of the AUV.

From Equation (19), it can be observed that the new measurement information equa-
tion relies on the calculation of angle β; nevertheless, the sensor’s own positional data
are subject to noise-induced errors. Indeed, when the sensor follows a curved trajectory,
the azimuth angles undergo continuous variation. In such circumstances, the aforemen-
tioned methods are prone to error accumulation, thus adversely affecting the positioning
accuracy. In response to the aforementioned challenges, a Doppler measurement model
is proposed. This model calculates the relative angles based on the received frequency
variations, thereby effectively alleviating the problem of error accumulation and enhancing
the positioning precision.

The geometry for the mobile sensor localization based on the Doppler measurement
model is shown in Figure 4. Assuming that the AUV has M motion trajectory segments and
the sensor is moving at a constant velocity at the mth trajectory segment, m = 1, 2, ..., M,
and kth sampling point, k = 1, 2, ...km, the position of the AUV is denoted as sm,k =
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[sx,m,k, sy,m,k, sz,m,k]
T , velocity is denoted as vm,k = [vx,m,k, vy,m,k, vz,m,k]

T , and the coordinates
of the location of the observatory are denoted as u = [ux, uy, uz]T .

Figure 4. Geometry of localization based on Doppler measurements.

The Doppler measurement equations are given by Equation (20): f̃m,k = fm,k + em,k

fm,k = fs

(
1 +

vT
m,k(u−sm,k)
c∥u−sm,k∥

)
= fs

(
1 + ∥vm,k∥

c cos βm,k

) (20)

where fs denotes the frequency of the acoustic signal emitted by the target, c denotes
the speed at which the signal propagates through the water, and em,k ∼ N(0, σ2

m,k) is an
independent Gaussian white noise with zero mean and σ2

m,k variance, β denotes the angle
between the direction vector dm,k = u − sm,k of the AUV to the observatory and velocity
vector vm,k of the AUV.

3.2.2. Analysis of the Doppler Correction Algorithm

In this experimental environment, it is assumed that the depth information will not
change in a short period of time, ignoring the influence of the depth information. Therefore,
we exclusively focus on positional data along the northeast direction, effectively reducing
the three-dimensional problem to a two-dimensional one. The trajectory of the AUV is
characterized by a curve. Consequently, Equation (20) can be reformulated as f̃k = fk + ek

fk = fs

(
1 + vT

k (u−sk)

c|u−sk |

)
= fs

(
1 + |vk |

c cos βk

) (21)

From Equation (21), the angle βk obtained through Doppler frequency shift measure-
ment is

βk = arccos
(

c
|vk|

(
fk
fs
− 1)

)
(22)

Substituting βk into Equation (19), the updated measurement data are presented in
Equation (23).

Z′
k = d′1

2
+ d2

δt − 2d′1
2d2

δt cos βk (23)

Ultimately, the updated measurement data are introduced into the filter for mea-
surement updating, leading to the acquisition of position-estimation information that
appropriately compensates for the delay. The proposed algorithm for position estimation
based on Doppler-corrected angles is illustrated in Algorithm 1.



Electronics 2024, 13, 466 10 of 16

Algorithm 1 Position estimation based on Doppler-corrected angles

1: Initialize parameters: β0, c, v0, X0, Z0, Xn0, Z_update0
2: for i = 1 : N do
3: // State equation;
4: Xi = f (Xi−1, ui−1) + ωi−1);
5: // Observation equation.;
6: Zi = h(Xi) + Vi
7: end for
8: // Doppler correction
9: for i = 1 : N do

10: βi = arccos( c
vi
(

f i
k

fs
− 1));

11: end for;
12: // EKF
13: for i = 1 : N do
14: // State Prediction;
15: Xni = f (Xni−1, uni−1)
16: // Measurement information update;
17: Z_updatei = d′ i

2 + d2
δt − 2d′ i

2d2
δt cos βi

18: // State update;
19: X_ek fi = Xni + Ki(Z_updatei − Zi)
20: end for

4. Simulation

When the AUV travels in a consistent direction, the limited variation in its heading
angle leads to an inconsequential cumulative angular error. Consequently, the optimization
impact of the proposed method is comparatively modest when contrasted with EKF and
measurement update methods. When the sensor follows a curved trajectory, the azimuth
angles undergo continuous variation. In this scenario, the outcomes of the proposed
method exhibit a more favorable comparison in contrast to the aforementioned methods.
Therefore, simulation experiments are conducted with the AUV trajectories defined as
curves to more comprehensively elucidate the efficacy of the proposed method.

We assume a sensor system noise level of σv = 0.1 m/s, a communication delay time
of δt = 1 s, a curved trajectory for the sensor, an angular velocity of 0.01◦/s during its
movement, and an airspeed of 3 m/s. The initial simulation parameters can be summarized
in Table 1.

Table 1. The initial simulation parameters

Parameters Value Meaning

δt 1s Communication latency
ω 0.01◦/s Angular velocity
v 3 m/s AUV travel speed
c 1500 m/s Underwater sound wave propagation speed
fs 10 kHZ Doppler emission frequency
σv / System noise
ek / Doppler observation noise

The Root Mean Squared Error (RMSE) of 100 Monte Carlo simulation experiments
was calculated, and the RMSE calculation formula is shown in Equation (24).

