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Abstract: Pedestrian trajectory prediction is one of the most important topics to be researched
for unmanned driving and intelligent mobile robots to perform perceptual interaction with the
environment. To solve the problem of the SGAN (social generative adversarial networks) model
lacking an understanding of pedestrian interaction and scene constraints, this paper proposes a
trajectory prediction method based on a scenario-constrained generative adversarial network. Firstly,
a self-attention mechanism is added, which can integrate information at every moment. Secondly,
mutual information is introduced to enhance the influence of latent code on the predicted trajectory.
Finally, a new social pool is introduced into the original trajectory prediction model, and a scene edge
extraction module is added to ensure the final output path of the model is within the passable area
in line with the physical scene, which greatly improves the accuracy of trajectory prediction. Based
on the CARLA (CAR Learning to Act) simulation platform, the improved model was tested on the
public dataset and the self-built dataset. The experimental results showed that the average moving
deviation was reduced by 26.4% and the final offset was reduced by 23.8%, which proved that the
improved model could better solve the uncertainty of pedestrian turning decisions. The accuracy
and stability of pedestrian trajectory prediction are improved while maintaining multiple modes.

Keywords: scene constraint; pedestrian trajectory prediction; generative adversarial networks;
self-attention mechanism; CARLA simulation

1. Introduction

Pedestrian trajectory prediction uses the trajectory information of pedestrians in the
past to predict the movement trajectory that pedestrians may choose in the future, which is
an important part of the environment perception module of unmanned driving technology
and intelligent mobile robots [1]. In the field of computer vision, pedestrian trajectory pre-
diction based on visual information has become a research hotspot. Traditional pedestrian
trajectory prediction methods usually focus on the establishment of mathematical–statistical
models, such as trajectory prediction models based on Social Force (SF) [2] and Social Aware
(SA) [3]. The traditional methods above rely on the interaction rules of manually specified
pedestrians, resulting in poor adaptability to different scenarios, and simple kinematic
models are not suitable for long-term prediction. The pedestrian path prediction method
based on deep learning has been proposed more recently, but it is suitable for long-term
prediction and has been widely used by researchers. Sumpter et al. [4] used image-based
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trajectory sequences as input to predict pedestrian movement trajectory through neural
networks. Alahi et al. [5] proposed an LSTM (Long Short-Term Memory) network to
model trajectory prediction and achieved good results. Bartoli et al. [6] conducted a more
in-depth study on the above methods and proposed a Social-LSTM model, which added
static obstacle information in the environment to increase the model’s understanding of
scene constraints and improve the accuracy of prediction. Varshneya et al. [7] proposed
an end-to-end prediction model in which the pooled structure could extract the influence
features of the surrounding pedestrians on the target pedestrians. Raipuria et al. [8] applied
the above method to the highway scene and achieved good results. Gupta et al. [9] used
generative adversarial networks (GAN) for pedestrian trajectory prediction for the first
time and proposed Social-GAN (SGAN), which achieved higher accuracy in pedestrian
trajectory prediction and made the generated predicted trajectory no longer single. Based
on the above methods, Amirian et al. [10] added an attention mechanism to the network to
screen the miscellaneous pedestrian interaction information, reducing the computational
load of the network and improving the prediction efficiency. PEI Zhao et al. [11] proposed
a transformer generative adversarial network (GAN) algorithm, which combines dynamic
scene information with pedestrian social interaction information. The convolution neural
network model of the dynamic scene extraction module is utilized to extract the dynamic
scene information features of the target pedestrian, which improves the average error and
the final displacement error. Liming Lao et al. [12] proposed a novel prediction model
termed the social and spatial attentive generative adversarial network (SSA-GAN). The
SSA-GAN framework utilizes a generative approach, where the generator employs social
attention mechanisms to accurately model social interactions among pedestrians. At the
same time, the model uses comprehensive motion characteristics as query vectors, which
significantly enhances the prediction performance. Li et al. [13] proposed a neural network
model with a memory function for the pedestrian and environmental information obtained
by the driverless sensing system. Brebisson et al. [14] proposed a neural network based on
bidirectional recursion, which converts the data obtained by the sensor into a sequence and
completes the position prediction of the target [15]. Kuchar J.K et al. [16] elaborated the
basic functional framework of CDR for classifying models, and commented on the current
system design process. Migliaccio G et al. [17] used a moving ellipsoid to represent the
inviolable space area of unmanned aerial vehicles to detect and avoid potential conflicts.
Simulations show that the proposed algorithm is able to detect and avoid situations of po-
tential conflict in the three-dimensional space and in real time, even without the assistance
of a human operator. Schouwenaars T et al. [18] proposed a new approach to fuel-optimal
path planning of multiple vehicles using a combination of linear and integer programming.
A key benefit of this approach is that the path optimization can be readily solved using the
CPLEX 9.0 [19] optimization software with an AMPL/Matlab interface.

