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Abstract: Generating synthetic time series data, such as videos, presents a formidable challenge as
complexity increases when it is necessary to maintain a specific distribution of shown stages. One
such case is embryonic development, where prediction and categorization are crucial for anticipating
future outcomes. To address this challenge, we propose a Siamese architecture based on diffusion
models to generate predictive long-duration embryonic development videos and an evaluation
method to select the most realistic video in a non-supervised manner. We validated this model
using standard metrics, such as Fréchet inception distance (FID), Fréchet video distance (FVD),
structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and mean squared error (MSE). The
proposed model generates videos of up to 197 frames with a size of 128 × 128, considering real input
images. Regarding the quality of the videos, all results showed improvements over the default model
(FID = 129.18, FVD = 802.46, SSIM = 0.39, PSNR = 28.63, and MSE = 97.46). On the coherence of the
stages, a global stage mean squared error of 9.00 was achieved versus the results of 13.31 and 59.3
for the default methods. The proposed technique produces more accurate videos and successfully
removes cases that display sudden movements or changes.

Keywords: video generation; embryonic development; long-duration videos; diffusion models;
medical imaging; generative models

1. Introduction

The use of artificial intelligence (AI) in healthcare has led to profound advancements
that have significantly enhanced medical practices [1]. In particular, the combination of
AI and medical imaging analysis has been a significant breakthrough [2]. This integration
has transformed the approach of medical professionals to extracting pertinent information
from intricate visual data [3] and automated actions that were formerly susceptible to
subjectivity and variability [4,5].

Deep learning (DL) techniques have shown great potential in achieving accurate
diagnoses, selecting personalized treatments, and improving prognosis [6,7]. DL models
have the ability to capture non-linear relationships in medical data and perform tasks such
as classifying images [8], localizing and detecting objects [9–11], segmenting data [12–14],
and generating synthetic data [15,16]. One of the primary objectives is to personalize these
tasks for each individual patient, which can lead to better outcomes and an improved
quality of life. Deep learning models for image processing are superior in identifying and
classifying objects. However, many studies have failed to account for the importance of
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time-dependent variables, resulting in the disregard of changes experienced by the object
of study over time. These temporal variables carry significant weight and comprehending
how to utilize these correlations is extremely relevant [17].

In order to progress in this domain, it is vital to gather standardized and interoper-
able time-dependent data, validate and generalize robust models, and examine ethical
aspects concerning privacy and bias. The scarcity of this kind of data frequently prohibits
the implementation and training of DL models, prompting researchers to focus on data
augmentation [18–20] and the advantages of using synthetic data for these tasks [21]. Due
to privacy concerns, data collection is commonly anonymized, resulting in loss of traceabil-
ity. This poses a considerable challenge when conducting studies on evolution over time
through images, unless highly specific studies can maintain control over data acquisition
and processing over prolonged periods. Many works are now moving toward the use of
image sequences, inspired by the success of using DL models in medicine for the treat-
ment and analysis of static images. These sequences can either be located in space [22,23]
or within a temporal context as videos [24–26]. Among the most common tasks when
working with image sequences is the prediction of frames and filling in gaps between two
existing images [27].

This work focuses on the medical field of fertilized embryos for implantation in in vitro
fertilization (IVF) procedures. Monitoring development involves acquiring images every
few minutes. The process entails controlled ovarian hyperstimulation, egg collection,
fertilization, and the cultivation of embryos, which occurs over 2–6 days in environments
with regulated conditions. This results in the intrauterine transfer or freezing of embryos
that embryologists have identified as having strong implantation potential. The purpose
of this monitoring is to determine their viability and the optimal time for extraction and
implantation [28,29]. Currently, efforts are underway to identify and recognize cases where
embryos can or cannot be successfully implanted after insemination. This task is primarily
carried out through the scrutiny and judgment of human experts, whose opinions may
not always align [30]. Consequently, the scientific community aims to create classification
systems [31] and examine developmental patterns that enable more precise predictions
regarding the future development of embryos and their clinical outcomes [32]. The lack
of data has impeded the successful use of machine learning techniques in such research;
however, there have been significant advances in this field, particularly in forecasting [33]
and categorization tasks [34].

Despite the success of generative models applied to biomedical images [35] and in vitro
fertilization procedures [36], few studies have exploited their potential to generate images of
new synthetic cases of embryos. Dirvanauskas et al. [37] used a model based on a generative
adversarial network (GAN) to generate new images of individual embryos. The authors
used the stages of the embryos to condition the model, thus generating images of embryos
with one, two, or four cells. The results showed that their model can generate realistic
individual images while controlling the number and size of cells. In another previous work,
Celard et al. [38] explored the generation of time-evolving embryo videos using GAN
and diffusion models. They concluded that both models are capable of generating short-
duration, unconditioned sequences. Diffusion produces videos of better morphological
quality for embryonic development. The GAN-based model generates sequences of stages
that are more realistic, but the resulting images of embryos may exhibit deformities or other
unrealistic characteristics. On the other hand, the diffusion-based model produces good
results for both the sequence of stages and the quality of the individual images.