RMSE : x̃i
k =

√√√√ 1
M

M

∑
j=1

[x̃i
k(j)]2 (24)
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where x̃i
k(j) is the estimation error of ith state variable in the jth simulation, j = 1, 2...M, M =

100 and x̃i
k is the RMSE of the ith state variable.

The proposed Doppler-updating algorithm is compared with the EKF and measurement-
updating EKF algorithms in Equation (19), and the simulation results are shown in
Figures 5–11. The results of the average error of 100 experiments are presented in Table 2.
We have conducted an analysis of the statistical data in Table 2, calculating the arithmetic
mean and SD (standard deviation). Furthermore, we have performed a comparative anal-
ysis of the localization performance of three algorithms, and the results are presented
in Table 3. The results reveal that the incorporation of Doppler angle correction in the
reconstructed measurement information method significantly decreases the localization
error by approximately 50% compared to EKF and by around 20% compared to the method
lacking angle correction. The data obtained from 100 repeated experiments reveal that the
proposed algorithm exhibits the smallest SD, indicating the most stable performance.

From Figures 5 and 6, we can observe the motion trend of the AUV by employing
different algorithms and also the trend of RMSE of the heading angle. In the initial
phase, the AUV maintains a relatively constant heading angle, follows a trajectory closely
resembling a straight line, and aligns well with the actual trajectory. During the curve-
driving phase, the AUV exhibits increased variability in the heading angle, leading to more
apparent deviations among the three trajectories. Notably, the trajectory employing the
Doppler angle correction method exhibits the closest alignment with the real trajectory.

Table 2. Average error of 100 experiments.

Simulation EKF Measurement
Updating

Doppler
Updating

1th Average error/(m) 0.4768 2.2733 1.4456
2th Average error/(m) 1.5151 1.2834 1.5445
3th Average error/(m) 3.6834 1.6826 1.592
4th Average error/(m) 2.7569 2.2994 1.3056
5th Average error/(m) 1.1705 1.9486 1.4824
6th Average error/(m) 1.4215 2.2187 1.3861
7th Average error/(m) 5.4215 1.9356 1.8949
8th Average error/(m) 0.43878 2.4597 1.3958
9th Average error/(m) 3.6829 1.4322 1.634

10th Average error/(m) 5.1604 2.0432 1.5967
... ... ... ... ...

98th Average error/(m) 1.202 1.8476 1.4613
99th Average error/(m) 2.6694 2.0432 1.4002

100th Average error/(m) 1.2106 2.3533 1.5146

Table 3. Analysis of statistical data.

EKF Measurement
Updating Doppler Updating

Mean of 100 experiments 2.6167 2.0425 1.475
SD 2.0824 0.468 0.1208

Comparison of errors 100% 78.06% 56.37%

The root cause of this outcome lies in the AUV’s underwater curved motion, where the
EKF algorithm’s observational data are prone to substantial inaccuracies due to waterborne
acoustic communication delays. While the measurement-update approach addresses
these delays, it introduces cumulative angle errors into the positional estimation process.
In contrast, the Doppler update method, being more responsive to angle-information
measurements, yields relatively small errors, effectively mitigating the accumulation of
angle-related discrepancies.
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From Figure 7, it is evident that in the 100 repeated experiments, EKF exhibits consid-
erable fluctuations. In comparison, the measurement updating algorithm demonstrates
relatively lower volatility, while the Doppler updating algorithm displays the minimal
fluctuations, indicating the most stable performance.

From Figures 8–11, the Doppler updating method, designed to mitigate underwater
communication delays and cumulative angular errors, results in an RMSE slightly inferior
to that of the measurement updating algorithm. However, both these methods significantly
outperform the EKF. This observation underscores the enhanced suitability of the proposed
Doppler-updating algorithm for intricate localization scenarios, ultimately yielding more
optimal results.

5. Conclusions

To address the challenge of reduced positioning accuracy resulting from communica-
tion delays in underwater positioning environments, an enhanced EKF filtering technique
is proposed. This approach leverages reconstructed measurement data and introduces
Doppler measurements for angular correction within the framework of a range-based
navigation model. The combination of these elements refines the EKF filtering method.
This method establishes a relationship between the measurement data before and after
the delay based on the current motion state of the AUV. Subsequently, it reconstructs
fresh measurement data and rectifies angle-related inaccuracies using Doppler measure-
ments. This approach mitigates error accumulation and enhances the precision of the
positioning system. The simulation results confirm the effectiveness of this technique in
compensating for positioning errors induced by communication delays in underwater
navigation, ultimately elevating the AUV positioning accuracy. This paper holds substan-
tial significance in tackling the challenges posed by delayed impact, intricate localization,
and the high costs linked with AUV. A critical facet for resolving AUV positioning issues
lies in compensating for localization errors through the reconstruction of measurement
information.

In the future, we will consider the problem of cooperative positioning of multiple
AUVs, which will be further realized by the master-slave cooperative positioning model
to improve the accuracy of cooperative positioning. In addition, the AUV cluster control
problem will also be considered for AUV cooperative formation, which is more in line with
the operation in real underwater environments.
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