The pedestrian prediction method based on the GAN model has become the mainstream
pedestrian prediction method based on deep learning because of its outstanding ability to deal
with future uncertainty. The SGAN model consists of a generator containing an autoencoder,
a social pooling module and a decoder, and a decoder based on a long and short time series
network, as shown in Figure 1. By constructing a social pool module, the model pools the
relative movement and hidden state of pedestrians to obtain the interaction vector of pedestrians
and then produces a track distribution closer to the actual track.

SGAN has made many improvements to the pedestrian interaction problem and
achieved good results, but there are still some problems:

1. The interaction information obtained in the social pool is numerous and miscellaneous,
and it is impossible to identify the information that is useful for predicting the future
trajectory of pedestrians to be tested.

2. The function of the hidden code is ignored, so the generated trajectory is not accurate enough.
3. Without considering the scene constraints, the prediction of pedestrian trajectory not

only takes into account the interaction between pedestrians but also needs to avoid
some static buildings and other obstacles in the traffic scene.
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4. The use of the L2 loss function leads to the risk of network collapse and limits the
multi-modularity of the trajectory.

Figure 1. SGAN algorithm framework.

Aimed at solving problems such as the incomprehension of pedestrian interaction prob-
lems and scene constraint in the SGAN model, this paper proposes a scene context-based
social information generative adversarial network (SC-SIGAN) pedestrian trajectory prediction
method based on scene constraints. Compared with SGAN, the improved SC-SIGAN increases
the attention mechanism and can fuse information at every moment. Secondly, by introducing
mutual information, the correlation between the hidden code and the generator is strengthened
to create the influence of the hidden code on the generated trajectory. In addition, the improved
model introduces a new social pool and adds a scene edge extraction module, so that the model
not only considers the location between the adjacent pedestrians and the target pedestrians in
the scene but also considers the speed information of the pedestrians. This ensures that the
final output path of the model is within the passable area in line with the physical scene and
greatly improves the accuracy of trajectory prediction. The experimental results on the open
dataset and the self-built dataset show that the improved model can better solve the uncertainty
of pedestrian turning decisions, and improve the accuracy and stability of pedestrian trajectory
prediction while maintaining multiple modes.

The overall arrangement of this paper is as follows: In the second part, firstly, the
definition of pedestrian trajectory prediction based on deep learning is expounded, and
then, the generation countermeasure network model based on scene constraints is described
in depth, with emphasis on the improvement of the generator and discriminator. The third
part is the experimental results and analysis. Using two public datasets, ETH [20] and
UCY [21], and a self-made dataset on the CARLA simulation platform, and taking ADE
and FDE as evaluation indicators, the Kalman filter (KF) algorithm [22], SLSTM algorithm,
SGAN algorithm, ASGAN algorithm [23], and SC-SIGAN algorithm proposed in this paper
are compared to verify the universality and accuracy of the pedestrian trajectory prediction
model in this paper. The fourth part summarizes the novelty of the pedestrian trajectory
prediction method in this paper, as well as the future development trends and challenges.