This work focuses on exploring the capability of a deep learning model for the pre-
dictive generation of time-developing videos. Specifically, it focuses on the generation of
long-duration videos of embryonic development, but this architecture could be applicable
to any situation in which temporal development is important for prediction, detection,
or tracking tasks where stages are an essential aspect of the videos. Despite significant ad-
vances in synthetic data generation, there is a lack of evaluation measures that are capable
of adapting to specific cases to assess the quality of videos [39], so evaluation often relies
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on human experts. Therefore, in this study, we propose a method to generate better fake
embryo videos, considering the distributions of the represented stages and the relationships
between contiguous frames for the autonomous selection of the best video.

The proposed architecture uses two Siamese models to generate long-duration videos.
The structure of both models is indistinguishable, but the training process and dataset pre-
processing procedure are different. One model specializes in learning short video distribu-
tions, enabling the observation of the entire development of the embryos. The other model
specializes in filling in new frames for the overview sequence. This Siamese architecture
approach has demonstrated its efficacy in previous studies, such as undersampled magnetic
resonance imaging reconstruction [40] and automatic eye disease classification [41]. Our
main contributions are as follows:

1. We propose a Siamese architecture for the video generation of embryo development
based on a video diffusion model, which prevents the loss of quality in synthetic
frames when generating long-duration videos;

2. A novel fake video evaluation process is proposed, fully utilizing the prior knowl-
edge of original data and its stage distribution, thus improving resemblance to real
data development;

3. The automation of sequence selection is achieved based on the realism of the devel-
opment of its content, image quality, and movement between neighboring frames,
thereby reducing the need for human expert judgment.

The remainder of this paper is organized as follows: in Section 2, we provide the
necessary background on the employed techniques of the proposed method and outline
relevant related work; Section 3 describes the performed experiments and evaluation
metrics; in Section 4, we present the results and discuss them from quantitative and
qualitative points of view to analyze the numeric metrics and generated image sequences;
finally, we conclude this work in Section 5.

2. Materials and Methods

Models based on generative adversarial networks (GANs) [42–44] and variational
autoencoders (VAEs) [45,46] have achieved excellent results in synthetic image generation.
Nonetheless, there have recently been significant advancements in static image genera-
tion [47,48] and video generation [27,49–51] using diffusion models, even exceeding the
performance of GAN and VAE models [27,52].

2.1. Diffusion Models

In the field of image generation, diffusion models are based on the transformation
of images into unstructured noise and then reversing this operation to obtain the original
images [38]. This means that the input x (real image) is transformed using a Gaussian
noise addition process, guided by the hyperparameter λt. The result of this transformation,
represented as zt, is both the output of the Gaussian process and the input to a convolu-
tional network that attempts to learn how to remove the noise from z in order to obtain an
estimate of the original image [49,53,54]. This reversal involves a convolutional neural net-
work that uses a U-Net architecture. The conventional 2D U-Net [55] has been extensively
applied to tasks involving image-to-image generation. It entails a sequence of downsam-
pling convolutional blocks, followed by a proportionate number of upsampling blocks.
The outcome of each downsampling block is merged with the corresponding upsampling
block via a skip connection. Figure 1 shows the simplified architecture of a diffusion Model
for image generation.

However, creating images independently is inadequate for video production since
2D operations are not able to connect the content of one frame to adjacent frames. As a
result, 3D convolutional operations are integrated into conventional U-Net models for
video generation.
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Figure 1. Simplified diffusion model architecture.

The aim of this study was to produce sequences of embryonic growth from real images
that corresponded to various developmental phases. Although GAN and VAE models
have yielded positive results, diffusion models were selected for this study. Additionally,
as explained by Höppe et al. [27] in their proposal of the random-mask video diffusion
(RaMViD) model, diffusion models are capable of predicting future frames and generat-
ing intermediate frames by taking into account real images at arbitrary positions. This
eliminates the need for conditional frames to always be the first frame or always be in the
same position.

2.2. Long Video Generation

As claimed by Höppe et al. [27], the RaMViD model can generate long videos iter-
atively using the last frame as a conditioning factor for the following section. In their
work, they conducted tests on the UCF-101 and Kinetics-600 datasets, with videos of 16
and 20 frames; however, as the number of frames increases, the video quality degrades
significantly. This problem is exacerbated when videos exceed 30 frames. Figure 2 shows a
selection of equally distributed frames extracted from long videos generated by the base
model. The figure displays a set of generated fake frames that create long-duration videos
produced by the default model. The position of each frame (F) within the videos is indicated
at the bottom. All images have the same resolution (128 × 128) and are a direct output of
the default model. It can be observed that the initial frames F0 exhibit good quality and
realism, while by F26, noise starts to appear, making visualization challenging. The loss of
quality from F52 to F182 is significant, to the point that some images may not contain any
discernible objects and instead only show blotches and noise.

