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Abstract: Traffic forecasting’s key challenge is to extract dynamic spatial-temporal features within
intricate traffic systems. This paper introduces a novel framework for traffic prediction, named
Local-Global Spatial-Temporal Graph Convolutional Network (LGSTGCN). The framework consists
of three core components. Firstly, a graph attention residual network layer is proposed to capture
global spatial dependencies by evaluating traffic mode correlations between different nodes. The
context information added in the residual connection can improve the generalization ability of the
model. Secondly, a T-GCN module, combining a Graph Convolution Network (GCN) with a Gated
Recurrent Unit (GRU), is introduced to capture real-time local spatial-temporal dependencies. Finally,
a transformer layer is designed to extract long-term temporal dependence and to identify the sequence
characteristics of traffic data through positional encoding. Experiments conducted on four real traffic
datasets validate the forecasting performance of the LGSTGCN model. The results demonstrate that
LGSTGCN can achieve good performance and be applicable to traffic forecasting tasks.

Keywords: traffic forecasting; spatial-temporal features; graph attention residual network; trans-
former

1. Introduction

The increase in the number of vehicles and changes in travel patterns have imposed
great pressure on urban road capacity. Intelligent Transportation Systems (ITSs) [1] present
a solution to enhance transportation operational efficiency while preserving environmental
resources. An integral component of ITSs is traffic forecasting, which utilizes historical data
to predict future traffic flow [2]. Accurate traffic prediction not only serves as a decision-
making foundation for travel planning [3] but also contributes to enhancing the efficiency
of city road traffic [4].

In early days, traffic flow prediction relied on methods based on statistics [5] and
machine learning [6,7]. However, their predictive performances were suboptimal due to
the intricate nonlinearity of traffic data and spatial-temporal dependencies. Deep learn-
ing techniques [8–10] have emerged as effective solutions to address these challenges,
showcasing significant success in diverse domains, such as target detection [11] and ma-
chine translation [12]. Presently, deep learning approaches are progressively displacing
conventional traffic flow forecasting methods [13,14].

Traffic forecasting is primarily influenced by the interplay of traffic flow across time
and space. Temporally, historical flow exerts a significant impact on current traffic patterns.
Meanwhile, in spatial terms, the interactions among road nodes contribute to fluctuations
in traffic flow. Various spatial-temporal prediction models [15,16] have emerged to extract
traffic features by considering the inherent dependency in both temporal and spatial
embeddings. Effectively capturing the spatial-temporal correlations during the evolution
of traffic patterns is a critical factor for obtaining accurate prediction results.
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Recently, the utilization of Graph Neural Networks (GNNs) has gained prominence
for capturing spatial features within traffic systems, particularly in the interaction among
road sensors, owing to its exceptional performance on graph structures. Additionally,
the extraction of traffic spatial-temporal dependencies [17,18] has been enhanced by in-
tegrating Convolutional Neural Networks (CNNs) [19,20], Recurrent Neural Networks
(RNNs) [21,22], and an attention mechanism [23,24]. Notable examples include the Dif-
fusion Convolutional Recurrent Neural Network (DCRNN) [25] and Temporal Graph
Convolutional Network (T-GCN) [26], which leverage graph convolutional techniques
and the Gated Recurrent Unit (GRU) [27] to extract spatial-temporal dependencies. Al-
though these methods have been proven effective in traffic prediction, three significant
challenges remain to be addressed.

Firstly, traffic patterns between roads in the transportation network are interrelated,
and two regions far away from each other in the city will also have related traffic pat-
terns [28,29]. For example, during peak commuting hours, people often travel between
residential and commercial areas. These two areas are usually not adjacent to each other,
but traffic changes between the two areas are closely related. However, most traffic fore-
casting approaches only focus on the neighborhood information, ignoring the global
cross-regional spatial dependence, and fail to completely extract spatial features. Thus, it is
necessary to enhance global spatial relationship modeling.

Secondly, when an emergent event (e.g., a car accident) occurs at a road node, the traffic
patterns on adjacent roads may change rapidly in a short period of time. This indicates
that the neighborhood information shows stronger real-time dependency compared with
the distant regions. Moreover, traffic conditions at two locations that are far apart should
not affect each other within a short period of time. Thus, it is essential to extract real-
time neighborhood information for the global region. However, a lot of traffic prediction
approaches only consider the static spatial relationships between roads and ignore the
dynamic influence between neighbors [30]. As shown in Figure 1a, the accident at the
central road node makes the adjacent road nodes 1 and 2 impassable, but the vehicles at
nodes 3 and 4 still pass normally. This indicates that traffic flow should be dynamically
influenced by the spatial relationships between roads. It is not enough to capture spatial
features only based on the static distance between roads.
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Figure 1. Impact of changes in traffic and flow. (a) Different traffic modes on adjacent roads in case of
accident. (b) Long-term correlation of traffic flow on roads.

Thirdly, GRU and Long Short-Term Memory (LSTM) [31] have been widely adopted
in various spatial-temporal sequence modeling. However, in those models, a fixed long
recurrent structure leads to extremely long input and output components. The long-term
temporal dependence cannot be extracted effectively due to gradient vanishing [21,30].
As shown in Figure 1b, the flow values at the timestamp t-m and t-2, pointed out by
the yellow curve, and the timestamps t-m+1 and t-1, pointed out by the red curve, have
similar distributions. Although they are far apart, there may be hidden correlations in
them. Therefore, the global temporal dependence of traffic data is also important in
traffic forecasting.
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This paper introduces a novel traffic forecasting framework based on Local-Global
Spatial-Temporal Graph Convolution Network (LGSTGCN). The LGSTGCN framework
encompasses three key components: a Graph Attention Residual Network layer, a T-GCN
module, and a Transformer layer. These components are designed to capture the spatial
dependence of global regions, local spatial-temporal characteristics, and global temporal
dependence, respectively.

The primary contributions of this article can be summarized as follows:

• A graph attention residual network layer is proposed for capturing global spatial
dependencies, and richer information about the spatial semantics of different channels
can be learned through residual connections.

• A module based on T-GCN is added for extracting real-time spatial-temporal de-
pendence. The graph convolution of the module can learn the dynamic influence of
neighboring roads in the current time step.

• A transformer layer is presented for extracting the global temporal dependence of
the traffic flow data. The positional encoding scheme used in the layer enables
the included self-attention mechanism to identify the position characteristics of the
traffic sequence.

• Experiments of different baseline methods, different hyperparameter settings, and ab-
lation study of model modules are conducted. The experimental results show the
accuracy and validation of the proposed model.

The remaining sections of this article are structured as follows: In Section 2, we con-
duct a review of the existing literature pertaining to traffic prediction. Section 3 provides a
definition of the traffic forecasting problem. Section 4 details the presentation of the LGST-
GCN model. In Section 5, the experimental comparison between the baseline approach and
the LGSTGCN model is analyzed. In Section 6, the conclusion is drawn and future research
is discussed.