2. Generative Adversarial Network Model Based on Scene Constraints
2.1. Definition of Pedestrian Trajectory Prediction Problem Based on Deep Learning

Trajectory prediction means to understand pedestrian movement patterns by observ-
ing pedestrian time series data. In the pedestrian trajectory prediction network model,
the future running state information of each pedestrian is usually predicted by observing
the past running state information and scene information of all pedestrians in the scene.
The input of the pedestrian trajectory prediction network model based on deep learning
contains two pieces of information, one is the pedestrian trajectory information, and the
other is the obstacle limitation information on the scene.
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Let the pedestrian’s past track information be defined as Xu
t = (xu

t , yu
t ) , and predict

that the output of the generator to Ŷu
t = (x̂u

t+tobs
, ŷu

t+tobs
) represents the predicted future

trajectory, then the true future trajectory is Yu
t = (xu

t , yu
t ) . Then there is:

Xu
t = Xu

1 , Xu
2 , Xu

3 . . . Xu
obs(u = 1 . . . n, t ∈ [1, tobs]) (1)

Ŷu
t = Ŷu

1 , Ŷu
2 , Ŷu

3 . . . Ŷu
pred(t ∈ [tobs + 1, tobs + tpred]) (2)

In these formulas, u is the number of pedestrians to be measured, n is the total number
of pedestrians to be measured, tobs is the number of frames observed, and tpred is the
number of predicted frames.

Then, the speed of a pedestrian u at time t is:

Vu
t =

(
xu

t − xu
t−1, yu

t − yu
t−1

)
(3)

Information about obstacles in the scene is entered into the network in the top view or
side view.

2.2. SC-SIGAN Network Model
2.2.1. Overall Framework of Model

The structure of the SC-SIGAN model proposed in this paper is shown in Figure 2. Its
framework also adopts the basic structure of generating adversarial networks, which is
composed of a generator (G) and discriminator (D).

Figure 2. Structure of SC-SIGAN model generator and encoder.

The generator includes three parts: an encoder, a social pool, and a decoder. The
encoder extracts the features from the original track and image through the LSTM net-
work and the Visual Geometry Group (VGG) network and encodes them. They are then
transferred to the social pool (location and velocity attention pooling (LVAP)) for screening,
important weighted feature information, noise, and an initialized latent code are inputted
into the decoder for decoding, the updated latent code is obtained, and the generation of
the predicted trajectory is controlled. The discriminator improves the performance of the
generator model by forcing the generator to generate prediction samples that are closer to
the real trajectory.

2.2.2. Generator

1. Encoder
The function of the encoder is to upgrade the 2D trajectory sequence of pedestrians
into a high-dimensional vector on the one hand and to realize the feature extraction
of the scene on the other hand.
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First, through the connection layer network ϕ(·) , the trajectory sequence Xu
t of

each selected pedestrian is raised from two-dimensional coordinates to a higher
dimensional vector eu

t . The coding formula is as follows:

eu
t = ϕ(Xu

t , Wϕ1) (4)

In the formula, Wϕ1 is the weight parameter of ϕ(·) in the fully connected network in
the encoder.
Then, after the eu

t is embedded by an embedding function γ with ReLU nonlinear
activation, the previous state feature Heu

t−1 is inputted to the encoder LSTM module
for encoding. All information is encoded until the end of the observation sequence,
and the current motion state features Heu

t of the pedestrian u are updated.

Heu
t = LSMT(Heu

t−1, γ(eu
t , Wγ); Wec) (5)

In the formula, Wγ is the weight parameter of the function γ, and Wec is the weight
parameter of the encoder, initialized by pre-training fine-tuning.
The feature extraction of the encoder scene is completed by VGGnet-16. The VGG
network [24] maps the feature image generated by the convolutional layer into a fixed-
length feature vector, and the resulting classification still belongs to the image-level
classification. In order to complete the class semantic segmentation and extraction of
scene features, the last full connection layer of VGG is changed to the full convolution
layer so that the output layer outputs the softmax loss calculated on a pixel-to-pixel
basis, and finally, the pixel-to-level classification is obtained. The changed network
structure is shown in Figure 3.

Figure 3. Changed VGG network structure.

Through the full convolutional VGG network structure, the scene features obtained
from the image Imaget are:

St = FCN(Imaget, W f cn) (6)

In the formula, W f cn is the weight of the full convolutional network.
2. Information screening

The feature screening is divided into two parts. The first part screens the pedestrian
motion state features in the encoder and collects the feature information useful for
determining the future direction of the pedestrian u. The second part enables the
model to understand the interaction between the scene and the pedestrian by applying
soft attention.
The first part is composed of the social pool layer structure (as shown in Figure 4)
and the self-attention module. The former is concerned with the relative displace-
ment change in pedestrian movement, and the latter is concerned with the relative
speed change in pedestrian movement. The second part adopts the “soft” determin-
istic attention mechanism ATT(·) proposed by Xu et al. [25] through the standard
backpropagation method.
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Figure 4. Social pooling layer structure.

