
Citation: Grzesik, P.; Mrozek, D.

Combining Machine Learning and

Edge Computing: Opportunities,

Challenges, Platforms, Frameworks,

and Use Cases. Electronics 2024, 13,

640. https://doi.org/10.3390/

electronics13030640

Academic Editor: Palden Lama

Received: 31 December 2023

Revised: 25 January 2024

Accepted: 1 February 2024

Published: 3 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Combining Machine Learning and Edge Computing:
Opportunities, Challenges, Platforms, Frameworks, and Use Cases
Piotr Grzesik and Dariusz Mrozek *

Department of Applied Informatics, Silesian University of Technology, 44-100 Gliwice, Poland;
pj.grzesik@gmail.com
* Correspondence: dariusz.mrozek@polsl.pl; Tel.: +48-32-237-13-39

Abstract: In recent years, we have been observing the rapid growth and adoption of IoT-based
systems, enhancing multiple areas of our lives. Concurrently, the utilization of machine learning
techniques has surged, often for similar use cases as those seen in IoT systems. In this survey, we aim
to focus on the combination of machine learning and the edge computing paradigm. The presented
research commences with the topic of edge computing, its benefits, such as reduced data transmission,
improved scalability, and reduced latency, as well as the challenges associated with this computing
paradigm, like energy consumption, constrained devices, security, and device fleet management. It
then presents the motivations behind the combination of machine learning and edge computing,
such as the availability of more powerful edge devices, improving data privacy, reducing latency, or
lowering reliance on centralized services. Then, it describes several edge computing platforms, with a
focus on their capability to enable edge intelligence workflows. It also reviews the currently available
edge intelligence frameworks and libraries, such as TensorFlow Lite or PyTorch Mobile. Afterward,
the paper focuses on the existing use cases for edge intelligence in areas like industrial applications,
healthcare applications, smart cities, environmental monitoring, or autonomous vehicles.

Keywords: machine learning; edge computing; smart cities; healthcare; predictive maintenance;
Internet of Things

1. Introduction

In recent years, we have experienced the rapid growth and adoption of IoT-based
systems in multiple areas of our lives. It is common to see IoT devices improving healthcare
systems [1], being used in autonomous vehicles [2], enabling smart city solutions [3],
enhancing environmental monitoring [4,5], or powering smart wearable equipment [6],
just to name a few scenarios. In all mentioned cases, the IoT devices are responsible for
generating massive volumes of data, either in numerical form for various sensor readings
or images and videos from camera-equipped devices. Processing such amounts of data
in data centers has become a big challenge, especially in situations where the Internet
connection is unreliable. In order to address these issues, a new computing paradigm,
called edge computing [7], has started to emerge. The main idea of edge computing is
to bring the processing units closer to the end devices and end users. By doing that, it is
possible to process the data streams without the need to send them to a centralized service,
which improves the reaction time of such systems, saves network bandwidth, improves
scalability by reducing dependency on centralized services, and improves data privacy, as
not everything has to be sent over to the cloud or data center for further processing. We
have seen the growing adoption of the edge computing paradigm in various areas, such
as smart cities [8], where it powers distributed processing on multiple devices across the
city; healthcare systems [9], where one of the most significant benefits of edge computing is
data privacy, achieved by keeping sensitive medical records at the edge instead of sending
them to the cloud [10]; and in industrial applications [11], where it is used for predictive

Electronics 2024, 13, 640. https://doi.org/10.3390/electronics13030640 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030640
https://doi.org/10.3390/electronics13030640
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8868-0765
https://orcid.org/0000-0001-6764-6656
https://doi.org/10.3390/electronics13030640
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030640?type=check_update&version=1