2. Related Work
2.1. Traditional Approaches

At the outset of traffic forecasting, it was initially approached as a regression statistics
issue. Early classical statistical methods like the Autoregressive Integrated Moving Average
(ARIMA) [5] model and Historical Average (HA) [32] model were utilized. However,
these statistically based approaches, which rely on the assumption of stationarity, fail to
adequately capture the highly nonlinear nature of traffic data.

Consequently, machine learning approaches such as the K-Nearest Neighbors (KNN) [6]
algorithm and Support Vector Regression (SVR) [7] algorithm have been employed for
traffic forecasting. These approaches proved to be more efficient; however, they relied
heavily on manually designed features. Nonetheless, traditional methods generally fail to
capture the complex spatial-temporal characteristics of traffic systems.

2.2. Deep Learning Approaches

Deep learning methods, particularly those leveraging techniques such as Recurrent
Neural Networks (RNNs) and its variants like GRU, have shown excellent performance in
traffic prediction. This is attributed to their adaptive learning capabilities concerning the
temporal and spatial features of traffic data. To address the intricate temporal aspects of
traffic patterns, RNNs and its variants like GRU are favored for their superior sequence
information processing. For example, Ma et al. [33] introduced an LSTM-based prediction
method, effectively capturing traffic sequence correlations. Fu et al. [31] utilized both
LSTM and GRU to forecast traffic flow. In addition to RNN-based approaches, certain
CNN methods have found application in traffic forecasting. Zhang et al. [13] employed
LSTM and CNN to capture spatial-temporal characteristics for traffic prediction. Another
approach by Zhang et al. [34] transformed the traffic network into an image grid, extracting
spatial correlation through residual convolution cells. It is worth noting, however, that
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CNNs are more suitable for two-dimensional grid spaces, whereas real road networks
exhibit irregular topologies.

GNNs have garnered increasing attention in the context of traffic prediction. Zhao et al. [26]
introduced a T-GCN model, combining GRU and GCN to extract both temporal and spatial
features of traffic data. Li et al. [25] proposed a DCRNN model, which incorporated
diffusion on a directed graph to simulate traffic flow. Wang et al. [35] utilized bidirectional
graph message passing to capture fine-grained positional spatial interactions, employing
cyclic aggregation for real-time fusion of spatial-temporal embeddings. Cui et al. [36]
defined graph convolutional operators based on traffic network topology, integrating
LSTM for spatial-temporal traffic prediction. Liu et al. [37] constructed a physical graph
directly based on realistic road topology and built a similarity graph and correlation
graph using virtual topology. All the complementary graphs are merged into the graph
convolution gated recurrent unit for spatial-temporal representation learning. However,
these GNN-based methods usually focus on local spatial information and ignore the global
spatial dependency while extracting spatial features, which leads to missing the hidden
cross-region spatial correlation features.

To address this limitation, certain studies have shifted their focus towards enhanc-
ing the representation of spatial features from local to global perspectives. For instance,
Zhang et al. [29] devised a multi-scale network that integrated a graph attention network
with a graph diffusion mechanism based on convolution, effectively preserving both local
and global dependencies of spatial features. Zhao et al. [38] introduced a model that
used adaptive correlation and spatial attention to capture local spatial dependencies and
global spatial dependencies, respectively. For temporal dependencies, bidirectional gated
recurrent layers and temporal attention mechanisms were utilized. Another approach by
Zhang et al. [39] involved capturing spatial features from local and global perspectives
using attention graph neural networks and convolutional networks. However, these meth-
ods overlooked the contextual features of global spatial dependencies, limiting the model’s
generalization ability.

2.3. Attention Mechanism

The attention mechanism, recognized for its ability to assess the significance of traffic
flow data and adjust information distribution, has proven effective in aggregating data
information across various research domains, including person re-identification [40] and
action recognition [41]. Recently, attention mechanisms have gained widespread use in traf-
fic prediction. For instance, Bai et al. [42] introduced the A3T-GCN model, combining GCN
and GRU to capture dynamic spatial-temporal correlations. The model incorporated an
attention mechanism to capture long-term temporal dependence. Ye et al. [43] developed
a meta graph transformer structure for traffic forecasting by embedding meta-learning
into three self-attention mechanisms. Additionally, Xu et al. [44] extracted directed spatial
dependency using a self-attention mechanism and used a transformer framework to cap-
ture long-term bidirectional temporal dependencies. However, relying solely on a single
attention mechanism neglects the sequential features of traffic flow. Moreover, a model
exclusively based on the transformer architecture may struggle to effectively capture local
information, thereby limiting the model’s overall learning ability.

Based on the analysis and discussions of the current research, the primary challenges
in traffic forecasting involve effectively modeling global spatial dependence and capturing
local-to-global temporal dependence while preserving the sequential position information
of traffic data. Aiming at these challenges, this paper introduces a new traffic prediction
framework based on the Local-Global Spatial-Temporal Graph Convolutional Network
(LGSTGCN). In the temporal dimension, a combination of GRU and transformer architec-
tures is employed to extract local-to-global temporal dependence. In the spatial dimension,
a graph attention residual network layer is specifically designed to capture global spatial
dependence, incorporating context information. Additionally, graph convolution is utilized
to further extract dynamic local spatial dependence. This comprehensive framework aims
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to tackle the identified challenges in traffic forecasting by integrating both global and local
spatial-temporal dependencies.

3. Problem Definition

Define the real traffic road topology as graph G = (V, δ, A), where V is the collection
of road nodes and |V| = N, δ is the set of edges corresponding to the connections between
nodes. A ∈ RN×N is the adjacency matrix of the graph. Any elements aij in A denote the
connectivity between nodes vi and vj (aij= 1 means vi and vj are connected, aij = 0 means
vi and vj are not connected). The traffic flow of the nodes in the graph G is represented
as a feature matrix X ∈ RN×F, where F denotes the length of the traffic flow sequence on
the road.

Traffic forecasting aims to forecast future traffic sequences (Xt+1, Xt+2, . . ., Xt+T) by using
the road topology graph G and the historical traffic flow sequences (Xt−m, Xt−m+1, . . ., Xt),
where M is the length of the historical traffic flow sequence and T denotes the length of the
future sequence to be predicted.

The mapping function f from the historical series to the predicted series can be
formulated as Equation (1):

f ((Xt−m−1, Xt−m, . . ., Xt−1), G) → (Xt, Xt+1, . . ., Xt+T) (1)

4. Methodology

A traffic forecasting model based on the Local-Global Spatial-Temporal Graph Convo-
lutional Network (LGSTGCN) is presented to capture the spatial-temporal dependence of
traffic flow data from local to global. The general architecture of the LGSTGCN model is
shown in Figure 2. The LGSTGCN model consists of the following three parts.

