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Abstract: Artificial intelligence (AI) technology has advanced significantly, now capable of performing
tasks previously believed to be exclusive to skilled humans. However, AI models, in contrast to
humans who can develop skills with relatively less data, often require substantial amounts of data to
emulate human cognitive abilities in specific areas. In situations where adequate pre-training data
is not available, meta-learning becomes a crucial method for enhancing generalization. The Model
Agnostic Meta-Learning (MAML) algorithm, which employs second-order derivative calculations to
fine-tune initial parameters for better starting points, plays a pivotal role in this area. However, the
computational demand of this method can be challenging for modern models with a large number of
parameters. The concept of the Approximate Hessian Effect is introduced in this context, examining
the effectiveness of second-order derivatives in identifying initial parameters conducive to high
generalization performance. The study suggests the use of cosine similarity and squared error (L2
loss) as a loss function within the Approximate Hessian Effect framework to modify gradient weights,
aiming for more generalizable model parameters. Additionally, an algorithm that relies on first-
order calculations is presented, designed to achieve performance levels comparable to MAML. This
approach was tested and compared with traditional MAML methods using both the MiniImagenet
dataset and a modified MNIST dataset. The results were analyzed to evaluate its efficiency. Compared
to previous studies that achieved good performance using only the first derivative, this approach
is more efficient because it does not require iterative loops to converge on additional loss functions.
Additionally, there is potential for further performance enhancement through hyperparameter tuning.

Keywords: cosine similarity; deep learning; few-shot image classification; gradient-based meta-learning;
model agnostic meta-learning; second-order gradient

1. Introduction

Meta-learning, often termed as “learning to learn”, is a potent technique that facilitates
rapid learning from limited data [1–3]. This approach encompasses learning from a collec-
tion of sample tasks, with each task representing a distinct learning problem. The primary
objective is to glean knowledge from these tasks, thereby expediting the learning process
for new tasks, even with minimal samples. Broadly, meta-learning methodologies can be
segmented into metric-based, memory-based, and optimization-based techniques [4–7].
Among these, optimization-based methods are universally applicable and have been effica-
ciously employed across diverse applications [8]. Parallelly, the paradigm of pre-training
followed by fine-tuning has gained traction in the realm of neural networks, predominantly
for transfer learning and semi-supervised learning [9,10]. This approach has led to en-
hanced model generalization and adaptability in various domains, including computer
vision, natural language processing [11–13], and the realm of reinforcement learning [14].

Modern deep learning models possess a large number of parameters, which can be
advantageous for leveraging vast amounts of training data. However, when the amount
of training data is limited, the risk of overfitting increases, particularly when the number

Electronics 2024, 13, 535. https://doi.org/10.3390/electronics13030535 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030535
https://doi.org/10.3390/electronics13030535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0008-5790-332X
https://doi.org/10.3390/electronics13030535
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030535?type=check_update&version=1


Electronics 2024, 13, 535 2 of 16

of meta-parameters is relatively high [15]. In such cases, effective meta-learning algo-
rithms that are well-suited to deep learning models become essential for efficiently training
high-performance models in scenarios where sufficient pre-training data is not available.
MAML is a leading optimization-based approach that aims to estimate optimal parameter
initialization for rapid adaptation to new tasks [8]. However, MAML requires the computa-
tion of second-order derivatives due to the meta-loss derivative with respect to the initial
parameters. This can be prohibitively computationally expensive for large networks. To
address this issue, first-order approximations have been developed, such as FOMAML and
Reptile, but their convergence and generalization behavior remain underexplored [16,17].
Furthermore, in some applications such as few-shot classification on the Omniglot and
tieredImageNet datasets, first-order approximation approaches have been shown to suffer
from generalization performance degradation [18].

We consider the role of MAML’s second derivatives in enhancing generalization per-
formance and hypothesize that the role of the terms involving second-order derivatives is
to determine the weights of the gradient components computed from the query set. Our
approach does not exclude second-order derivatives or use alternative methods to im-
prove generalization performance, but rather replaces second-order derivative information
through approximation, resulting in performance comparable to that of MAML. To be more
specific, we utilized the Approximate Hessian Effect (AHE) to generate the expected effect
of second-order derivatives derived from the support set. AHE is weights that approximate
the inner loop gradient ratio through calculation of cosine similarity loss and L2 loss. To
find the optimal initial parameters, the meta-gradient is multiplied by AHE weights, which
can mimic the positive effects brought by second-order derivatives. This allows for the
substitution of computationally infeasible operations in models with vast parameters using
only first-order derivative information gathered from the inner loop. This enhances the
feasibility of applying meta-learning in cutting-edge models, expanding its applicability in
the latest models.