F0 F26 F52 F78 F104 F130 F156 F182
Figure 2. Extracted frames from long videos generated using the default model.
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Given this limitation, the proposed model employs a Siamese architecture to generate
an overall video as a guide for interpolating new frames, thereby avoiding this loss of
quality. The proposed architecture allows for the generation of longer videos, providing a
more comprehensive visualization of embryonic development.

As can be seen in Figure 3, the generation of fake videos is carried out using two
Siamese models that are specially trained to fulfill different objectives. The first model,
called the overview diffusion model (ODM), aims to predict frames from one or more real
images. This model specializes in recognizing full embryonic development, capturing the
progress of its stages and generating an overview fake video (OF). The ODM is trained
using short videos obtained from real datasets, consisting of 15 equally spaced frames.
The second model, known as the fill diffusion model (FDM), learns to generate images to
interpolate new frames between OF frames, thus generating a filled fake video (FF). Unlike
the ODM, the FDM is trained on 200-frame videos and randomly selects two images to
serve as conditioning factors.

OF

FFFake video generation

Overview
Diffusion Model

Fill
Diffusion Model

...

...

Real Image

Fake Overview Image

Fake Fill Image
Frame

Classification

Real image
(i)

p̂

Figure 3. Siamese architecture for long video generation.

In the inference step, the ODM generates a video containing all stages that embryos go
through, while the FDM is responsible for filling the gaps between each pair of frames to
increase the length of the video. Thanks to this step, the final output goes from 15 frames
to 197 frames.

2.3. Initial Frame Placement

In controlled environments, images used as conditioning factors can always be pictures
of the initial stage, but this situation may not occur in the real world, either due to a lack
of expert personnel or because the data are not annotated. For this reason, the proposed
architecture uses an image classifier model to obtain the class represented in each input
image. Then, this input image i is assigned a position p based on the probability of it
being located in a frame, according to the distribution of the appearance of stages in certain
frames in the real dataset. This means that the image is automatically assigned to the
position where it would most likely appear in a real video. To calculate this position, the
frequency of occurrence of each stage in the frames is first determined and then divided by
the total number of occurrences. Equation (1) shows how this frequency F(p, s) is obtained
for each position p considering each stage s.

F(p, s) =
Countp,s

TotalCountp
(1)

Finally, the value of s is replaced by the stage returned by the classifier model consid-
ering the conditional input image i, represented as C(i). Equation (2) formalizes the initial
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frame placement in an expected position E(P, C(i)) by considering all possible positions P
and the classification output C(i).

p̂ = E(P, C(i)) =
P

∑
p
(p ∗ F(p, C(i))) (2)

2.4. Evaluation and Ranking of Fake Videos

Currently, there are no metrics that can evaluate the overall quality of embryo develop-
ment sequences created by generative models. This is because when human experts analyze
sequences, they take into account image quality, frame differences, object coherence within
images, and the consistency of developmental stages. However, employing human experts
is a slow and expensive process [39]. In this work, we propose a method for evaluating
and ranking predictive sequences generated by the diffusion-based generative model. This
method aims to select the best sequence for embryonic biological development without
the intervention of experts. This evaluation takes into account the quality of each frame,
the coherence of the stages with respect to the real dataset, and the presence of abrupt
changes and movements between frames.

2.4.1. Image Quality

The first step is to separately classify each of the frames to determine the stage that they
are in. This phase serves two purposes: first, it provides data for analyzing the distribution
and coherence of these stages and second, it assesses image quality. The better the quality
of the generated images, the better the classification of their stages and, consequently,
the higher the quality of the videos. However, if images are blurred or lack quality,
the classifier is not able to make a good assessment of the stages contained in the video,
thus resulting in poor stage development coherence.

2.4.2. Stage Development Coherence

After classifying all frames, the resulting distribution of classes is compared to the
distribution of real videos through the use of the ANCOVA statistical measure (analysis
of covariance), which is based on ANOVA (analysis of variance) [56]. As described by
Rutherford [57], ANCOVA assesses experimental manipulations on dependent variables
objectively and accurately. A single factor single covariate ANCOVA can be formally de-
scribed as Equation (3), where j represents an observation of class c and µ̂ is the interception
point over the y axis of the regression coefficient βw(Zcj − ZG) of the covariate variable Z
influenced by the general covariate mean ZG [58].

Ycj = µ̂ + α̂j + βw(Zcj − ZG) + εcj (3)

Lastly, εcj ∼ N(0, σ2) stands for the associated unobserved error for the jth mem-
ber in the c class, taking a value between 0 and the population N variance obtained by
Equation (4).