Graph Attention Residual Network

T-GCN Call

...

...T-GCN Call T-GCN Call

Transformer Layer

( )1, ,...,t m t m tX X X− − +

( )1 2, ,...,t t t TX X X+ + +

t mY − 1t mY − + tY

Figure 2. The architecture of LGSTGCN.

Global spatial dependency modeling. The graph attention residual network layer is
designed to capture global spatial dependencies by calculating feature correlations be-
tween different nodes. Furthermore, the inclusion of spatial context information through
residual connections is implemented to enhance the generalization capability of the LGST-
GCN model.

Real-time local spatial-temporal dependency modeling. In the graph attention residual
network layer, because the features of neighboring nodes can be updated according to their
correlations with the central node, the graph convolution pays more attention to those
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neighborhood nodes with stronger correlations when aggregating neighborhood informa-
tion. In addition, combining with GRU, the real-time local spatial-temporal dependence in
the current time step can be extracted.

Global temporal dependency modeling. The transformer layer is designed to capture the
global temporal dependence of a traffic sequence. Different attention levels are designated
to different positions in the traffic sequence in parallel through positional encoding.

4.1. Global Spatial Dependency Modeling

A graph attention residual network layer is introduced to extract the global spatial
dependence of nodes’ cross-regions in a traffic system, as illustrated in Figure 3. The feature
matrix X ∈ RN×F is the input of the layer.
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Figure 3. The graph attention residual network layer capturing global spatial dependence.

To obtain sufficient spatial feature representation, the feature vector xv
N ∈ Rm of each

node is mapped to a higher-level feature space x̂v
N by a linear transformation, as shown in

Equation (2):
x̂v

N = xv
NWv (2)

where Wv ∈ Rm×m denotes the linear transformation weight matrix.
The graph attention mechanism assesses the pairwise correlation between every two

nodes in the traffic topology graph [45]. Define ϕi,j as the correlation coefficient between
nodes vi and vj. ϕi,j can be expressed as Equation (3):

ϕi,j = LeakyReLU
(

ηT
[

x̂v
i ∥ x̂v

j

])
(3)

where ∥ is the feature vector concatenation, ηT ∈ R2m is the weight vector, and LeakyReLU
is the activation function.

Define ∂i,j as the attention weight between nodes vi and vj, and it can be denoted as
Equation (4):

∂i,j = so f tmax
(
ϕi,j

)
=

exp
(
ϕi,j

)
∑

(i,j)∈N(i,j)
exp

(
ϕi,j

) (4)

where so f tmax is the activation function. Equation (4) means that the attention weight of
two nodes is associated with the correlation coefficient between them.

The attention is embedded in a multi-headed way to enrich the representation of
spatial features of the model. The node feature matrix X̂ containing the global spatial
dependency is defined as Equation (5):

X̂ =∥Head
head=1 ReLU

 ∑
(i,j)∈N(i,j)

∂i,j x̂v
i

 (5)
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where Head is the number of attention heads and ∥ represents the concatenation of the
feature matrices of the different headspaces. ReLU denotes the activation function. In
Equation (5), the feature vector of node vi is first multiplied with the attention weight ∂i,j
in each subspace, and then the feature fitting is performed by using the ReLU activation
function. Finally, the feature matrix X̂ that contains the global spatial dependency is
obtained by embedding the feature representations of multiple subspaces jointly.

In order to enhance the generalization ability of the spatial features of the model,
the residual connection is used to add spatial context information to the model. Define Y as
the feature matrix containing global spatial context information, as shown in Equation (6):

Y = X̂ + X, Y ∈ RN×F (6)

4.2. Real-Time Local Spatial-Temporal Dependency Modeling

The framework of T-GCN [26] is shown in Figure 4 The T-GCN module is designed to
extract real-time spatial-temporal dependence of local traffic. The GCN is embedded into
a linear representation of the input and hidden state of the GRU to capture local spatial-
temporal dependence in the current time step. Before graph convolution, the neighborhood
nodes with greater correlation are updated by the graph attention residual network layer,
which allows the graph convolution to learn neighborhood feature information dynamically
instead of static features.

GC
GRU GRU GRU...

GC GC GC

1t mh − + 1th −

1tH− tH

( )1, ,...,t m t m tH H H− − +

t mY− 1tY − tY

th

t mH−

Figure 4. The framework of the T-GCN module.

4.2.1. Local Spatial Dependency

The first-order neighborhood features of aggregated nodes in the GCN layer are used
to capture local spatial dependency. GC(�) is the graph convolution operation, as shown in
Equation (7):

GC(X) = σ
(

AlapXWgc

)
(7)

where Wgc is the learnable matrix and σ is the sigmoid activation function. The characteristic
normalization of the Laplace matrix Alap is shown in Equation (8):

Alap = D− 1
2 (A + IN)D− 1

2 (8)

where IN is the identity matrix and D is the degree matrix of A + IN .

4.2.2. Local Temporal Dependency

For capturing the real-time local temporal dependence, the sequence information is
extracted in short time steps using the GRU. The GRU captures the temporal information
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by keeping the hidden state through the gating mechanism. The linear transformation of
the GRU is replaced by graph convolution. Define ut, rt, and ct as the reset gate, update
gate, and candidate hidden state of the lth time step, respectively, which are calculated by
Equations (9)–(11):

ut = σ(GC(Yt, Ht−1) + bu) (9)

rt = σ(GC(Yt, Ht−1) + br) (10)

ct = tanh(GC(Yt, rt ∗ Ht−1) + bc) (11)

where bu, br, bc are the biases and tanh is the activation function. The hidden state Ht−1
of the previous time step t − 1 and the input Yt are connected as the input of the graph
convolution operation.

Denote ht as the hidden state of the GRU at the current time step t, and it is computed
by Equation (12):

ht = ut ∗ ht−1 + (1 − ut) ∗ ct (12)

The ultimate output of this module is a spatial-temporal feature vector (Ht−m, Ht−m+1,
. . ., Ht) containing nodes.

4.3. Global Temporal Dependency Modeling

The GRU can capture local temporal information sequentially based on the recurrent
structure. However, the GRU cannot capture long-term dependency well due to its long
path between input and output components [46]. Actually, traffic temporal dependence
may be correlated not only sequentially in a short period of time [30] but also over a
long time interval. Therefore, a transformer layer is proposed to capture global temporal
dependency. The transformer layer focuses on all time positions based on the attention ap-
proach. This global attention approach has strong modeling capabilities for long sequences,
thereby effectively learning long-term temporal dependencies. In addition, the multi-head
attention mechanism enables the model to focus on several different subspaces and learn
different feature information. The output (Ht−m, Ht−m+1, . . ., Ht) of the T-GCN is denoted
as the spatial-temporal feature matrix H ∈ RN×F, which is taken as the input of the
transformer layer. As illustrated in Figure 5, the transformer layer contains a multi-head
self-attention sublayer, two normalization sublayers, a feed-forward neural sublayer, and a
prediction sublayer.