2. Related Works

In this section, we will discuss Model Agnostic Meta-Learning (MAML), a framework
applicable to all deep learning architectures, and focus particularly on Optimization-based
First-Order Meta-Learning, which closely aligns with our research. Additionally, we will
introduce cosine similarity loss, a core component of our study and a key term in the field
of meta-learning.

2.1. Model Agnostic Meta-Learning

In the evolving landscape of machine learning, the concept of meta-learning, or “learning
to learn”, has emerged as a pivotal paradigm. The primary objective of meta-learning is
to train models on a variety of tasks such that they can swiftly adapt to new, previously
unseen tasks with minimal data. One of the most prominent and versatile approaches in this
domain is the Model Agnostic Meta-Learning (MAML) algorithm [8]. MAML’s strength lies
in its ability to be applied to any model trained with gradient descent, making it universally
adaptable. The core idea is to find a model initialization that is not only suitable for a specific
task but can be fine-tuned rapidly for new tasks. These advantages of MAML are particularly
utilized in fields such as medical image classification and segmentation, where data is scarce
but well-refined initial parameters are crucial [11,19]. Generally, the fast-adapted parameter θ
is computed from randomly sampled tasks {Ti}Bi=1 ∼ p(T ). The notation of the equations is
in Table 1. Each parameter is updated by a single support set to find adaptation parameters
as follows:

θTi = θ − α∇θL(θ; xi, yi). (1)

For the sake of concise notation, we present a single gradient update in the following
equation. However, in practice, multiple gradient updates are often required. While it
is feasible to induce adapted on a single set with minimal updates, a single update is
typically insufficient. And the meta-loss becomes ∑Bi=1 L(θTi ; x̃i, ỹi). x̃i, ỹi is a query set of
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task Ti and they are a disjoint set with support set. Finally the θ update with meta-loss is
represented as

θ ←− θ − β∇θ

B
∑
i=1
L(θTi ; x̃i, ỹi), (2)

and this process is shown in Algorithm 1.

Table 1. Technical terms and their definitions.

p(T ) Task distribution
α, β Learning rate of inner, outer loop
K Inner loop update iteration number
B Meta-batch size of outer loop for θ
gk The gradient of inner loop loss from θk

WAHE The variables approximate H̃ from gk and gk+1
ε Defined step size of gk+ε
ε̃ The interpolation rate in (0,1]
η Learning rate ofWAHE

Algorithm 1 Model Agnostic Meta-Learning [8]

Require: p(T ), α, β,K,B
Initialize θ randomly
while not done do

Sample B batch of tasks Ti from p(T )
for all Ti do

θ0 = θ
for k = 1 to K do

θk
Ti
= θk−1
Ti
− α∇

θk−1
Ti
L(θk−1

Ti
; xi, yi)

end for
if First-Order MAML then

gTi = ∇θKTi
L(θKTi

; x̃i, ỹi)

else
gTi = ∇θL(θKTi

; x̃i, ỹi)

end if
end for
gmeta = ∑Bi=1 gTi

Update θ ←− θ − β · 1
B · gmeta

end while

2.2. Optimization-Based First-Order Meta-Learning

In contemporary deep learning research, the parameter count in leading models has
surged. As we venture into applying meta-learning for swift adaptation to novel tasks
in such scenarios, the significance of computational efficiency becomes paramount. First-
order meta-learning algorithms emerge as a beacon of hope, promising computational
efficiency and scalability. Noteworthy methods in this domain include First-Order MAML
(FOMAML) [8], which sidesteps the second-order derivatives inherent in MAML. Other
methods employ proximal regularization for first-order meta-learning strategies [20–22].
For instance, Reptile [17] exclusively utilizes the derivative of proximal regularization as
its gradient, orchestrating an interpolation between adaptation and meta-parameters with
the following equation.

θTi = θ − α∇θL(θ; xi, yi)

θ ←− θ + β
B
∑
i=1

(θTi − θ).
(3)
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This equation presents a single gradient update in the inner loop for simplicity of
notation, similar to (1). As evident from the equation, in contrast to the MAML method,
Reptile does not necessitate the division of training data into support and query sets. This
confers a notable advantage in terms of data efficiency [23]. Building upon Reptile, Meta-
MinibatchProx [21] applies proximal regularization to the updates of adaptation parameters.
Upon completing the inner loop using the ϵs-approximation, the meta-parameters are up-
dated with the adaptation parameters in a manner consistent with Reptile. Recent research,
such as Sign-MAML [24], tackle meta-learning challenges using first-order techniques,
leveraging sign-based optimization strategies. Among the studies introduced earlier, those
that achieve or surpass the performance of MAML, which include the computation of
second-order derivatives, require the loss function to converge to a small pre-defined
value at each update [20,21]. This approach could significantly amplify training times and,
in some cases, may not be Model Agnostic. In contrast, our study adopts a method of
tuning the final meta-gradient based on gradients during the adaptation process, thereby
eliminating the need to designate a small value and preventing an increase in training time.
The training duration can be compared with that of MAML in Section 5.