(a) Calculate the relative displacement change information pum
t of pedestrian u

and its neighboring pedestrians.
The relative influence of pedestrians can generally be analyzed by spatial
affinity. Let ξum

t ∈ O3 represent the spatial affinity between the pedestrian u
and the close pedestrian m around him, which includes three parts: Euclidean
distance, azimuth angle, and nearest approach distance between pedestrian u
and pedestrian m. Then, the relative position information between pedestrian
u and pedestrian m can be calculated from oum

t :

oum
t = {ξum

t |t = 1, . . . , tobs} ∈ O3, u ̸= m (7)

Then, oum
t is mapped to pum

t through the fully connected network ϕ(·), and the
relative displacement change information pum

t between pedestrian u and the
closely interacting pedestrian m around him is obtained:

pum
t = ϕ(oum

t , Wϕ2), u ̸= m (8)

In the formula, Wϕ2 is the weight parameter for this fully connected layer.
(b) The attention weight bum

t of the relative displacement change between the
pedestrian u and its neighbors is calculated.
The relative displacement change pum

t between pedestrians u and m is trans-
formed into a high-dimensional vector, which is embedded into Hem

t (motion
feature information of adjacent pedestrians) by a fully connected layer to obtain
ϱ(pum

t , Hem
t ).

ϱ(pum
t , Hem

t ) =
N − 1√

dϱ
< pum

t , Wϱ Hem
t >, u ̸= m (9)

In the formula, N is the total number of pedestrians, dϱ is pum
t and the common

row of linear map weights applied to the motion feature information, and Wϱ

is the weight parameter of the fully connected layer.
Finally, the attention weight bum

t is obtained by scalar product and softmax by
using pum

t and Hem
t to obtain the relative displacement change of pedestrian u

and each adjacent pedestrian m:

bum
t =

exp
(
o(pum

t , Hum
t )

)
∑n ̸=u exp(o(pum

t , Hum
t )

) , u ̸= m (10)

bum
t ≜ [bu1

t , bu2
t , bu3

t . . . bun
t ]T , m ∈ [1, n], u ̸= m (11)

(c) Calculate the relative speed change information Cu
t of pedestrians u and

their neighbors.
Since the spatial affinity in the social pool can only pay attention to the distance
information of the displacement between pedestrians, to better analyze the
interaction between pedestrians, it is also necessary to pay attention to the
influence of the speed change between pedestrians. Here, the self-attention
mechanism model shown in Figure 5 is adopted, focusing on the speed infor-
mation of each pedestrian.
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Let the input of the model be the speed of each pedestrian in the scene at time
t Vi

t (i = 1, 2, . . . , n), then output the attention information of relative speed.

Figure 5. Self-attention module.

In Figure 5, q represents the query, k represents the key, v represents the value,
α represents attention distribution, α

′
represents attention distribution after

normalization, and Ct represents output attention information.
The formulas for calculating the qu

t and ku
t of the pedestrian u to be measured

are:
qu

t = WqVu
t (12)

ku
t = WkVu

t (13)

In the formula, Wq and Wk are weight matrices.
The correlation degree α of the pedestrian u to be measured with the speed of
other pedestrians is calculated as follows:

αu,1 = qu
t k1

t , αu,2 = qu
t k2

t , . . . , αu,n = qu
t kn

t (14)

Through the calculation of softmax, all the correlation degrees are normalized,
the attention distribution α

′
is obtained, and the speed of adjacent pedestrians

at the same time is related to the speed of the pedestrian to be measured.

α′u,n = exp(αu,n)/ ∑
n

exp(αu,n) (15)

Finally, the relative velocity information Cu
t is extracted according to the atten-

tion distribution.

Cu
t =

n

∑
1

vu
t α′u,n (16)

In the formula, vu
t is the key value of the pedestrian to be measured:

vu
t = WvVu

t (17)

In the formula, Wv is the weight matrix.
(d) Calculate the interaction information Au

t between the scene and the pedestrian.
The “soft” deterministic attention mechanism ATT(·) can make the model pay
attention to the edge of static obstacles in the scene so that the final output path
of the whole model is within the passable area that conforms to the physical
scene. Interactive information is represented as:

Au
t = ATT(St, Heu

t , WATT) (18)
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In the formula, St represents the scene feature, Heu
t is the motion feature

information of the pedestrian u, and WATT is the weight of the attention
mechanism module.