4.3.1. Positional Encoding

Parallelization of attention may lead to the neglect of the relative position of sequence
information. A thermal encoding time position information is embedded into the input.

Define ηpo(i) as the positional encoding matrix of the H ∈ RN×F for each position i,
as shown in Equation (13):

ηpo(i) =

sin
(

po/10, 000i/dmodel
)

, if i is even,

cos
(

po/10, 000(i−1)/dmodel
)

, if i is odd.
(13)

where sin and cos are the trigonometric functions, po is the node location, dmodel is the
feature size of the transformer layer, and i is the position of the node feature vector element.
Define Hp as the spatial-temporal feature matrix containing the thermal code, as illustrated
in Equation (14):

Hp = H + ηpo(i) (14)

Hp contains the position information of the traffic flow sequence, which makes the
attention no longer treat the position of each sequence equally.
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4.3.2. Multi-Head Self-Attention Mechanism

The scaled dot-product attention is adopted in the multi-head self-attention layer.
In order to improve the model learning ability, the spatial-temporal feature matrix Hp

containing positional encoding is mapped into three new feature spaces, which are denoted
as queries (Q), keys (K), and values (V), respectively. They are illustrated in Equation (15):

Q = HpWq, K = HpWk, V = HpWv (15)

where Wq ∈ Rdmodel×dk , Wk ∈ Rdmodel×dk , and Wv ∈ Rdmodel×dk are the matrices to be learned.
The self-attention score Attention(�) is defined as Equation (16):

Attention(Q, K, V) = So f tmax
(

QKT
√

dk

)
V (16)

where dk = d mod el/Head is the training gradient stability factor.

t mH− 1tH− tH

...

Positional 

Encoding
Positional 

Encoding

Multi-Head 

Self-Attention

Residual Connection & Layer Norm

Feed Forward

Residual Connection & Layer Norm

Prediction Layer

( )1 2, ,...,t t t TX X X+ + +

Positional 

Encoding

Figure 5. The transformer layer capturing global temporal dependence.

The temporal information is captured from different subspaces using the multi-head
attention mechanism, and the ultimate output is a linear aggregation of each subspace.
Define Hp

h as the spatial-temporal feature matrix containing global temporal dependencies.
Hp

h is obtained by concatenating the feature matrix of all heads, as shown in Equation (17):

Hp
h = MultiHead(Q, K, V) =∥Head

head=1 (Attention(Q, K, V)) (17)

4.3.3. Normalization Layer and Feed Forward Network Layer

Layer normalization is further adopted to stabilize the training of the neural network,
and the residual connection is used to interact the characteristics of the lower layer with the
higher layer neural network [39]. To improve the nonlinear modeling ability of the model,
the features after interaction are taken as the input into the feed forward layer. Define Xp

h
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and X̃p
h as the outputs of the layer normalization and feed forward layer, respectively. Xp

h
and X̃p

h are obtained by Equations (18) and (19):

Xp
h = LayerNorm

(
Hp

h + Hp
)

(18)

X̃p
h = W2ReLU

(
W1Xp

h + b1

)
+ b2 (19)

where LayerNorm is the layer normalization operation. W1, W2 are the learnable matrices,
b1, b2 are the biases.

The structure of the transformer layer is shown in Figure 5. To improve the learning
capability of the model, there are two normalization sublayers and one feed forward neural
sublayer in this layer.

A fully connected layer is employed as the output layer to generate the final prediction
result. Define Ỹp

h as the final output of the model, and it can be calculated by Equation (20):

Ỹp
h = WyX̃p

h + by (20)

where Wy , by are the parameter matrix and the bias, respectively. The transformer layer
focuses on different positional locations in the time series in parallel through the attention
mechanism so that the global temporal dependency can be captured.

The aim of the model is to minimize the traffic prediction error. The loss function L is
defined as Equation (21):

L =
1
2∑ (y − ỹ)

2
+ λ∥W∥ (21)

where y and ỹ represent truth traffic flow and predicted value, respectively. λ represents
the vector of penalty terms. W is the weight parameter matrix.

5. Experiments
5.1. Datasets

The four real-world datasets Los-loop, SZ-taxi, METR-LA, and PEMS-BAY are used
in this paper to assess the prediction performance of the LGSTGCN model. Since these
four datasets have been widely used in traffic flow prediction, the fairness of the data
can be guaranteed. All data are detected by real road sensors to ensure that the data are
representative of and characterized by the speed of vehicles on the traffic roads. The feature
matrices and adjacency matrices are also included in the datasets. The brief descriptions of
the four datasets are as follows:

Los-loop. This dataset comprises highway traffic flow from Los Angeles County.
The temporal scope spans from 1 March to 7 March 2012 with traffic flow recorded at
5 min intervals. There are 207 road sensors in total. The adjacency matrix is obtained based
on the distance between the road sensors.

SZ-taxi. This dataset was collected from Luohu District, Shenzhen, encompassing
information from 156 major roads. The traffic vehicle speed is recorded at a 15 min time
interval, covering the month from 1 January to 31 January 2015.

METR-LA. This dataset includes traffic information collected at five-minute intervals
from 207 loop detectors on Los Angeles highways. The time spans of data are from 1 March
to 30 June 2012.

PEMS-BAY. This dataset is sourced from the California Transportation Agencies Per-
formance Measurement System and comprises traffic information collected at five-minute
intervals with 325 sensors in the Bay Area. The data used for the experiments are from
1 January 2017 to 31 May 2017.

The details of the four datasets are listed in Table 1.
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Table 1. Traffic datasets.

Datasets Detectors Steps Time Range

Los-loop 207 2016 3/1/2012–3/7/2012
SZ-taxi 156 2976 1/1/2015–1/31/2015

METR-LA 207 34,272 3/1/2012–6/30/2012
PEMS-BAY 325 52,116 1/1/2017–5/31/2017

5.2. Baseline Methods and Evaluation Metrics

For the datasets Los-loop and SZ-taxi, we select traditional methods (HA [32] and
ARIMA [47]), a machine learning approach (SVR [48]), and deep learning approaches
(GRU [27], T-GCN [26], A3T-GCN [42], DCRNN [25]) as the baseline methods.

Several models based on deep learning, including STGCN [19], SLCNN [49], DCRNN [25],
Graph WaveNet [50], MRA-BGCN [51], GMAN [52], STGRAT [53], FC-GAGA [54], TSE-
SC [55], STGNN [30], and STFGNN [56], are tested on the datasets METR-LA and PEMS-
BAY to further verify the performance of the LGSTGCN model.