2.3. Cosine Similarity Loss

In the domain of deep learning, the adoption of cosine similarity as a loss function
has been increasingly recognized, particularly for tasks necessitating the quantification of
similarity or distance between feature representations. The loss function is defined as the
negative cosine similarity, a formulation chosen because the cosine achieves its maximum
value when the similarity is high. The function is mathematically formulated as

Lcos(a, b) =
−a · b

∥a∥2 × ∥b∥2
. (4)

The power of cosine similarity lies in its ability to capture the angular distance between
vectors, making it particularly suited for normalized feature vectors. One notable appli-
cation is in the classification of plasma images from the Caltech Spheromak Experiment.
In this context, cosine similarity was employed not only for feature selection but also as a
loss function for training an AlexNet-based model for plasma image classification [25]. The
results demonstrated the efficacy of cosine similarity in distinguishing between unstable
and stable columns with high accuracy. Further, the challenges of incremental learning,
particularly the catastrophic forgetting problem, have been addressed using a prototype
sampling mechanism based on K-means clustering. In this approach, cosine similarity plays
a pivotal role in enhancing the discrimination between old and new classes. Specifically,
a mask attached to the loss function, based on the cosine similarity between prototypes
and current data, has been proposed to further refine the distinction compared to tradi-
tional knowledge distillation schemes [26]. Such innovative applications underscore the
versatility and potential of cosine similarity as a loss function in deep learning paradigms.

3. Preliminaries

In this section, we expand the formula of the second-order computation in MAML and
explore its significance in identifying fine-tuned initial parameters. Additionally, we will
describe how a collection of first-order gradient computations can effectively approximate
the form of second-order derivatives.

3.1. Second-Order Computation from MAML

The fast-adapted parameters are expected to be close to the optimal parameters. As a
result, the length of the inner loop, denoted as K, is typically set to a value greater than 1,



Electronics 2024, 13, 535 5 of 16

ensuring that θ aligns with θ0
Ti

. Utilizing the chain rule, the gradient of the meta-parameters,

represented as ∇θ ∑Bi=1 L(θTi ; x̃i, ỹi) in (2), can be articulated as

B
∑
i=1

∂L(θKTi
; x̃i, ỹi)

∂θ1
Ti

·
∂θ1
Ti

∂θ
. (5)

Continuing with the application of the chain rule, the inner loop computation in the
equation can be further expanded to

B
∑
i=1

∂L(θKTi
; x̃i, ỹi)

∂θKTi

·ΠKk=1

∂θk
Ti

∂θk−1
Ti

. (6)

Referring to (1), the relation between θk−1
Ti

and θk
Ti

is established, leading to the final
expression of gmeta as

gmeta =
B
∑
i=1

[∇θKTi
L(θKTi

; x̃i, ỹi) ·ΠKk=1(I− α∇2
θk−1
Ti

L(θk−1
Ti

; xi, yi))]. (7)

The results elucidate that the second-order derivative must be computed at every
step within the inner loop. This presence of the second-order derivative enables MAML’s
training to reduce the loss, which assesses generalization post-adaptation phase, from
the parameters set prior to the adaptation phase. However, this characteristic poses a
computational challenge for MAML, especially as the length of the inner loop increases
and the number of model parameters grows. Notably, the computational complexity
for the second-order derivative is denoted as O(n2), which is considerably higher than
the O(n) complexity associated with the first-order derivative. This stark difference in
complexity underscores the potential inefficiencies in MAML when dealing with large-scale
models or extended inner loops. The FOMAML approach circumvents the computation
of the second-order derivative, opting instead to solely utilize the gradient, denoted as
∇θKTi
L(θKTi

; x̃i, ỹi).