Electronics 2024, 13, 640 2 of 26

maintenance, quality control monitoring, or enabling fleets of autonomous robots that
carry out various tasks within factories, among others. Figure 1 presents a common edge
computing architecture. It is important to note that the edge computing layer can be
very varied, with multiple types of devices such as dedicated edge servers, satellites,
or UAVs, performing edge computations for other devices in the network. In addition
to that, we have been observing artificial intelligence (AI) and machine learning (ML)
techniques being used for more and more use cases in the past years, often in the same
context as the mentioned IoT devices [12]. AI covers a set of technologies that allow a
computer system to learn, reason, and perform sophisticated tasks like a human [13,14]. As
frequently mentioned as a sub-technique of AI, ML uses various self-learning algorithms to
build reasoning models based on available data [15]. However, many machine learning
workflows are still computationally expensive and executed on centralized servers, making
the adoption of machine learning at the edge more challenging [16]. The same applies to
deep learning techniques that rely on artificial neural networks (AANs) with many layers
that usually learn based on larger data sets, automate feature extraction, and require less
human intervention than typical ML models [17].

Figure 1. Illustration of an edge computing architecture.

The motivation for our work is to highlight the opportunities that the combination of
machine learning and edge computing brings, what challenges are associated with it, what
tools are currently available for building edge intelligence solutions, and, most importantly,
we highlight existing use cases that highly benefit from edge intelligence. The paper
effectively integrates the knowledge acquired in recent years and technical concepts with
real-world applications, making it accessible to both technical and non-technical audiences.
It elucidates complex topics, such as edge computing architectures and machine learning
frameworks while grounding them in practical application areas like smart cities, healthcare
systems, and industrial applications that benefit from these concepts. It also showcases
a balanced perspective by addressing both the opportunities and challenges associated
with edge computing and machine learning integration. It acknowledges the potential
benefits of reduced latency while also highlighting concerns such as energy consumption
and security risks. The paper focuses on specific examples, platforms, and frameworks

Electronics 2024, 13, 640 3 of 26

relevant to edge intelligence. By reviewing specific tools, the paper provides actionable
insights for readers interested in implementing edge computing solutions.

The paper is organized as follows. In Section 2, we review the existing challenges for
edge computing, focusing on aspects that are especially important for machine learning
tasks. Section 3 highlights the motivations for combining machine learning and edge
computing, namely, more powerful edge devices, reducing reliance on centralized ser-
vices, and improving the privacy of users’ data. In Section 4, we describe edge computing
platforms, noting how they can enable the easier deployment of edge intelligence work-
flows. Section 5 presents state-of-the-art frameworks and libraries that are dedicated to
building and training machine learning models that will run on constrained edge devices.
In Section 6 of the article, we go over existing use cases in which we already observe the
successful combination of edge computing and machine learning in areas such as industrial
applications, autonomous vehicles, healthcare applications, and environmental monitoring.
Section 7 briefly reviews trends and future developments in edge computing. Section 8
concludes the paper with a discussion.

2. Challenges of Edge Computing

While edge computing has a lot of benefits, it is also associated with downsides and
challenges. This section presents the major challenges for edge computing and highlights
which of them are especially important to consider when it comes to running machine
learning workloads.

2.1. Constrained Devices and Computation Offloading

One of the main challenges of edge computing stems from the fact that computation
is now being carried out by computing boards with inferior CPUs, less memory, and less
disk space than machines running in cloud data centers. Additionally, the edge devices
vary a lot across different applications due to external constraints such as size or energy
consumption. In certain applications, an edge device could be a relatively powerful
industrial PC. In another case, it could be a single-board computer such as Jetson Nano or
Raspberry Pi, which offers less computing power than the mentioned industrial PCs. In
other cases, the possibilities might be limited to microcontrollers such as STM32F411VE or
GAP8, often powering wearable devices such as smartwatches where a small form factor is
very important. Due to these variable capabilities of certain devices, the edge computing
workloads must be heavily optimized and adjusted to the computing capabilities of the
selected edge device. Often, it comes at the price of the accuracy or speed of processing.
Another technique that is used to overcome the limited computing capabilities of edge
devices is computation offloading. It works by decomposing workloads into multiple steps
or tasks that can be processed by other edge nodes or in a cloud environment in order to
speed up or enable certain workloads [18–20]. It is also a method to ensure better scalability
and mitigate bottlenecks in the system by enabling the offloading of tasks from the nodes
that are used more heavily than others in the edge-based system.