Six metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
Accuracy (Acc), Coefficient of Determination (R2), Explained Variance Score (Var), and
Mean Absolute Percentage Error (MAPE) are used to assess the prediction performance of
each method. The definitions of these metrics are provided below in Equations (22)–(27):

RMSE(y, ỹ) =

√√√√ 1
Npv

Npv

∑
i=1

(yi − ỹi) (22)

MAE(y, ỹ) =
1

Npv

Npv

∑
i=1

|yi − ỹi| (23)

Acc(y, ỹ) = 1 − ∥y − ỹ∥F
∥y∥F

(24)

R2(y, ỹ) = 1 − ∑i=1 (yi − ỹi)
2

∑i=1 (yi − y)2 (25)

Var(y, ỹ) = 1 − Var{y − ỹ}
Var{y} (26)

MAPE(y, ỹ) =
1

Npv

Npv

∑
i=1

∣∣∣∣yi − ỹi
yi

∣∣∣∣ × 100% (27)

where Npv is the number of predicted value. For RMSE, MAE, and MAPE that evaluate
the prediction errors of the model, smaller values indicate better performance. Acc and
R2 represent precision and the fitting degree between the predicted value and truth value,
respectively. Var is used to measure the extent to which the model interprets fluctuations
in the dataset. In these three metrics, higher values mean better forecasting performance.

5.3. Experimental Settings

In the experiments, the four datasets are partitioned into training set and test set with
the ratio of 0.8:0.2. The LGSTGCN model is implemented in the Pytorch framework with
an NVIDIA 1050 GPU. The task is to predict traffic speeds for the next 15, 30, and 60 min.
The experimental settings of the LGSTGCN model are outlined as follows:

The training epoch is 3000, the learning rate is set to 0.001, and the number of attention
heads is 4. For the Los-loop dataset, the batch size is set to 64, the number of hidden units
is set to 64, and the feature size of the transformer layer is 32. For the SZ-taxi dataset,
the above three hyperparameters are set to 64, 96, and 96, respectively. The METR-LA and
PEMS-BAY datasets share the same three hyperparameters: 16 attention heads, 64 hidden
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units, and a transformer layer feature size of 32. The Adam optimizer is employed for
training the model, and an early stopping strategy is utilized.

5.4. Hyperparameters Analysis

Three key hyperparameters of the LGSTGCN model, including the number of hid-
den units, the feature size dmodel of the transformer layer, and the number of attention
heads Head, are tested on the Los-loop dataset and SZ-taxi dataset in order to analyze
their impact on the model prediction accuracy and obtain the optimal parameter settings.
Figures 6 and 7 show the prediction performance with different key hyperparameter set-
tings on the Los-loop dataset and SZ-taxi dataset. The horizontal axes represent the values
of three hyperparameters and the vertical axes represent the values metrics.

(a) (b)

(c) (d)

(e) (f)
Figure 6. Evaluation metric values with different hyperparameter settings on the Los-loop dataset.
(a) Impacts of different numbers of hidden units on RMSE, MAE, and MAPE. (b) Effects of different
numbers of hidden units on Accuracy, R2, and Var. (c) Influence of different feature sizes of the trans-
former layer on RMSE, MAE, and MAPE. (d) Influence of different feature sizes of the transformer
layer on Accuracy, R2, and Var. (e) Influence of different numbers of heads on RMSE, MAE, and
MAPE. (f) Influence of different numbers of heads on Accuracy, R2, and Var.
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(a) (b)

(c) (d)

(e) (f)
Figure 7. Evaluation metric values with different hyperparameter settings on the SZ-taxi dataset.
(a) Impacts of different numbers of hidden units on RMSE, MAE, and MAPE. (b) Effects of different
numbers of hidden units on Accuracy, R2, and Var. (c) Influence of different feature sizes of the trans-
former layer on RMSE, MAE, and MAPE. (d) Influence of different feature sizes of the transformer
layer on Accuracy, R2, and Var. (e) Influence of different numbers of heads on RMSE, MAE, and
MAPE. (f) Influence of different numbers of heads on Accuracy, R2, and Var.

• The number of hidden units. The number of hidden units in a GRU model is a crucial
hyperparameter influencing the model’s susceptibility to overfitting. An analysis
was conducted by varying the number of hidden units within the range of [8, 16,
32, 64, 96, 128, 160] to examine the impact on the model’s prediction performance.
Figures 6a,b and 7a,b show the variation of evaluation metrics with different numbers
of hidden units for the Los-loop and SZ-taxi datasets, respectively. It shows that the
model prediction performance achieves its best when the number of hidden units in
the two datasets is 64 or 96.

• The feature size dmodel of the transformer layer. The feature size dmodel of the trans-
former layer represents the feature dimensional information contained in the trans-
former layer. dmodel is set to the values in the range of [8, 16, 24, 32, 40, 64, 96] for the
Los-loop dataset and [32, 40, 64, 96, 128, 160, 200] for the SZ-taxi dataset, respectively,
to analyze the effects of transformer layers containing different numbers of feature
information on prediction performance. Figures 6c,d and 7c,d show the variation
of metrics with different feature sizes of the transformer layer on the two datasets,
respectively. It shows that the best prediction performance can be obtained with a
feature size of the transformer layer of 32 on the Los-loop dataset, and 96 on the
SZ-taxi dataset.

• The number of heads. The Head is also the number of subspaces in the multi-headed
attention. To analyze the effects of different numbers of heads on the model’s per-
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formance, it is set to 2, 4, 8, and 16. Figures 6e,f and 7e,f show the values of metrics
with different numbers of heads on the two datasets. It shows that the best number of
attention heads is four.

The forecasting capabilities of the LGSTGCN model are improved with the growing
values of key hyperparameters. However, too high values of the hyperparameters may
lead to overfitting of the model. The appropriate hyperparameter settings are crucial to
prediction performance, and the optimal hyperparameter values should be tested and
selected for different datasets.