3. Decoder
According to the weight of the important information obtained after the above screen-
ing, the decoder can combine the motion state Heu

t of pedestrian u and the motion
state Hem

t of the adjacent pedestrian m to obtain the useful hidden feature σu
t−1 of

pedestrian movement:

σu
t−1 = [(Heu

t−1)
T , ( ∑

u ̸=m
bum Hem

t−1)
T , (Cu

t−1)
T , (Au

t−1)
T , (Z)T ]T (19)

In the formula, Hem
t−1 is the motion state information of adjacent pedestrian m at the last

moment, and ∑u̸=m bumHem
t−1 is the influence of the relative displacement change of the

surrounding pedestrian m at the last moment on the future trajectory of the pedestrian u.
Cu

t−1 is the influence of the relative speed change of the surrounding pedestrian m on the
future trajectory of pedestrian u, A(t− 1)u is the influence of static obstacles in the scene of
the previous moment on the future trajectory of the pedestrian u, and Z is noise.
The pedestrian trajectory Ŷu

t is predicted according to the motion hidden feature σu
t−1

and the current motion state of the pedestrian Hdu
t . The initial current motion state

information of the pedestrian U received by the long and short time series network in
the decoder is Hdu

t , which is obtained by the state He
t u cascaded high-level noise Z of

the encoder t = tobs:
Hdu

t = [Heu
t , Z] (20)

After updating Hdu
t , it is necessary to combine the motion state information Hdu

t−1
of the last moment and the useful hidden features σu

t−1 of the attention mechanism
module of the last moment into the long and short time series network.

Hdu
t = λd(Hdu

t−1, σu
t−1; Wλd) (21)

In the formula, λd is the decoding unit function of the long and short time series network,
and Wλd is the weight of the long and short time series network in the decoder.
Then, the updated current motion state Hdu

t is converted into the coordinate space by
gamma function γ, and the predicted future trajectory Ŷu

t is obtained:

Ŷu
t = γ(Hdu

t , Wγ) (22)

In the formula, Wγ is the weight of the function γ.

2.2.3. Discriminator

1. Code enhancement
Based on the original SGAN network, mutual information is used as an optimization
target to enhance the role of latent code in predicting trajectory generation. Through
model training, the difference between mutual information lower bound and mutual
information distribution becomes smaller, so that the correlation between the latent code
and the predicted trajectory becomes larger, and the generated predicted trajectory is closer
to the real trajectory. The designed SC-SIGAN network is also composed of generator G,
discriminator D, and subnetwork R. During training, the discriminator has nothing to do
with mutual information, and the parameters of the generator are fixed, so the change in
mutual information is only determined by the subnetwork.
According to the definition of mutual information, obtain hidden code C and generator-
generated forecast track X mutual information I(C; X) = I(C; G(Z, C)) as follows:

I(C; X) = ∑
c∈C

∑
x∈X

p(c|x) log
(

p(c|x)
p(c)p(x)

)
= H(C)− H(C|X) (23)
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In the formula, P(x) is the distribution probability of x, P(c) is the distribution probability
of c, p(c|x) is the probability of c occurring under the condition that x occurs, H(C)
represents the information entropy of C, and H(C|X) represents the uncertainty of C
given X.
The posterior distribution p(C|X) in Equation (23) can be estimated by defining an
auxiliary distribution R(C|X):

I(C; X) = H(C)− H(C|X)

= Ex∼G(z,c)

[
Ec′∼P(z|c)[logP(c′|x)]

]
+ H(c)

= Ex∼G(z,c)

[
Dkl

(
P(·|x) ∥ R(·|x)

)
+ Ec′∼P(z|c)[logR(c′|x)]

]
+ H(c)

≥ Ex∼G(z,c)

[
Ec′∼P(z|c)[logR(c′|x)]

]
+ H(c)

(24)

In the formula, H(C) is a constant. Dkl
(

P(·|x) ∥ R(·|x)
)

is the divergence, a measure
of the difference between P(C|X) and R(C|X).