σ2 =
∑N

i=1(Yi − Y)2

N
(4)

Therefore, ANCOVA may be formally estimated for a class as the adjusted mean of all
observations as follows:

Yac = Yc − µ̂ − βw(Zc − ZG)− εc (5)

To obtain the ANCOVA similarity score, a comparison is made between the real video
set used to train the generative model and the generated fake videos. The value used
is the uncorrected p-value, hereinafter referred to as AP. The p-value relates to various
statistical tests within ANCOVA, including tests for the main effects of factors (such as
group differences), their interactions, and the effects of covariation. Its purpose is to
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determine whether there are significant differences across variables, controlling for the
effects of covariates.

The primary objective of video generation models is to produce videos that faithfully
represent reality, taking into account both the quality of each image and the coherence
of the entire sequences. To conduct this evaluation, we suggest assessing how closely
videos resemble real-life situations and the realism of the development of included stages.
To better analyze these cases, we propose using Spearman’s correlation coefficient, hereafter
referred to as Spearman, to check the coherence of stages.

According to Xiao et al. [59], Spearman (S) is a special case of Pearson’s correlation
coefficient, which uses monotonic relationships between two variables instead of linear
relationships. It analyzes how well data fit a monotonic function, that is, a function that is
always increasing or decreasing [60,61]. Spearman can be formally written as Equation (6),
where N is the total number of samples and di = R(xi)− R(yi) is the difference between
each pair of observations ordered by its position [59].

S = 1 −
6 ∑ d2

i
N(N2 − 1)

(6)

Spearman takes into account the slope of the regression while providing a measure
of the dispersion of the points examined. As a result, it outputs a measure value between
−1 and 1, where 0 means that there is no slope and the observations are highly dispersed,
while values close to −1 or 1 indicate very little dispersion and a good fit to a monotonic
function [62]. Finally, negative values are obtained from functions with overall negative
slopes, while positive values are produced from those with positive slopes. Spearman can
lead to situations where videos with high dispersions and slopes obtain similar scores as
videos with low dispersions and slopes.

Since this is a frame-by-frame analysis of videos, it is important to note that large
dispersions mean that there are large differences between the stages of close frames. This
results in the generation of videos showing unrealistic development. For this purpose,
we propose using the standard error (SE) of the regression slopes (Equation (7)), so that
videos whose points fit well on their regression lines obtain better scores than those whose
points are too far apart. Consequently, the calculation of the DAS score can be expressed as
DAS = S + SE.

SE =

√
1

N − 2
∗ ∑(yi − ŷi)2

∑(xi − x)2 (7)

Finally, each video is ranked, taking into account both its developmental realism and
its similarity to the training dataset. Its formal representation is shown in Equation (8).

f ss = DAS + (1 − AP). (8)

As explained at the beginning of the section, these statistical measures are applied to
the results of classifying individual frames to determine the stage that they are in. This
entire process involves estimation error. Although not explicitly included in the calculation,
the linear regression used, along with the use of the Spearman and ANCOVA measures,
indirectly considers this error. That is, if a frame is classified into a particular stage that is
not correct, being in a stage close to the correct stage results in a lower decrease in score
than being in a stage far from the correct stage. Instead of using discrete values, the further
the stage of the frame from its ideal position, the lower the score obtained. This introduces
a certain tolerance for error in the final score.

2.4.3. Frame Pair Comparison

Another aspect to consider, in addition to image quality and stage development
coherence, is the transition between frames in the videos. Large differences between
neighboring frames can happen due to the generation of erroneous frames where the
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content is entirely different or the creation of correct content with overly abrupt movements.
To identify such cases, we conduct a pairwise analysis of the produced frames, which
considers pixel variations at the same image coordinates and motion detection.

Equation (9) shows how the MSE is calculated for each pair of frames fp and fp+1.
In this calculation, H is the number of rows in the images (height) and W is the total number
of columns (width).

MSE( fp, fp+1) =
1

HW

H

∑
h=1

W

∑
w=1

( fp(h, w)− fp+1(h, w))2 (9)

Changes that occur in the embryo during its development over time significantly im-
pact the mean squared error (MSE) since it undergoes changes and differs from contiguous
images. To prevent false positives, the MSE calculation divides each image into sectors
of equal height and width. This approach ensures that even if sectors of the developing
embryo change, the remainder remain stable, resulting in a more accurate assessment.

For motion detection, the optical flow algorithm described by Farneback [63] is used.
This algorithm is based on approximating the neighborhood of each pixel using a quadratic
polynomial and then analyzing how this polynomial transforms to estimate displacement.
Once the flow for each pixel is obtained, it can be stated that each pixel value in the
image fp is equivalent to the pixel value in the image fp+1 if this flow is applied to them
(Equation (10)).

fp(h, w) ∼ fp+1(h + flow(h, w)[1], w + flow(h, w)[0]) (10)

It is worth mentioning that there can be variations between successive images and
sudden movements in original datasets. To optimize the usage of the MSE and flow
algorithm, the corresponding thresholds for each are calculated based on real datasets.
Finally, Figure 4 shows the workflow of the proposed model for the evaluation and ranking
of generated videos.