5.5. Experimental Results

Tables 2 and 3 demonstrate the forecasting results of the LGSTGCN model and the
baseline models at 15, 30, and 60 min on the Los-loop and SZ-taxi datasets. HA and
ARIMA methods predict traffic flows based on the assumption of smooth series, which
limits their nonlinear modeling ability for traffic data. The machine learning method
SVR uses a linear kernel function to automatically learn statistical laws, which provides
better prediction performance compared to the traditional methods. For 15 min prediction,
the RMSEs of LGSTGCN are 52.14% and 63.81% lower than those of SVR on the Los-
loop and SZ-taxi datasets, while the MAE of LGSTGCN are 40.98% and 66.23% lower.
LGSTGCN can achieve the best performance because of the excellent generalizability and
feature extraction capability of the neural network. Deep learning approaches show better
prediction performance. However, comparing with GRU, LGSTGCN has lower RMSE and
higher accuracy in 15-min prediction for both datasets since LGSTGCN takes into account
not only temporal dependence but also spatial dependence of traffic roads. The GNN-based
deep learning models consider the spatial dependence of traffic roads and in turn achieve
better prediction performance. For example, T-GCN and DCRNN combine GNN with
RNN to extract the local spatial-temporal dependence. However, the LGSTGCN model
shows better performance than T-GCN and DCRNN, owing to its capacity of capturing
both global and local spatial-temporal dependency. Take the 30 min prediction results in
Tables 2 and 3 as an example, the RMSE and MAE of LGSTGCN have decreased by 31.36%,
50.92% on the Los-loop dataset, and 30.90%, 53.73% on the SZ-taxi dataset, comparing
with T-CCN. As for DCRNN, the RMSE and MAE of LGSTGCN have reduced by 34.12%
and 51.23%, 19.54% and 50.81% on the two datasets, respectively. Although the A3T-
GCN model uses the attention mechanism to adjust the importance of different time
steps to capture global time dependency, the attention mechanism treats all time points
equally and cannot identify the sequential characteristics of traffic flow data. As shown in
Tables 2 and 3, comparing with A3T-GCN, the RMSE and MAE of LGSTGCN in 60 min
prediction on the two datasets have reduced by 24.25%, 21.96% and 6.89%, 5.51%, while
the accuracy has improved by 3.41% and 1.83%, respectively. The experimental results of
LGSTGCN indicate that the spatial-temporal forecasting capabilities of the model can be
enhanced by capturing global spatial-temporal features.

Table 2. The prediction performance of different models on the Los-loop dataset.

Time Models Los-Loop

RMSE MAE Acc R2 Var MAPE

HA 7.3067 3.8782 0.8756 0.7225 0.7225 10.40%
ARIMA 10.0780 7.7013 0.8272 * * 21.24%

SVR 6.6993 3.5352 0.8860 0.7667 0.7736 10.93%
15 min GRU 5.1264 3.0194 0.9116 0.8208 0.8219 8.16%

T-GCN 5.1062 3.2169 0.9122 0.8229 0.8242 8.47%
A3T-GCN 5.0254 3.2110 0.9126 0.8232 0.8256 8.43%
DCRNN 5.1023 2.8447 0.9135 0.8596 0.8609 7.28%

LGSTGCN 3.2066 2.0864 0.9452 0.9146 0.9167 4.93%
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Table 2. Cont.

Time Models Los-Loop

RMSE MAE Acc R2 Var MAPE

HA 7.3067 3.8782 0.8756 0.7225 0.7225 10.40%
ARIMA 10.0793 7.7015 0.8272 * * 21.24%

SVR 7.4739 3.9188 0.8727 0.7107 0.7191 12.42%
30 min GRU 6.3616 3.7495 0.8891 0.7038 0.7107 10.41%

T-GCN 5.9534 3.8057 0.8961 0.7333 0.7350 10.58%
A3T-GCN 5.9472 3.6894 0.8974 0.7693 0.7713 10.26%
DCRNN 6.2034 3.2682 0.8948 0.7930 0.7959 9.03%

LGSTGCN 4.0867 2.6296 0.9300 0.8737 0.8752 6.51%

HA 7.3067 3.8782 0.8756 0.7225 0.7225 10.40%
ARIMA 10.0811 7.7031 0.8272 * * 21.26%

SVR 8.6882 4.5724 0.8519 0.6117 0.6246 15.03%
60 min GRU 7.8011 4.6775 0.8635 0.5940 0.6087 13.85%

T-GCN 6.9828 4.6541 0.8769 0.6143 0.6227 13.13%
A3T-GCN 6.9438 4.3689 0.8788 0.6546 0.6604 12.28%
DCRNN 7.5975 3.8723 0.8711 0.6903 0.6940 11.25%

LGSTGCN 5.2326 3.4093 0.9098 0.8171 0.8279 8.08%
* indicates that the value of the evaluation metric could not be calculated. The bold number indicates the optimal
value for the same evaluation metric.

Table 3. The prediction performance of different models on the SZ-taxi dataset.

Time Models SZ-Taxi

RMSE MAE Acc R2 Var MAPE

15 min HA 4.2341 2.7797 0.7049 0.8357 0.8357 *
ARIMA 6.8044 4.6800 0.3787 * * *

SVR 4.1638 2.7060 0.7098 0.8411 0.8420 *
GRU 4.1671 2.7757 0.7096 0.8402 0.8405 *

T-GCN 4.0862 2.7857 0.7151 0.8464 0.8468 *
A3T-GCN 4.0785 2.7545 0.7158 0.8469 0.8470 *
DCRNN 4.2325 3.0878 0.7053 0.8366 0.8409 *

LGSTGCN 1.5070 0.9137 0.8949 0.9789 0.9789 *

30 min HA 4.2341 2.7797 0.7049 0.8357 0.8357 *
ARIMA 6.8043 4.6797 0.3787 * * *

SVR 4.2097 2.7828 0.7066 0.8376 0.8393 *
GRU 4.1198 2.8359 0.7128 0.8439 0.8451 *

T-GCN 4.1059 2.7869 0.7137 0.8449 0.8455 *
A3T-GCN 4.0894 2.7654 0.7158 0.8461 0.8463 *
DCRNN 4.1324 2.6218 0.7122 0.8432 0.8432 *

LGSTGCN 2.0152 1.2896 0.8605 0.9630 0.9631 *

60 min HA 4.2341 2.7797 0.7049 0.8357 0.8357 *
ARIMA 6.7964 4.6757 0.3789 * * *

SVR 4.2738 2.8594 0.7020 0.8326 0.8351 *
GRU 4.1564 2.8675 0.7101 0.8408 0.8421 *

T-GCN 4.1207 2.7973 0.7126 0.8435 0.8446 *
A3T-GCN 4.1123 2.7180 0.7197 0.8443 0.8447 *
DCRNN 4.3953 3.2705 0.6939 0.8242 0.8321 *

LGSTGCN 3.8291 2.5682 0.7329 0.8649 0.8652 *
* indicates that the value of the evaluation metric could not be calculated. The bold number indicates the optimal
value for the same evaluation metric.