3.2. Hessian-Vector Product

In practical GPU implementations, the computation of the Hessian’s O(n2) is avoided
by employing the Hessian-vector product for MAML operations, effectively circumventing
the problems associated with O(n2) complexity. The expansion and result of the Hessian-
vector product Hv are given by

Hv = lim
r→0

∇L(θ + rv)−∇L(θ)
r

=
∂

∂r
∇L(θ + rv)

∣∣∣∣
r=0

= ∇(∇L(θ)Tv).
(8)

Since we are computing the gradient with respect to a scalar value ∇L(θ)Tv, we pro-
ceed with the operation of the second derivative in the vector as shown in (7). Consequently,
the computational complexity only increases by a constant factor, roughly five times that
of first-order derivatives, and the memory usage increases by no more than twice per
inner loop [27]. While the impact may vary depending on the model or data structure, our
experiments indicate that, compared to FOMAML, the memory usage for MAML increases
by an additional 50% for each inner loop iteration. This implies that, if MAML includes
two inner loop iterations, it would use approximately twice the memory of FOMAML. It
is important to note that FOMAML does not require storing graphs for each inner loop
iteration, thus maintaining a constant memory usage regardless of the number of iterations.
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3.3. Setting the Second-Order Term to Zero is Effective

At its core, this method calculates the gradient concerning the query set using the
parameters derived at the end of the inner loop, which then informs the update of the
meta-parameters. As can be observed from (7), this treats the second-order term as zero,

gmeta =
B
∑
i=1
∇θKTi
L(θKTi

; x̃i, ỹi) ·ΠKk=1I, (9)

allowing the result of the ΠKk=1I to be simply reduced to one. This approach is justified by
the equation below, where the symbol ≒ denotes the definition of a term.

gk ≒
∂L(θk)

∂θk

∂2L(θk)

∂θ2
k
≈ lim

ε→0

gk+ε − gk
−ε · gk

= lim
ε→0

1
ε
· (1−

gk+ε

gk
).

(10)

The negative sign in the denominator of the middle formula among the three is due to
the update in gradient descent proceeding in the negative direction of the gradient. From
the given equation, it is clear that FOMAML approximates the ratio between gk+ε and gk to
1, while disregarding the fact that inverse of ε is infinite. Although this methodology might
exhibit commendable performance on simpler data structures with an appropriate length
of inner loops, it encounters potential pitfalls as the length of these loops increases. The
connection between the model parameters, determined at the conclusion of the inner loops,
and the meta-parameters becomes tenuous. This can lead to a performance that is markedly
subpar compared to MAML. Furthermore, even with a shorter length of inner loops,
the meta-gradient may lack the requisite information to effectively mitigate overfitting
during the test phase [20]. It is essential to consider these nuances when adopting such an
approach, especially in complex scenarios where the integrity of the model’s adaptability
is paramount. In prior research, the efficacy of FOMAML and Reptile as algorithms
for optimization-based meta-learning was analyzed mathematically in comparison with
MAML [17]. Consequently, various methods have been explored to effectively substitute
the second-order derivative computation [21,28].

4. Method

In this section, we elucidate the process of determining the value of the Approximate
Hessian Effect (AHE) using the cosine similarity loss. We further illustrate how to transform
the gradient for enhanced effectiveness.

4.1. Approximate Hessian Effect

We hypothesize that the role of the terms involving second-order derivatives is to
determine the weights of the gradient components computed from the query set. Observing
the term (I− α∇2

θL(θ)), when the second-order derivative is negative, the weight of the
corresponding gradient component increases and, when the second-order derivative is
positive, the weight of the corresponding gradient component decreases. In deep learn-
ing, it is generally assumed that the loss landscape exhibits both nonconvex and convex
characteristics. This can be succinctly visualized in Figure 1. Consequently, when the
second-order derivative possesses a large positive value, it can be inferred that the corre-
sponding gradient component is already in close proximity to the optimal point. On the
other hand, a negative second-order derivative could serve as evidence that the component
points are still at a considerable distance from the optimal point. Meta-learning aims to
rapidly adapt to a given task while simultaneously avoiding overfitting to the optimal
parameters. Therefore, we infer that the term (I− α∇2

θL(θ)) fine-tunes the gradient de-
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rived from the query set to be more effective for generalization. Based on this analysis,
we propose a heuristic function to approximate second-order derivatives accordingly. In
addition to FOMAML and Reptile, other papers have also explored optimization-based
meta-learning using only first-order gradient information [29]. Our approach does not
exclude second-order derivatives or use alternative methods to improve generalization
performance, but rather replaces second-order derivative information through approxi-
mation, resulting in performance comparable to that of MAML. The following equation
illustrates the computation of the meta-gradient approximation, denoted as g̃meta using
AHE. Our method creates a weight map for fine-tuning the final gradient, enabling more
effective updates. To be more specific, we utilized the AHE to generate the expected effect
of second-order derivatives derived from the support set. Based on (10), estimate AHE to