Stages development 
coherence evaluation Frame pair comparison

Fake Sequence
Overview Generation

Fake Sequence
Fill GenerationEvaluation

Real image

St
ag

es

Frames

Real DataSet
Fake Data0

1
2
3
4

...

S

OF0
...

OFn

OF1
...

OF2
...

OF3
...

OFN

fss0

fss1

fss2

fss3

fssN

FF

(Best sequence selection)

...

x

x

x

x

v

...

Mean Squared Error
(MSE)

Magnitude
(movement)

...

Figure 4. Automatic best sequence selection according to evaluation metrics.
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3. Experiments
3.1. Data

Embryo development is a public time-lapse dataset created by Gomez et al. [28]
containing cultures of embryos that have undergone IVF. It consists of 704 videos in different
focal planes, with a total of 2.4 million images with a resolution of 500 × 500. The collection
includes expert annotations for each stage of the embryo: polar body appearance (tPB2);
pronuclei appearance and disappearance (tPNa and tPNf); blastomere division from 2-cell
stage to 9 (or more)-cell stage (t2, t3, t4, t5, t6, t7, t8 and t9+); compaction (tM); blastocyst
formation (tSB; tB), expansion and hatching (tEB and tHB). In addition, this work includes
an extra class to detect the absence of an embryo in the image, which is referred to as empty.
Due to technical limitations, only one focal plane was used for training.

To conduct the experiments, the total number of videos was split into three subsets
for training, validation, and testing, utilizing a split of 80%, 10%, and 10%, respectively.
This resulted in a total of 566 videos for training, 69 videos for validation, and 69 videos
for testing.

3.2. Hyperparameters and Model Training

The first step in the process proposed in this work is to classify the initial input images
to position them in the frames that they have the highest probability of appearing according
to the real dataset. For this purpose, a ResNet18 image classifier model [64] was chosen.
This is an 18-layer convolutional neural network that uses skip connections to learn residual
functions with respect to layer inputs. Table 1 shows the results obtained using this classifier
model on the test data.

Table 1. Classification results of ResNet18.

Stage Precision Recall F1-Score

tPB2 0.920 0.933 0.926
tPNa 0.974 0.973 0.974
tPNf 0.864 0.851 0.857
t2 0.950 0.965 0.957
t3 0.946 0.712 0.812
t4 0.924 0.963 0.943
t5 0.884 0.866 0.875
t6 0.886 0.860 0.873
t7 0.949 0.867 0.906
t8 0.943 0.978 0.960
t9+ 0.979 0.970 0.974
tM 0.924 0.930 0.911
tSB 0.942 0.924 0.933
tB 0.910 0.913 0.911
tEB 0.945 0.955 0.950
tHB 0.990 0.843 0.904
empty 0.973 0.984 0.978

As previously outlined, this study proposes the use of two Siamese models to produce
long-duration videos while retaining control over the depicted stages. The first model,
known as the overview diffusion model (ODM), generates a summary of the stages from
start to finish utilizing 15 frames. The second model, referred to as the filling diffusion
model (FDM), introduces new frames between each stage of the overview. The number of
frames generated by both models was set to 15 due to hardware limitations. Nevertheless,
using a higher number of frames could start to exhibit signs of quality loss that are inherent
to the model. Since the same frame generated by the ODM is used as the final frame of one
infilling frame and the initial frame of the next segment, the total number of frames in a
sequence is 197. Both models were trained with an image size of 128 × 128 and one channel
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as the images from the original dataset are monochrome. The training process incorporated
two residual blocks, 128 base model channels, and a learning rate of 2 × 10−5.

Following the process for the base model proposed by Höppe et al. [27], the ODM was
trained by selecting random frames as initial conditional images from a dataset consisting
of sequences of 15 frames from beginning to end. On the other hand, the FDM was trained
to specialize in interpolation between two frames by using the first and last frames of
the sequence to be generated. To accomplish this task, two images that were 15 frames
apart were randomly selected from the original dataset, videos in which can contain up to
500 frames.

The ODM model was trained for 200,000 epochs, whereas the FDM model was trained
for 300,000 epochs. This was due to the fact that the FDM model needs more iterations to
acquire knowledge on how to generate videos displaying greater variability between the
different stages of development than the production of the overview videos.

3.3. Evaluation Metrics

The following is an outline of the evaluation methods used in our study to assess the
caliber of the generated videos in terms of their image quality and the coherence of the
fake videos. The used metrics were Fréchet inception distance (FID) [65], Fréchet video
distance (FVD) [39], structural similarity (SSIM) [66], peak signal-to-noise ratio (PSNR) [67],
and mean squared error (MSE) [68].