Ex∼G(z,c)

[
Ec′∼P(z|c)[logR(c′|x)]

]
+ H(c) in Equation (24) is the lower bound IL(C; Q)

of I(C; X).

IL(C; Q) = Ex∼G(z,c)

[
Ec′∼P(z|c)[log R(c′ | x)]

]
+ H(c)

= Ec∼p(c),x∼G(z,c)[log Q(c | x)] + H(c)
(25)

After adding the loss function generated by the adversarial network structure gener-
ated by the entire model itself, the overall optimization objective is:

min
G,Q

max
D

V(R, G, D) = V(D, G)− λIL(C; Q) (26)

In the formula, G is the generator and D is the discriminator.
2. Loss function

Similar to SGAN, LSTM is used to encode the input of the discriminator, and the
accuracy of the predicted trajectory is judged using the fully connected layer.

(a) Discriminator D total loss function d−loss

d−loss = −Ex∼pdatalogD(x)− Ez,clog
(

1 − D
(
G(z, c)

)
− λI

(
c, G(z, c)

))
(27)

In the formula, λ is constant.
(b) Loss function Rin f o−loss generated by network R.

Rin f o−loss = L1(G, Q) = Ec∼p(c),x∼G(z,c)[logQ(c|x)] + H(c) (28)

(c) Generator G total loss function g−loss

g−loss = −Ez,clog
(

D
(
G(z, c)

)
− λI

(
c, G(z, c)

))
(29)

The above brings the generated predicted trajectory closer to the characteristics
pointed out by the latent code C. For example, if the character of the hidden
code C is that the trajectory of the person in the line is shifting to the right, then
the generated predicted trajectory will continue to the right until it approaches
the direction of the shift of the person in the line.

In Figure 6, the pseudocode of the SC-SIGAN network model is as follows:
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Figure 6. The pseudocode of SC-SIGAN network model.

3. Experimental Results and Analysis
3.1. Experimental Environment and Dataset
3.1.1. Experimental Environment

The model was performed using Python 3.6 on PyTorch 0.8, using the Adam optimizer
for iterative training to optimize the parameters of SC-SIGAN.

All internal fully connected layers of the trace generator and discriminator are asso-
ciated with the LeakyReLU activation function with a slope of 0.1. In each dataset, the
SC-SIGAN network is trained using the following parameter settings:

Minimum batch size 64, generator learning rate 0.001, discriminator learning rate
0.0001, momentum 0.9, and training 2000 rounds. The parameter optimization process is as
follows:

1. Initial attenuation rate vector input lr, β1 = 0.9, β2 = 0.999 can learn parameters θ0,
∈= 10−8.

2. Set the initial cumulative gradient: m0 = 0, the square of the initial cumulative
gradient v0 = 0, and the initial training number t = 0.

3. Training times are updated: t = t + 1.
4. Cumulative gradient: mt = β1 ∗ mt−1 + (1 − β1) ∗ gt, gt is the gradient of each

parameter itself.
5. Cumulative gradient squared: vt = β2 ∗ vt−1 + (1 − β2) ∗ (gt)2.
6. Deviation correction: m̂t =

mt
1−(β1)2 , v̂t =

vt
1−(β2)2 .

7. Update parameters: θt = θt−1 − mt√
v̂t+ϵ

lr.

3.1.2. Dataset Selection

In this paper, two public datasets, ETH [20] and UCY [21], and a self-made dataset on
the CARLA [26] simulation platform are used to verify the generalization and accuracy of
the pedestrian trajectory prediction model.

1. Public datasets
The training set accounts for 70% of the total dataset, and the test set accounts for 30%
of the total dataset [27]. The cross-validation method is adopted to train the model,
and four other subdatasets are taken as training data. Each subdataset is trained, from
which the model with the best performance on the verification set is selected.
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2. Self-built dataset
The real trajectory observed in existing publicly available datasets for trajectory
prediction evaluation is only one of many possible future trajectories that conform
to social norms. Liang [28] et al. proposed a simulation map based on the real
traffic environment, which can provide richer semantic information. CARLA 0.9.6
and Unreal Engine 4 were used to build a simulation platform for the real traffic
environment, reconstruct the static scene and its dynamic elements, and obtain the
simulated traffic scene as shown in Figure 7. Then, the dataset was manually labeled
by controlling the direction of the target pedestrian to be measured.