WAHE ≈
gk+ε

gk

H̃ ≒
1
ε
· (1−WAHE)

g̃meta ≒
B
∑
i=1
∇θKTi
L(θKTi

; x̃i, ỹi) ·ΠKk=1(I− α · H̃k),

(11)

and it differs from FOMAML fixing Hessian to zero;WAHE find an appropriate value of
Hessian. AHE is a variable that takes the input set of ∇θL(θ; xi, yi) and outputs H̃. The
method for updating and determining the appropriateWAHE will be elaborated upon in
the next section. Additionally, this scenario posits that a function f : Rn → R exhibiting
µ-strong convexity satisfies the Hessian condition µ ≤ ∇2 f (x) ≤ LI for all x ∈ Rn, where
L represents the Lipschitz constant and I denotes the identity matrix. In the context of
meta-learning, where tasks with limited data undergo inner loop training, there is an
elevated risk of overfitting. Consequently, it is typical for both µ and L to assume larger
values. This implies that all eigenvalues of the Hessian ∇2 f (x) are bounded below by µ
and above by L. Such characteristics are anticipated to be advantageous in meta-learning
settings, as they provide a balanced approach to addressing overfitting while facilitating
efficient inner loop learning.

Figure 1. In the optimization process, the likelihood of the second derivative taking a positive value
increases as it approaches the overfitting-prone optimal point. Viewed from another perspective, if the
second derivative is negative, one can anticipate that there is a relative distance to the optimal point,
with a possible inflection in between. Given that the support set used in meta-learning is susceptible to
overfitting, the term (I − α∇2

θL(θ)) in MAML is particularly significant. When this term multiplies the
gradient obtained from the query set, it can guide the learning in a direction opposite to that which is
vulnerable to overfitting during support set training. This suggests that, while the second derivative
in MAML gets closer for individual tasks, it does not overfit. This characteristic potentially allows the
algorithm to find parameters that can quickly adapt to new tasks without overfitting.



Electronics 2024, 13, 535 8 of 16

4.2. How to Update Variables via Gradient Similarity Loss

In this study, we incorporated AHE by updating based on the set of inner loop
gradients and their associated gradient similarity loss. The fundamental concept revolves
around updating WAHE to align with the ratio of sequential gradients, leveraging both
cosine similarity and L2 loss.

4.2.1. Gradient Similarity Loss

For the gradient similarity loss, we employ two loss functions to ensure that the
product gk ·WAHE closely approximates gk+ε. This is crucial because, in most meta-learning
inner loops, there is a high likelihood that the parameters become overfitted to the support
set. Consequently, the gradient may assume exceedingly small values, leading to potential
floating-point errors when the gradient is in the denominator. This scenario hinders the
accurate approximation of WAHE to the ratio gk+ε/gk. By interpolation, gk+ε is defined
as follows

gk+ε ≒ gk · (1− ε̃) + gk+1 · ε̃, (12)

and
ε ≒ (1− ε̃) · α, (13)

where ε̃ denotes the interpolation ratio, progressively decreasing from one to zero during
the meta-training phase. For the cosine similarity loss as presented in (4), we normalize the
vector to its unit vector because the magnitude of the loss is independent of the vector’s
scale, yet the gradient remains dependent. Consequently, the cosine similarity loss is
formulated as

L̂cos(a, b) =
−â · b̂

∥â∥2 × ∥b̂∥2
. (14)

The gradient similarity loss, denoted as LGS, is computed across the inner loop as

Lk
GS ≒

L

∑
l=1

[L̂cos(W k, l
AHE · g

l
k, gl

k+ε)

+ λ · ∥W k, l
AHE · g

l
k − gl

k+ε∥
2
2],

(15)

based on the aforementioned definitions. λ represents the coefficient of the L2-norm, while
L denotes the number of layers associated with the gradients and parameters. Furthermore,
all inputs to the loss functions are vectorized.

4.2.2. MAML via AHE Update

To employ this method within MAML, one can refer to Algorithm 2 where (11)
through (15) are comprehensively applied. For the training of WAHE, the gradients re-
sulting from LGS over the k iterations on the support set are averaged and utilized for
training. This mirrors the update seen in the Reptile Algorithm, as depicted in (3). The
parameter ε̂ is utilized to adjust the difference between gradients through interpolation,
effectively modulating the magnitude of the gradient for AHE, facilitating a more stable
approximation. The scheduling of ε̂ may vary depending on the characteristics of the
meta-learning problem at hand. A recommended approach is to decrease the value of ε̂
as the potential for overfitting in the inner loop increases, allowing for a larger ε value as
seen in (13). Various scheduling methods, including cosine scheduling that converges to
zero before the final outer loop concludes, can be employed. Alternatively, one can directly
fix the magnitude of the gradient for AHE based on ε. This approach will be referred to in
Section 5.3.
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Algorithm 2 MAML via AHE update