The FID and FVD are based on the standard inception score (IS). The IS uses a pre-
trained inception network model on the ImageNet dataset to classify the images to be
evaluated and assess their quality based on how accurately these images can be classi-
fied. However, this evaluation method lacks utility in situations where the ImageNet
collection is incapable of recognizing subject images studied by novel models because they
are outside of its training cases, making correct classification impossible. For this reason,
Heusel et al. [65] suggest utilizing an inception model to extract the distribution of fake
images and contrast them with the distribution of real images. The authors rely on the idea
that the more similar these two distributions are, the better the fake images created by the
generative model.

This study centered on video generation, where simply evaluating the separate im-
ages that make up a video using the FID is inadequate. The learning process of video
generative models is a much harder task than synthesizing static images because models
must capture the temporal dynamics of scenes in addition to the visual presentations of
objects. In this same context, Unterthiner et al. [39] proposed the FVD, which operates
similarly to the FID but uses 3D convolution operations to obtain the distribution of videos
as indivisible objects. Therefore, the FVD evaluates video quality as a sequence instead of
assessing individual frames. Both the FID and FVD are measures of the distances between
distributions. Therefore, the closer these values are to zero, the higher the quality of the
evaluated object. The FID and FVD metrics have inherent biases. Both metrics are robust to
changes in brightness, contrast, and saturation, but are weaker when it comes to changes
in object edges and texture. Two of the key distinguishing features when generating the
temporal evolution of static objects over time, as in the case of embryos, are texture and
shape. Mismatches between human perception and the results of these metrics may occur
because of these distinguishing features [69].

In order to evaluate the quality of the prediction videos, the real videos were compared
to the generated videos one frame at a time using the mean squared error (MSE) [68], peak
signal-to-noise ratio (PSNR) [67], and structural similarity (SSIM) [66].

As Setiadi explains in their work [70], the MSE measures the differences between the
values of each pixel in both images at the same coordinates, providing an overall mean
assessment of their similarity. The PSNR is based on the MSE but, instead of using a sum,
it employs a logarithmic operation. Finally, the SSIM compares the luminance, contrast,
and structure of both images. Unlike the MSE, the higher the results of the PSNR and SSIM
measurements, the more similar the two images. The MSE, PSNR, and SSIM applied to
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individual frames are useful for comparing frames separately, but none of them analyze the
temporal evolution of the stages shown in the videos. This is one of the major limitations of
these metrics. In addition, all of these measures are highly sensitive to noise, the presence
of which can lead to inaccurate evaluations.

In addition, the MSE is used to evaluate the prediction of video stages. Each frame is
classified and compared to the corresponding real video stage. Low MSE values suggest
closer alignment between the predicted and actual stages, while high MSE values indicate
discrepancies between the real and fake videos.

4. Results and Discussion

This section reports both the image and video quality, as well as stage development
coherence. The image and video quality was evaluated against well known algorithms,
including Fréchet inception distance (FID), Fréchet video distance (FVD), structural similar-
ity (SSIM), peak signal-to-noise ratio (PSNR), and pixel-level mean squared error (MSE).
The stage development coherence was assessed using the MSE values of the stages as-
signed by a classifier model. Furthermore, a qualitative analysis of the generated videos
was performed.

4.1. Image and Video Quality

The evaluation of image and video quality typically involves two main types of
measures. The first group comprises FID and FVD, which assess the distances between real
and fake distributions. In contrast, the MSE, SSIM, and PSNR compare image pairs while
disregarding the temporal element.

Table 2 displays the results of experiments comparing real videos to those created
using the default base model (RaMViD) and the proposed method. Figure 2 shows that
videos of significant length that were generated utilizing the default model exhibited
notably poor quality after 30 frames. Consequently, trials were conducted on overview
videos. To analyze the results, it is crucial to note that better performance is indicated by
lower values of FID, FVD, and MSE. Conversely, higher values for SSIM and PSNR indicate
enhancements in the results.

Table 2. Results for image and video quality. ↓ represents that lower values indicate better results;
↑ represents that higher values indicate better results.

Metric Default Method Proposed Method

FID (↓) 135.87 129.18
FVD (↓) 817.89 802.46
MSE (↓) 99.64 97.46
SSIM (↑) 0.34 0.39
PSNR (↑) 28.24 28.63

Thanks to the inclusion of the proposed model, any instances of low-quality or unreal-
istic sequences in the generated images were eliminated. This enhanced the resemblance of
both the distribution of individual images (FID) and videos (FVD) to the actual dataset,
thereby positively impacting the overall quality of the generated cases.

Improvement was also seen in terms of MSE, SSIM, and PSNR when comparing the
real and fake frames. The proposed sequence evaluation method enhanced the accuracy of
the represented stage and embryo position, resulting in minimal discrepancies between the
predicted and actual images.

4.2. Stage Development Quality

The stages were analyzed using the MSE method. The video frames were classified
and compared to the real videos in the test set. To focus on stage analysis rather than
image quality (although related), experiments were conducted on both the long videos
(197 frames) created by the default model “Default(F)” and the overview videos “Default(O)”
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(15 frames). In the case of the proposed method “Proposed”, the frames in the overview
videos aligned with the frames of the long videos. This occurred due to the way they were
constructed, using infilling between frames. The results are presented in Table 3.