2.2. Security and Privacy

While edge computing can improve data privacy in certain scenarios, it also creates
new challenges when it comes to ensuring the security of the whole system. The first chal-
lenge in that regard is the authentication and identification of each node in the edge network.
It is also essential to ensure that each device has only a minimal set of permissions to avoid
situations where a compromised edge device can be used to gain access to critical parts
of the system, even the parts that are not required for regular operations. Another crucial
challenge regarding security and privacy is proper encryption mechanisms, both for data in
transit and at rest. Ensuring data privacy at rest is especially important in situations where
the device can be stolen or accessed physically in an attempt to access (e.g., the private data
of users connected to an edge device). Anonymization and pseudonymization techniques
are utilized to remove or replace personally identifiable information (PII) from data sets,

Electronics 2024, 13, 640 4 of 26

preventing the identification of individuals while allowing for data analysis [21,22]. Data
minimization strategies such as aggregation and summarization help reduce the amount of
data processed at the edge, minimizing privacy risks [16,23]. Privacy-preserving machine
learning techniques such as federated learning [24,25] and secure model aggregation [26]
allow for training machine learning models on distributed edge devices without exposing
raw data. Access control mechanisms, authentication protocols, and privacy policies ensure
that only authorized users and devices can access and manipulate data, while consent man-
agement frameworks empower users to control their personal data. Secure data sharing
and collaboration [27,28], along with privacy impact assessments, promote transparency
and accountability in privacy practices, fostering trust and compliance with privacy regula-
tions. An in-depth overview of various security threats in mobile edge computing has been
presented by Roman et al. [29], while Yahuza et al. [30] developed a systematic review of
all security and privacy requirements for edge-based systems.

2.3. Energy Consumption

One of the largest challenges related to edge computing is energy consumption,
especially for devices that are only battery-powered or devices that do not have constant
and reliable access to a power outlet, e.g., during expeditions [31]. Addressing this problem
becomes even more critical for workloads that require significant computing power or
need to use additional accelerators such as onboard GPUs (Graphics Processing Units) as
is the case with machine learning applications. The algorithms used at the edge must be
optimized to maintain a reasonable ratio between performance and energy efficiency to
address that challenge. There are multiple ongoing works that aim to improve this issue.
One of the approaches involves energy harvesting techniques based on solar panels, wind
mills, or electromagnetic signals that allow the edge devices to recharge their batteries
without external intervention, making these systems more resilient and autonomous [32–34].
Another way of addressing the energy consumption issue is computation offloading. In that
scenario, certain computations are offloaded to other edge devices that are better equipped
to deal with them (e.g., edge device with GPUs), or to devices that currently have access to
more energy [35], or directly to the cloud. Such edge systems are energy-aware and, thanks
to offloading algorithms, often taking advantage of machine learning techniques, are able
to intelligently route tasks to the proper edge devices [36].

2.4. Device Fleet Management

Another important challenge related to edge computing is the requirement to manage
a heterogeneous fleet of distributed devices. In the case of cloud computing, all nodes
frequently exhibit uniform characteristics, are often placed in the same geographical region,
or even housed within the same data center. In the case of edge computing, there is often
a need to accommodate various device types, operating systems, and software executed
on these devices, sometimes running across the globe. One way to mitigate issues that
might span from that is the use of standardized communication protocols such as MQTT,
CoAP, AMQP, DDS, or OPC UA, which enable interoperability between different devices
and systems. There are also ongoing studies [37] that research how these existing protocols
can be optimized with the use of machine learning to mitigate the downsides of specific
protocols. Separately, it is also more difficult to deal with hardware failures than in the cloud
environment, as edge devices might be located in places that are hard to access. The same
applies to software failures, especially with the unstable network connection between edge
and cloud devices. The deployment of new software to the edge fleet is also more complex
than in the cloud environment, and there are ongoing works on developing more robust
deployment approaches dedicated to edge-based scenarios [38–40]. In Section 4, there are
several edge computing platforms presented that aim to improve the process of device and
application management. These platforms often combine the capability to manage the fleet
of devices in a centralized system; maintain their operating systems, firmware, and runtime
for applications running on the edge devices; integrate with standardized communication

Electronics 2024, 13, 640 5 of 26

protocols; and manage orchestration algorithms that distribute and deploy the computing
workloads across devices in the system.