Figure 7. Simulated traffic scene.

3.2. Evaluation Target

Average Differential Error (ADE) and Final Differential Error (FDE) are used as evalu-
ation indexes for trajectory prediction.

ADE =
1
n

n

∑
i=1

1
tpred

tobs+tpred

∑
t=tobs+1

√(
xt

i − x̂t
i
)2

+
(
yt

i − ŷt
i
)2 (30)

FDE =
1
n

n

∑
i=1

√(
x

tped
i − x̂

tped
i

)2
+

(
y

tpred
i − ŷ

tped
i

)2
(31)

ADE represents the accuracy of the predicted trajectory at every time t average, and
FDE represents the accuracy of the predicted trajectory at the last moment.

3.3. Open Dataset Experimental Results and Analysis

In order to evaluate the effect of the model, SC-SIGAN, in this paper, is compared
with several common trajectory prediction methods, including the Kalman filter (KF)
algorithm [22], SLSTM algorithm, SGAN algorithm, and ASGAN algorithm [23].

3.3.1. Data Comparison and Analysis

Table 1 shows the prediction results of the above methods on the public dataset when
tobs = 8 and tpred = 12, and the error measure is len12. In the table, ETH (E) indicates the
off-campus scene, Hotel (H) indicates the hotel scene, Univ (U) indicates the campus scene, and
Z1 and Z2 indicate the shopping scene..

As can be seen from Table 1, minimum error values are indicated in bold, the ADE
and FDE of the SC-SIGAN model in this paper are the best on all datasets, except for the
NKF method used on the Hotel dataset. This is because the scene in the Hotel dataset
is not crowded, pedestrians generally have no interaction, and people usually keep the
same rhythm as their previous movements. This is more consistent with the regularity of
pedestrian movement.
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Table 1. Open dataset testing.

Indices Model/Dataset E H U Z1 Z2 Average

ADE

KF 1.01 0.47 0.87 1.06 1.15 0.91
NKF 0.91 0.39 0.58 0.75 0.53 0.63

SLSTM 1.09 0.79 0.67 0.47 0.56 0.72
SGAN 0.71 0.48 0.56 0.39 0.42 0.51

ASGAN 0.69 0.49 0.52 0.45 0.39 0.45
OURS 0.55 0.42 0.33 0.31 0.32 0.38

FDE

KF 2.14 0.67 1.8 2.18 2.14 1.79
NKF 1.87 0.62 1.23 0.92 1.02 1.13

SLSTM 2.35 1.76 1.4 1 1.17 1.54
SGAN 1.3 1.02 1.18 0.68 0.65 0.96

ASGAN 1.24 0.92 1.06 0.73 0.69 0.92
OURS 1.04 0.93 0.82 0.55 0.62 0.79

In other datasets, SC-SIGAN showed a 25.4% decrease in average ADE and a 17.7%
decrease in average FDE compared to pre-modified SGAN. The ADE index reflects the
prediction errors at different moments in the prediction process. The fusion of pedestrian
motion features in the method proposed in this paper is based on each moment. The decline
in ADE indicates that the method effectively reduces the prediction errors at different time
points, making the pedestrian trajectory features obtained more effective and improving
the prediction accuracy. The Table 1 test comparison curve is shown in Figure 8.

(a)

(b)

Figure 8. Open dataset test metrics comparison curve. (a) ADE indices. (b) FDE indices.
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The proposed algorithm is compared with other algorithms to predict the speed on
the same server, and the 12-step prediction time of a single pedestrian is shown in Table 2.

Table 2. The 12-step prediction time for a single pedestrian.

Indices KF NKF SLSTM SGAN ASGAN OURS

Average forecast time/ms 1.69 9.81 403.31 42.52 44.62 47.2
Acceleration effect ×1 ×6 ×238 ×25 ×26 ×28

In Table 2, based on the KF algorithm, the acceleration effect of the SGAN algorithm is
about 25 times, and the acceleration effect of the SC-SIGAN algorithm improved by SGAN
in this paper is about 28 times that of KF, so it can be seen that the overall accuracy of this
algorithm is improved without spending too much time.

3.3.2. Visual Comparison and Analysis

Different scenes were captured in the above public dataset, and SGAN and SC-SIGAN
in this paper were, respectively, used to test the visualization effect with the results shown
in Figure 9.