Require: p(T ), α, β,K,B,≡, ε̂
Initialize θ randomly
InitializeWAHE to 1
while not done do

Sample B batch of tasks Ti from p(T )
for all Ti do

θ0 = θ
W0

AHE =WAHE
for k = 1 to K+ 1 do

gk = ∇θk−1
Ti
L(θk−1

Ti
; xi, yi)

if not k = K+ 1 then
θk
Ti
= θk−1
Ti
− α · gk

end if
end for
for k = 1 to K do
W k

AHE =W k−1
AHE − η∇WAHEL

k
GS

H̃k = 1
ε · (1−W k

AHE)
end for
gAHE = 1

K ∑Kk=1∇WAHEL
k
GS

end for
g̃meta = ∑Bi=1∇θKTi

L(θKTi
; x̃i, ỹi) ·ΠKk=1(I − α · H̃k)

Update θ ←− θ − β · 1
B · g̃meta

UpdateWAHE ←− WAHE − β · η
B ·∑

B
i=1 gAHE

end while

4.3. Comparative Analysis of Proposed Algorithm

In the realm of meta-learning algorithms, a critical distinction exists between MAML
and FOMAML. As discussed in Section 3.2, MAML necessitates second-order operations,
specifically the computation of Hessian-vector products. This requirement inherently limits
its computational efficiency, especially as the number of inner loop iterations increases,
encountering computational constraints. Conversely, while fewer inner loops in MAML
may hinder the discovery of robust initial parameters, potentially rendering the process
ineffective or impracticable. FOMAML, on the other hand, overlooks the convexity of the
loss field, presenting unique challenges. In nonlinear domains, the lack of understanding
about the connection between the start and end of an inner loop becomes evident. The
reliance solely on the final gradient for updates, as FOMAML employs, leads to inaccuracies.
These inaccuracies are exacerbated as the inner loop lengthens. Conversely, shorter inner
loops can result in slow or even nonexistent learning, as evidenced in [17]. In contrast,
our AHE differs as it does not require the calculation of the Hessian-vector product. The
additional complexity introduced in AHE is merely due to the inclusion of an extra first-
order derivative calculation, resulting in a computational complexity that is twice as much.
However, importantly, the memory usage is not influenced by the number of inner loops.
Therefore, AHE can be employed in larger models where the use of MAML is not feasible.
Consequently, this approach, even with extended inner loops, continuously integrates
the correlation between gradients, thereby adjusting the gradient in the outer loop. This
method enables the utilization of FOMAML in a manner similar to MAML. A comparison
of computational complexity and memory usage can be referenced in Table 2.
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Table 2. Comparative analysis of computational complexity among MAML, FOMAML, and AHE,
with respect to the inner loop size, denoted as K.

Computational Complexity Space Complexity

FOMAML C S

MAML ≈ 5× C ≈ (1 + 0.5×K)× S

AHE (Ours) ≈ 2× C ≈ 1.03× S

5. Experiments

In this section, we aim to validate the efficacy of our proposed approach by contrasting
it with other optimization-based meta-learning techniques in few-shot image classification.
We adhere to the experimental protocol established in prior meta-learning research [1].

5.1. Implementation Detail
5.1.1. Dataset

In our experiments, we employ the MiniImagenet dataset, introduced for few-shot
image classification [9]. This dataset comprises 64 training classes, 12 validation classes,
and 24 test classes. It is frequently used as a benchmark for few-shot learning due to its
size and complexity, which are well-suited for both training and testing. Additionally, we
conducted experiments on the MNIST dataset with applied modifications. During the
training phase, we used the clean MNIST dataset; while in the testing phase, we employed
images that contained random levels of noise and were randomly rotated within 90 degrees.
The results of these experiments and examples of the test images can be found in Figure 2.

Figure 2. (Left) MNIST test dataset modified with random noise and rotation. (Right) 5-way 1-shot
classification test accuracy comparison for MAML and AHE. MAML achieved a top accuracy of 81%,
while AHE reached 82%.