Table 3. Results for stage MSE experiments. Default(O) refers to videos of 15 frames generated as
overview videos. Default(F) refers to videos of 197 frames with equally distributed frames extracted
for testing.

Position Default(F) Default(O) Proposed Method

1 11.54 9.26 4.22
2 153.42 12.87 4.43
3 152.71 11.90 7.10
4 125.43 12.52 6.36
5 106.51 14.20 12.97
6 94.01 16.81 8.67
7 49.91 13.77 7.36
8 41.30 12.83 7.51
9 35.29 11.17 7.84
10 22.54 9.74 11.19
11 18.16 16.06 12.67
12 16.86 18.70 15.23
13 43.56 16.58 11.74
14 45.74 16.32 10.59

Global Mean 59.30 13.31 9.00

The Default(F) model could not provide accurate representations of the stages in the
video. It was only able to approach the other models in the first position, closer to the input
conditioning image. Positions 10, 11, and 12 also showed similarity to the other models.
This situation occurred because these positions usually correspond to stages t9+, tM, tSB,
and tB, in which the embryo transitions from having a easily quantifiable number of cells
to having a more uniform body. The classifier assigned one of these stages to the images
when it was incapable of assigning one of the other more easily recognizable categories.
As a result, when the correct stage positions were predicted, they were considered accurate.
This situation was particularly noticeable in the case of the Default(O) model as it only
outperformed the proposed model in position 10.

In the remaining positions, the proposed model achieved a better fit for the classes
and obtained a much lower error. The proposed model was particularly effective in the
initial positions, which were closer to the conditioning real images for future predictions.
In both models, the position with the highest error was position 12. This position, following
the reasoning from the previous paragraph, belonged to stages where the model had more
difficulty generating differentiating features. This was due to the embryonic morphology
in these stages, where the embryo transitions from being formed of differentiable cells to
containing a less defined morula. However, clarity was achieved in the subsequent stages
of tEB, tHB, and empty, which offer clear differentiating characteristics and facilitate the
generation of related images.

Based on the global MSE, the proposed model demonstrated significant improvement
over both default models. These metrics reinforced the proposed model theory. Despite
this, as outlined in Section 3.3, there was still substantial dependence on expert judgment
in assessing the synthetic videos. Therefore, as well as the statistical measures presented in
this section, a qualitative evaluation of the generated videos was also carried out.

4.3. Qualitative Analysis

In this section, we conduct an analysis of the fake videos generated using the two
Siamese models to fill in 197 frames. One model generates overview videos, while the
other fills in new frames. However, when using the default model, the generated videos
experienced significant image quality loss when the number of frames exceeded 20∼30.
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This scenario is observable in Figure 2. Therefore, an initial analysis of the overview videos
produced was conducted. Figure 5 displays a subset of the sample videos, consisting of
eight frames uniformly extracted from each overview video. Images A, B, and C served as
the real conditional images on which the 15-frame predictions were made.

OF2OF0

DA

A

B

C

PA

DB

PB

DC

PC

OF4 OF6 OF8 OF10 OF12 OF14

Figure 5. Extracted frames from overview sequences. These sequences are 15 frames long. Default
sequences are named D, while videos generated using the proposed method are defined by P.

In Case A, the default model displayed a vastly dissimilar progression from the initial
image concerning both color and the position of the embryo. Nevertheless, the recom-
mended model output a video that matched the initial image more accurately. Moreover,
the default video DA displayed highly developed stages in initial positions with minimal
development throughout the video, whereas the video generated by the proposed model
PA showcased more differentiated stages and a more realistic progression.

In Case B, the default model DB maintained a correct position, while the video un-
derwent an excessively sudden color shift that was not present in case PB. Similarly to
the prior case, PB exhibited a more realistic progression of stages, though the frame OF2
does not portray a completely accurate morphological entity. This issue arose due to the
many transitional frames between stages in the real dataset, in which the morphology of
the embryo rapidly undergoes significant changes. During these instances, the model could
not produce fully coherent images, but the stage remained identifiable.

Finally, in Case C, both models attained correct positioning and tonality. The move-
ment in case DC could be encountered in the real world, so it was not considered erroneous.
Nevertheless, DC displayed an early-stage development that was too advanced in the
video. Thanks to the proposed work presented in this paper, PC achieved a more uniform
distribution of stages with no stage skipping and was closer to the real data.

Figure 6 shows the three filled sequences corresponding to the cases in Figure 5. Each
video comprised 197 images generated from an initial conditional image. Seven frames
were randomly selected from each case for an analysis of quality, morphological coherence,
and the consistency of the stages depicted in the synthetic videos. The filled sequences
complemented the overview sequences with the best scores, as explained in Section 2.2.
The model introduced new images between each pair of generated frames, enhancing
the level of detail of the temporal evolution of the embryo. Its development over time
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remained unaltered, but the filled sequences provided a smoother sequence with fewer
abrupt changes, resembling the real videos more closely.