The MAPE values of all models on the SZ-taxi dataset are missing because the dataset
has many missing values of zero and some noise figures. However, comparison on other
evaluation metrics can be sufficient to analyze the performances of different models.
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Table 4 shows the results of the LGSTGCN model and the baseline methods on METR-
LA and PEMS-BAY datasets. STGCN can capture the traffic features by stacking multiple
layers of convolution, but it focuses on the features of neighboring roads and ignores the
global spatial dependence. GMAN captures global spatial-temporal correlation by using
a multi-head attention mechanism. However, the attention mechanism always focuses
on all time nodes and cannot capture important local spatial-temporal dependence. The
LGSTGCN model captures both local and global spatial-temporal dependence. Comparing
with STGCN and GMAN, the RMSE of LGSTGCN for 15 min prediction on the METR-
LA dataset is reduced by 42.68% and 39.96%, respectively. STFGNN can capture global
information due to the introduction of dilation convolution. However, since dilation
convolution has a certain dilation limit, it makes it that so the global information of two
regions that are far apart may still not be fully captured. LGSTGCN is able to capture
the global dependence more completely by computing the region correlation based on all
nodes. Compared to STFGNN, LGSTGCN reduces the RMSE of the 30 min prediction on
the PEMS-BAY dataset by about 28.8%.

Table 4. The prediction performance of different models on the METR-LA and PEMS-BAY datasets.

Time Models METR-LA PEMS-BAY

RMSE MAE MAPE RMSE MAE MAPE

STGCN 5.74 2.88 7.62% 2.96 1.36 2.90%
SLCNN 5.18 2.53 6.70% 2.90 1.44 3.00%
DCRNN 5.38 2.77 7.30% 2.95 1.38 2.90%

Graph WaveNet 5.15 2.69 6.90% 2.74 1.30 2.73%
MRA-BGCN 5.12 2.67 6.80% 2.72 1.29 2.90%

15 min GMAN 5.48 2.77 7.25% 2.82 1.34 2.81%
STGRAT 5.07 2.60 6.61% 2.71 1.29 2.67%

FC-GAGA 5.34 2.75 7.25% 2.86 1.36 2.87%
TSE-SC 4.73 2.43 6.57% 2.78 1.22 2.76%
STGNN 4.99 2.62 6.55% 2.43 1.17 2.34%

STFGNN 4.73 2.57 6.51% 2.33 1.16 2.41%
LGSTGCN 3.29 1.85 3.87% 1.52 1.04 1.90%

STGCN 7.24 3.47 9.57% 4.27 1.81 4.17%
SLCNN 6.15 2.88 8.01% 3.81 1.72 3.90%
DCRNN 6.45 3.15 8.80% 3.97 1.74 3.90%

Graph WaveNet 6.22 3.07 8.37% 3.70 1.63 3.67%
MRA-BGCN 6.17 3.06 8.30% 3.67 1.61 3.80%

30 min GMAN 6.34 3.07 8.35% 3.72 1.62 3.62%
STGRAT 6.21 3.01 8.15% 3.69 1.61 3.63%

FC-GAGA 6.30 3.10 8.57% 3.80 1.68 3.80%
TSE-SC 5.61 2.79 7.45% 3.61 1.59 3.43%
STGNN 5.88 2.98 7.77% 3.27 1.46 3.09%

STFGNN 5.46 2.83 7.46% 3.02 1.39 3.02%
LGSTGCN 4.69 2.55 7.33% 2.15 1.42 2.61%

STGCN 9.40 4.59 12.70% 5.69 2.49 5.79%
SLCNN 7.20 3.30 9.70% 4.53 2.03 4.80%
DCRNN 7.60 3.60 10.50% 4.74 2.07 4.90%

Graph WaveNet 7.37 3.53 10.01% 4.52 1.95 4.63%
MRA-BGCN 7.30 3.49 10.00% 4.46 1.91 4.60%

60 min GMAN 7.21 3.40 9.72% 4.32 1.86 4.31%
STGRAT 7.42 3.49 10.01% 4.54 1.95 4.64%

FC-GAGA 7.31 3.51 10.14% 4.52 1.97 4.67%
TSE-SC 6.68 3.28 9.08% 4.36 1.77 4.29%
STGNN 6.94 3.49 9.69% 4.20 1.83 4.15%

STFGNN 6.40 3.18 8.81% 3.74 1.66 3.77%
LGSTGCN 7.26 4.31 10.89% 4.43 2.56 4.98%

The bold number indicates the optimal value for the same evaluation metric.
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The forecasting capabilities of LGSTGCN has excellent performance in shorter-term
predictions compared with traffic spatial-temporal prediction models in recent years (except
for one MAE metric in the 30 min prediction of the PEMS-BAY dataset, which is slightly
larger), such as in the 15 min prediction of the METR-LA dataset, where LGSTGCN reduces
RMSE, MAE, and MAPE compared to the optimal results in the baseline by 30.44%, 28.02%,
and 44.55%, and in the 30 min prediction by 14.1%, 9.89%, and 1.74%, respectively.

The forecasting capabilities of LGSTGCN are poor in the 60 min prediction on both
datasets. The main reason is that the temporal and spatial correlations of road traffic flow
become more complex when the prediction step is increased. Since LGSTGCN captures both
local and global features in time and space, the global noise data in long-term prediction
lead to larger overall error of the model. In the 15 min short-term prediction, the global
noise data are less, and the comprehensive feature capturing capacity of the LGSTGCN
model makes its prediction performance better, comparing with all baseline models.

5.6. Ablation Study

The ablation experiments of the LGSTGCN model on the two datasets are conducted
to evaluate the effectiveness of key components. The five variants of the LGSTGCN model
are designed as follows:

• NP_GS: In this variant, the graph attention residual network layer, which is used to
capture global spatial dependency, is removed from LGSTGCN.

• NO_LST: This is a variant without T-GCN, which is used to capture real-time local
spatial-temporal dependency.

• NO_GT: The transformer layer that can capture global temporal dependence
is removed.

• NO_PE: The positional encoding of the transformer layer that can recognize the
positional characteristics of the sequence is removed.

• NO_NC: This is a variant exchanging the graph attention residual network layer
and T-GCN layer. Its graph convolution operation aggregates neighborhood infor-
mation only according to static initial neighborhood features, ignoring the dynamic
neighborhood features.

Tables 5 and 6 list the comparison of five LGSTGCN variants, and the conclusions are
as follows:

• Cross-regional spatial dependency is effective. The LGSTGCN model has a smaller
prediction error compared to the NO_GS variant on both datasets. It indicates that
cross-regional spatial dependence is effective to increase the prediction performance.

• Real-time local spatial-temporal dependency is significant. As shown in Table 5,
for the Los-loop dataset, the forecasting capability of the NO_LST is worse than
that of the LGSTGCN model. It means that the lack of local spatial-temporal infor-
mation can lead to degradation in prediction performance. For the SZ-taxi dataset,
the LGSTGCN model has the best performance in both 15 min and 30 min prediction.
However, NO_LST is better than LGSTGCN in 60 min prediction. It may be because
the correlations between the traffic flow data are reduced as the prediction horizon
increases on the one hand. On the other hand, the wrong information at the current
time may be learned due to the continuous missing values and noise figures existing
in the dataset.