5.1.2. Experiment Setting

In the N-way K-shots classification problem, N unseen classes are provided with K
distinct instances from each of these N classes, and the model’s proficiency is then tested
based on its ability to classify unseen novel instances within these N classes. During the
training phase, meta-gradients are computed using both the support and query sets, and
are subsequently utilized for updates. In the testing phase, only the inner loop update is
performed using an unseen test support set. Following this, the model’s fast adaptation
performance is assessed by measuring accuracy on an unseen test query set. We conducted
experiments under four distinct scenarios for 60,000 iterations. For the number of classes
in a task, denoted as N, we considered both 5 and 20. For the number of data points in
each of the support and query sets within a task, denoted as K, we used values of 1 and
5. To compare with our method, we conducted experiments with MAML and FOMAML
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under identical conditions. As can be observed in Figure 3, the peak test accuracies during
iterations surpass those previously reported in the research [21]. Consequently, we based
our algorithmic comparisons on the accuracies of MAML and FOMAML as tested in our
experiments, which can be viewed in Table 3 and Figure 4. Universally, we employed
α = 0.05, β = 0.001, and K = 10. For the 5-way 1-shot scenario, we used B = 16, for the
5-way 5-shot scenario B = 8, for the 20-way 1-shot scenario B = 8, and for the 20-way
5-shot scenario B = 4. In all approaches, the Adam optimizer [30] was employed to update
the meta-gradient after the outer loop. For the learning of AHE, parameter η was set to the
reciprocal of K, which is 0.1, and λ is 0.1.

Figure 3. Experiments on the MiniImagenet dataset using MAML and FOMAML in terms of
test accuracy. While (a,c) represent 1-shot learning, showing MAML significantly outperforming
FOMAML from the early stages of training, scenarios like (b,d) for 5-shot learning depict FOMAML
either matching or slightly surpassing MAML in the initial phases. Ultimately, MAML consistently
demonstrates superior performance over FOMAML across all cases.

Figure 4. Experiments on the MiniImagenet dataset using AHE and FOMAML in terms of test accuracy.
In all tests, we observed a slight improvement in the results using AHE.
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Table 3. Test accuracy (in percent) for few-shot image classification on the MiniImagenet test set.
Each value represents the mean across 600 tasks, ± shows 95% confidence intervals over tasks.

5-Way 1-Shot 5-Way 5-Shot 20-Way 1-Shot 20-Way 5-Shot

MAML 53.83± 1.90 67.79± 0.86 21.62± 0.73 33.82± 0.38

FOMAML 50.80± 1.78 67.31± 0.92 18.72± 0.67 31.57± 0.38

AHE (Ours) 52.87± 1.90 67.82± 0.87 20.45± 0.65 33.983± 0.37

5.1.3. Evaluation Setup

For the evaluation, we utilized the test classes, conducting tests every 100 training
iterations. Throughout all experiments, both the average accuracy and the 95% confidence
intervals were derived from the results of 600 tasks. In this stage, the performance of
fast adaptation is evaluated based on the accuracy of the test query set, following the
parameters which complete the training with the test support set in the inner loop. The
test support and query sets maintain the same way and shot configurations as the train
support and query sets. In some previous studies, the shot size of the test query set can
differ from that of the support set, typically being larger. Consequently, we utilized only
α = 0.05 and K = 10, consistent with the values applied during the training phase.

5.1.4. Comparison Methods

To ensure a fair comparison of performance, we did not seek the optimal hyperparame-
ters for each problem but instead used a reasonable common value. We used the learn2learn
meta-learning library [31]. In Figure 4, we can observe the trend of test accuracy for our
method compared to FOMAML. Additionally, the best performances can be compared
in Table 3.

5.2. Experimental Results
5.2.1. 5-Way 1-Shot Classification

The 5-way 1-shot scenario is the most straightforward problem, where training is con-
ducted using only one data point per class. This method inherently has a high propensity
for overfitting from the early stages of training. Moreover, with a limited set of just five
classes, the challenge of elevating fast adaptation performance from the outset is substan-
tial. In the initial phases of training MiniImagenet, MAML displays the most consistent
upward trajectory. On the other hand, while AHE exhibits some fluctuations, it generally
outperforms FOMAML in terms of accuracy. In the test phase of the experiments on the
MNIST dataset with randomly applied noise and rotation, we observed that performance
reached over 80% due to training on 10 classes with randomly applied labels during the
training phase, which is higher compared to MiniImagenet. However, the modified data in
the test phase led to increased vulnerability to overfitting, resulting in a continuous decline
in performance even after reaching peak effectiveness. Nonetheless, as Figure 2 illustrates,
AHE exhibited a less pronounced performance decline compared to MAML.