FF22 FF46 FF77 FF85 FF135 FF141 FF196

FF17 FF33 FF50 FF87 FF94 FF163 FF197

FF39 FF54 FF106 FF116 FF129 FF161 FF183A

B

C

Figure 6. Extracted frames from filled sequences. These sequences are 197 frames long, with 8 random
frames extracted as examples.

From a general perspective, it can be observed that the video quality remained consis-
tent from beginning to end without undergoing continuous degradation from frame 20∼30.
The image quality exhibited certain tonal changes between some neighboring frames,
which are more noticeable in this figure due to the distances between the selected frames.
However, the transition was smoother throughout the entire video. The frames displayed
high-quality images without any artifacts or noise. The morphology of the embryo was
consistent throughout all stages and the location of the embryo did not suffer from any
sudden changes. It is important to note that there were transitional frames between each
stage that displayed typical morphological changes found in real cases, which may be
confusing in still images. With regard to morphology, the overview sequences represented
the complete development of the embryo in only 15 frames, so morphological differences
between adjacent frames could be substantial when there was a transition between stages.
The diffusion model, which aimed to maintain coherence between frames, could introduce
some inconsistencies in this situation. However, the second model generated a total of
197 frames, resulting in much smaller differences between adjacent frames. By representing
the transition between stages with a larger number of frames, the model could better
capture the morphology of the embryo and how it changes during development. Thus,
the proposed model could generate videos with smoother transitions.

5. Conclusions

This paper explored the creation of long-duration videos featuring the development
of embryos from in vitro fertilization through the generation of predictive videos and
frame infilling techniques. A Siamese architecture based on diffusion models and a novel
approach to video assessment were introduced to select the frames that match real input
images most accurately. The proposal in this study considered both the quality of the frames
and the coherence in the progression of the stages featured in the videos. To accomplish
this, statistical methods and the stage development distributions in the authentic training
set were used.

The results indicated a lack of degradation in long-duration videos, which is a limita-
tion of the base model. In addition, generating overview videos reduced the occurrence
of stages appearing in inconsistent sequences, allowing for more realistic depictions of
development. As for image quality, the proposed method successfully removed cases that
displayed sudden movements or changes and better fit the input images. Improvements in
standard evaluation measures (such as FID, FVD, and stage MSE) and pixel-level image
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quality metrics (MSE, SSIM, PSNR) supported these outcomes. Additionally, the results
obtained from the evaluation measures were reaffirmed by a qualitative analysis of a subset
of the generated videos.

Although the proposed model showed good results in generating predictive image
sequences for the temporal evolution of embryos, it had several limitations that must be
considered. Both generative models extract hidden patterns from data, which requires a
large dataset to offer robust predictions. Furthermore, the high number of variables and
conditions affecting the temporal development of embryos mean that it may be necessary
to incorporate additional multimodal information into the model. Additionally, the model
requires significant computational power and extensive training times, particularly when
working with high-resolution images. This highlights the importance of investigating
optimization strategies and creating methods to decrease the computational demands of
the model when working with 3D data.

Future research should seek to improve the consistency of luminance and contrast.
Moreover, the generation process may benefit from a preliminary localization task dedi-
cated to ensuring that the images capture solely the positioned embryo occupying the entire
frame. This would eliminate issues related to unwanted movements and assist models in
focusing on learning to generate the morphological structures of embryos. Localizing the
study area would eliminate the generation of non-embryonic areas, which are irrelevant
for this research. It would also be interesting to explore the introduction of additional infor-
mation from developmental predictions using other time series-focused machine learning
techniques. This would promote more accurate forecasts, relieving the generative models
of this responsibility. Additionally, models correlate with the tolerance limit resulting
from the use of probability estimation, so the explicit inclusion of error estimation and
its percentile changes in the models could enhance their results. Although the proposed
method aims to generate videos depicting embryonic development, statistical measures
enable the extrapolation of the proposed model to other areas where the study of temporal
development is of interest.

However, the proposed model holds significant potential for evolution prediction
in the biomedical field, promoting advancements in predictive analytics and diagnostic
tools. The model has the ability to generate long realistic video predictions of embryonic
development. Generated synthetic data can help to achieve more precise predictions,
enhance the development of more resilient machine learning models, and provide valu-
able resources for training and enhancing the medical expertise of professional experts.
The use of such highly realistic synthetic data, which are not subject to data protection
regulations like real data, could aid policymakers in supporting research initiatives that
utilize deep learning-based generation models in the biomedical sector. This collaborative
approach could facilitate partnerships among academic institutions, healthcare providers,
and technology companies. Such partnerships may accelerate progress in understanding
complex biological phenomena, ultimately leading to improved patient care and enhanced
medical education.
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