(a) (b)

Figure 9. Algorithm visual comparison. (a) SGAN. (b) Our model.
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In Figure 9, the red dotted line is the actual trajectory, and the green, blue, and red
three-color light bar is the predicted path. It can be seen that the path predicted by the
improved algorithm is significantly more accurate.

3.4. Experimental Results and Analysis of Self-Built Dataset
3.4.1. Dataset Information

In the traffic scene simulation platform built by CARLA, set the “controlled target”
and the destination with practical significance, and then control the movement of the target,
so that the target moves to the specified destination in a “natural” way. The use of 10.4 s to
represent the future in the simulation is more conducive to the evaluation of the model for
long-term predictions. Figure 10 shows the visualization effect of trajectory prediction in
the self-built dataset. In the figure, the yellow dots are the trajectory used for observation,
and the green dots are the future real trajectory used to compare the prediction effect.

Figure 10. Visualization effect of trajectory prediction of self-built dataset.

Finally, the trajectory data files were made, and a total of 750 data files were formed,
of which 230 belonged to sparse traffic scenes with only target pedestrians and a static
environment, and 520 belonged to dense traffic scenes with pedestrians gathering.

3.4.2. Experimental Results and Analysis

The proposed method and the above methods were tested and evaluated on the
datasets VIRAT/ActEV [29] and ETH and UCY, respectively. The first two datasets are
generally used for single-person trajectory prediction in crowded scenarios, while the last
two datasets are generally used for multi-person trajectory prediction. Test ADE and FDE
metrics as shown in Figure 11.

As shown in Figure 11, the accuracy of the proposed model is superior to other
methods on all datasets except the Parking lot because the Parking lot dataset is the dataset
of the single scene. Compared with SGAN before improvement, the average ADE and FDE
of the proposed method decreased by 26.4% and 23.8%, respectively.

Four typical scenes were selected from the six simulation scenes, and the main view
diagram of the scene was used as a visual display of the trajectory prediction effect, as
shown in Figure 12.

Figure 12a shows that in the single-person scenario, SGAN cannot distinguish the
influence of static obstacles, resulting in the possibility of collision with obstacles in other
parts except for the smooth passage of some predicted results. In the multi-person scenario,
the prediction of avoiding other pedestrians is made as much as possible, but the problem
of collision with static obstacles still exists, and the multiple possibilities of trajectory are
not obvious because the impact of hidden code in the network is small.

Figure 12b shows that the model in this paper has a good effect on both the avoidance
of static obstacles in a single scene and the processing of interactive information between
pedestrians in a multi-person scene.
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(a)

(b)

Figure 11. Histogram of test results of five algorithms. (a) ADE indices. (b) FDE indices.

(a) (b)

Figure 12. Visualization of trajectory prediction results. (a) SGAN. (b) Our model.
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4. Conclusions

To solve the problem that the generative adversarial network prediction model lacks
an understanding of pedestrian interaction problems and scene constraints, this paper
improves the original generative adversarial network trajectory prediction model by in-
troducing a new social pool and adding a scene edge extraction module inspired by the
attention mechanism. Thus, the improved model SC-SIGAN not only considers the position
between the adjacent pedestrian and the target pedestrian in the scene, but also considers the
speed information of the pedestrian, and makes the final output path of the entire model within
the passable area in line with the physical scene. Experiments show that this method improves
the accuracy of trajectory prediction to some extent on common datasets. In this paper, the
CARLA simulation platform is also used to annotate the self-built dataset to test the effect of the
proposed method and other existing methods. The SC-SIGAN algorithm achieved excellent
results in maintaining multi-mode and accuracy. Finally, in pedestrian movement prediction,
the most important thing is to use these models in the application, so there is still room for
improvement for the practical application of the model in this paper. This paper is based on
the information collected by vehicle-mounted cameras, but there will be some errors in the
capture of environmental information by visual sensors. In the future, we can combine the
information collected by lidar sensors to model pedestrian trajectory prediction. In addition,
the method proposed in this paper is suitable for unmanned vehicles to judge the behavior of
pedestrians around them, but there are often car-to-car interaction problems in actual scenes, so
in future research, different types of targets need to be predicted at the same time to adapt to
more realistic traffic scenes.
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