5.2.2. 5-Way 5-Shot Classification

In the 5-way 5-shot, which presents the lowest likelihood of overfitting, each class
is trained using five data points. Compared to other scenarios, FOMAML significantly
outperforms MAML in the early stages of training. However, while MAML achieves a
slightly higher peak performance, it notably does not exhibit a performance decline in the
later stages, unlike FOMAML. This observation suggests that, in the 5-way 5-shot setting,
the parameters are updated to a more generalized state in the later stages of training
compared to other scenarios. At this point, the use of second-order derivatives becomes
critically important, as hypothesized. AHE, on the other hand, surpasses MAML in terms
of peak performance but its decline in the later stages mirrors that of FOMAML.
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5.2.3. 20-Way 1-Shot Classification

The 20-way 1-shot scenario is the most susceptible to overfitting. Given that only one
data point is provided for each of the 20 classes, overfitting is likely to occur from the outset
of the inner loop training. This phenomenon is a primary reason why MAML, which uses
second-order derivatives, and AHE, which employs an approximation, exhibit a significant
performance gap compared to FOMAML, which relies solely on first-order derivatives. This
disparity is evident in Figures 2 and 3. Among all problems, the 20-way 1-shot setting most
distinctly highlights the pronounced performance degradation of FOMAML in situations
where avoiding overfitting is challenging.

5.2.4. 20-Way 5-Shot Classification

In the 20-way 5-shot scenario, significant fluctuations were observed in both MAML
and AHE. While the peak performance for both methods was similar and surpassed that
of FOMAML, the pronounced fluctuations that occurred post-peak in the learning curve
warrant further investigation. We hypothesize that the presence of numerous classes and
shots could lead to a highly intricate nonconvex structure in the convergence region. Con-
sequently, during the learning process, the model might traverse regions that amplify the
meta-gradient, leading to a temporary decline in performance. Additionally, we conducted
a comparison of the elapsed time between MAML and AHE in the most extensive training
model and time-consuming scenario, the 20-way 5-shot. Our findings, as illustrated in
Figure 5, show that AHE requires approximately half the time of MAML over 20,000 train-
ing loops and 200 testing loops. During these experiments, we utilized a GeForce RTX 3090
with 24 GB of GPU memory.

Figure 5. Test accuracy comparison of AHE and MAML on the MiniImagenet dataset in the 20-way
5-shot scenario across 20,000 training iterations.

5.3. Additional Experiment Details

In this section, we elucidate how the approach was implemented in the aforemen-
tioned experiment, demonstrating its utility in facilitating observations and adjustments
throughout the experimental process.

5.3.1. Adjustment of AHE Gradient Magnitude

To create a more robust algorithm when applied to various model architectures,
diverse data, and tasks, the gradient ∇WAHELGS used to update AHE in the inner loop can
be normalized as
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gAHE =
ε · ∇WAHELGS

1
mn ∑m

i=1 ∑n
j=1 |(∇WAHELGS)ij|

, (16)

where dividing by the average absolute value and multiplying by ε the average absolute
value of the gradient components will be proportional to ε. This facilitates setting the
learning rate for AHE. Moreover, as the inner loop progresses, the importance of the
approximated value increases, while the actual loss value tends to decrease. Normalizing
the gradient to a consistent scale addresses this issue.

5.3.2. Methods for Scheduling ε

Various methods can be employed to schedule both ε and ε̃. As seen in Equation (12),
we schedule ε̃ while using a value for ε that is dependent on it. Given that ε̃ should start
from a value less than 1 and gradually approach 0, a cosine function can be utilized for
scheduling. This is because learning typically progresses rapidly in the early stages and
slows down as it approaches convergence. Consequently, ε̃ is determined as

ε̃i =
cos−1(2× (i + 1)÷ T − 1)

π
, (17)

where T is the total number of training iterations.

6. Conclusions

In this work, we introduced a first-order-based Model Agnostic Meta-Learning (MAML)
approach that employs a gradient similarity loss, integrating both cosine similarity loss and L2
loss. For generalizability, we maintained consistent hyperparameters across all N-way K-shot
classification problems. However, there may be potential for enhanced performance by fine-
tuning the hyperparameters specific to each problem. Our method proves to be competitive,
especially when considering that previous first-order-based meta-learning algorithms often
relied on iterations until convergence as a substitute for second-order calculations. While
these methods may technically be first-order, they can be time-consuming during each loop,
particularly for contemporary models with vast numbers of parameters. In contrast, our
strategy involves just one additional update after each inner and outer loop, addressing the
time-consuming nature of convergence-based approaches. Meta-learning offers a promising
avenue to advance deep learning due to its data efficiency and adaptability across various
domains employing deep learning. It also presents solutions to challenges in federated
learning and online learning [32,33]. Given the benefits of meta-learning and the need to
address second-order complexity, further research in this area is crucial. Beyond few-shot
image classification, it would be intriguing to explore the potential performance improvements
of applying AHE in reinforcement learning and regression tasks. Additionally, instead of
directly utilizing the parameter values of AHE, experimenting with the outcomes derived
from activation functions such as sigmoid or tanh, which exhibit a curved shape, might be
anticipated to yield favorable results.
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