• Global temporal dependency is necessary. The forecasting capability of the NO_GT
on the two datasets degrades significantly, which shows that the global temporal
dependence module in the LGSTGCN model can improve the forecasting capabili-
ties greatly.

• Positional information is effective. The NO_PE without positional encoding is unable
to identify the order between related sequences when processing global temporal
information. Thus, it is necessary to consider sequence position information.
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• Dynamic neighborhood correlation is important. The NO_NC only aggregates
information of neighborhood nodes based on static spatial distance and cannot capture
the dynamic features. Thus, the prediction results of the NO_NC are poor. It indicates
that it is important to take the influence of neighborhood nodes into account.

Table 5. The results of ablation study on the Los-loop dataset.

Time Models Los-Loop

RMSE MAE Acc R2 Var MAPE

15 min NO_GS 3.6489 2.3667 0.9374 0.8964 0.8986 5.82%
NO_LST 3.8702 2.2495 0.9335 0.8883 0.8886 5.42%
NO_GT 4.8423 3.0542 0.9158 0.8029 0.8046 7.93%
NO_PE 3.5384 2.3052 0.9394 0.9014 0.9052 5.44%
NO_NC 4.3329 2.7929 0.9256 0.8630 0.8637 6.82%

LGSTGCN 3.2066 2.0864 0.9452 0.9146 0.9167 4.93%

30 min NO_GS 4.4182 2.8233 0.9241 0.8605 0.8628 7.49%
NO_LST 4.8201 2.8582 0.9171 0.8405 0.8409 7.25%
NO_GT 5.8756 3.6424 0.8988 0.7768 0.7831 9.96%
NO_PE 4.5248 2.8730 0.9222 0.8530 0.8540 7.06%
NO_NC 4.6841 2.9214 0.9194 0.8442 0.8454 7.32%

LGSTGCN 4.0867 2.6296 0.9300 0.8737 0.8752 6.51%

60 min NO_GS 6.2143 4.1995 0.8929 0.7483 0.7680 10.26%
NO_LST 5.9255 3.7061 0.8978 0.7737 0.7765 9.49%
NO_GT 6.7056 4.2913 0.8827 0.6787 0.6837 12.32%
NO_PE 5.6259 3.6492 0.9031 0.7812 0.7858 9.49%
NO_NC 5.4947 3.6249 0.9055 0.7914 0.8040 8.74%

LGSTGCN 5.2326 3.4093 0.9098 0.8171 0.8279 8.08%
The bold number indicates the optimal value for the same evaluation metric.

Table 6. The results of ablation study on the SZ-taxi dataset.

Time Models SZ-Taxi

RMSE MAE Acc R2 Var MAPE

15 min NO_GS 2.1439 1.4201 0.8505 0.9575 0.9575 *
NO_LST 2.6827 1.6417 0.8130 0.9339 0.9340 *
NO_GT 4.0549 2.7526 0.7173 0.8488 0.8490 *
NO_PE 1.6548 1.0631 0.8846 0.9746 0.9746 *
NO_NC 2.9412 1.9896 0.7949 0.9204 0.9205 *

LGSTGCN 1.5070 0.9137 0.8949 0.9789 0.9789 *

30 min NO_GS 2.3694 1.5592 0.8348 0.9482 0.9482 *
NO_LST 2.9076 1.7041 0.7973 0.9224 0.9224 *
NO_GT 4.1167 2.7932 0.7130 0.8440 0.8443 *
NO_PE 3.5735 2.3970 0.7513 0.8829 0.8835 *
NO_NC 3.7193 2.4928 0.7406 0.8727 0.8728 *

LGSTGCN 2.0152 1.2896 0.8605 0.9630 0.9631 *

60 min NO_GS 3.6902 2.4640 0.7426 0.8745 0.8746 *
NO_LST 3.6877 2.3506 0.7428 0.8749 0.8750 *
NO_GT 4.1930 2.9217 0.7075 0.8382 0.8396 *
NO_PE 3.8855 2.5758 0.7290 0.8612 0.8614 *
NO_NC 3.9767 2.6809 0.7226 0.8545 0.8546 *

LGSTGCN 3.8291 2.5682 0.7329 0.8649 0.8652 *
* indicates that the value of the evaluation metric could not be calculated. The bold number indicates the optimal
value for the same evaluation metric.

5.7. Analysis of Visualization

To better elucidate the LGSTGCN model, we specifically choose two roads from each
dataset and visualize the prediction outcomes across various horizons. We utilize the
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full-day data on 7 March 2021 from the Los-loop dataset and traffic flow data spanning
28 January 2015 to 31 January 2015 from the SZ-taxi dataset. The visualizations at 15 min,
30 min, and 60 min intervals are presented in Figure 8. The LGSTGCN model demonstrates
impressive predictive capabilities for nonlinear traffic speed across different time intervals.
Notably, the prediction results exhibit non-smooth patterns in the 15 min prediction,
indicating the model’s accuracy in capturing short-term traffic variations. As the prediction
horizon extends, the results gradually smooth out while still maintaining a consistent trend
with actual traffic flow. Furthermore, the visualization results on the Los-loop dataset
demonstrate that the model is adaptive to the situations involving sudden drops in traffic
speed, making it valuable for predicting traffic congestion.

(a) 15 min on Los-loop dataset (b) 30 min on Los-loop dataset

(c) 60 min on Los-loop dataset (d) 15 min on SZ-taxi dataset

(e) 30 min on SZ-taxi dataset (f) 60 min on SZ-taxi dataset

Figure 8. Visualization results with different prediction horizons on the Los-loop and SZ-taxi datasets.

6. Conclusions

A novel framework called Local-Global Spatial-Temporal Graph Convolutional Net-
work (LGSTGCN) for traffic prediction is presented in this paper. In the model, a graph
attention residual network layer is proposed to capture global spatial dependency. More-
over, a T-GCN module is used to extract local spatial-temporal dependency adaptively.
In addition, a transformer layer is introduced to capture the global temporal features of all
traffic road nodes. Therefore, the LGSTGCN model can extract local and global traffic flow
information in both temporal and spatial terms. The experimental results on all datasets
show that the LGSTGCN model outperforms the existing traffic prediction methods. It can-
not only adapt to short-term changes in traffic speed but also capture long-term temporal
dependence. Furthermore, the LGSTGCN model can maintain the cross-regional global
spatial dependence and capture the real-time local spatial information. The analysis on
the ablation study shows that both local and global spatial-temporal dependence is neces-
sary for traffic prediction. The results of hyperparameter experiments show that different
hyperparameter settings are required for different datasets to achieve optimal performance.

The future research mainly focuses on the traffic prediction modeling involving exter-
nal information, such as weather, holidays, etc. These external factors allow the model to
learn more realistic and richer traffic features. Research on prediction methods that further
improves prediction performance is also an important challenging issue.
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