3. Motivations for Combining Machine Learning and Edge Computing

This section focuses on the benefits that the combination of machine learning and edge
computing brings. It is becoming especially important with the growing number of smart
devices distributed across the whole globe and with the growing number of use cases for
both ML and edge computing.

3.1. More Powerful Devices Available at the Edge

One of the biggest opportunities is the fact that nowadays, there are multiple mobile
platforms available that offer acceleration for machine learning tasks, thanks to built-
in hardware accelerators. Devices like Jetson Nano, Jetson Xavier NX, or the recently
announced Jetson Orin Nano are equipped with GPUs, and smartphones like the iPhone
have dedicated NPUs (Neural Processing Units) in the form of Apple Neural Engine.
Alternatively, there are also add-on devices like Intel Neural Compute Stick, which is
equipped with VPUs (Visual Processing Units) in order to improve the performance of
inference tasks. Another such accelerator is the Google Coral USB Accelerator, which serves
as a TPU (Tensor Processing Unit) coprocessor that speeds up inference workflows. Both
Intel NCS and Google Coral USB Accelerator can turn popular low-cost edge devices such
as Raspberry Pis into powerful machine learning inference engines.

3.2. Reducing Reliance on Centralized Services and Decreasing Latency

One of the challenges with intelligence servers placed in data centers or in the cloud
computing environment is the requirement to send data over the network in order to process
them and react to the changing state of the system. It becomes especially problematic in
secluded areas with unreliable Internet connections or in situations where there are multiple
people accessing the centralized service at the same time. By moving the intelligence
modules closer to the end user, it is possible to reduce the amount of data that need to be
sent over to the centralized service, which in turn allows the whole system to react faster to
the changing state, decreasing the latency of machine learning workloads. It is especially
important in systems that need to make decisions in real time, e.g., autonomous vehicles or
health monitoring devices.

3.3. Improving Privacy of Personal Data

Another great benefit of combining machine learning with edge computing is the
potential to improve the privacy of users’ personal data. When using techniques such as
federated learning, the personal data do not have to leave users’ devices or the edge server
in order to be used in the model training process, which reduces the impact of potential
security breaches, e.g., in the data center.

4. Edge Computing Platforms

Edge computing has become an attractive alternative for centralized computations
performed in on-premise data centers or directly on cloud platforms. This fact was noticed
quite early by the providers of cloud platforms, third-party companies, and open-source so-
cieties, leading to the emergence of several frameworks that operate according to industrial
standards. This section characterizes the most important of them.

4.1. Microsoft Azure IoT Edge

Microsoft Azure IoT Edge [41] is an open-source engine, edge computing runtime, and
a set of integrated cloud services that enable building, managing, and deploying various
edge computing workloads. It seamlessly integrates with other Microsoft Azure services,
supports Linux and Windows operating systems, and offers dedicated modules directly
from Microsoft or its partners in the form of Docker containers that can efficiently run at

Electronics 2024, 13, 640 6 of 26

the edge devices. It also seamlessly integrates with Microsoft Azure Machine Learning to
run ML inference directly at the edge. It can operate without constant Internet connectivity.
Additionally, it handles the authentication and authorization of all connected devices and
ensures secure communication between all parts of the system, both locally and in the
cloud. It is also supported to run stream analytics directly at the edge devices thanks to
integration with the Azure Stream Analytics service. Microsoft Azure additionally offers
Azure SQL Edge, which is a robust SQL database dedicated to handling data storage on
edge devices.

4.2. AWS IoT Greengrass

AWS IoT Greengrass [42] is an open-source, edge computing runtime and a cor-
responding cloud-based service that allows building, managing, and deploying edge
computing workloads. It is available as a part of the Amazon Web Services platform and
supports running local containers, local AWS Lambda functions, and local messaging for
IoT devices. AWS IoT Greengrass can also operate without any Internet connectivity. By
supporting custom containers, it is capable of running virtually any workload directly on
the edge device, regardless of the used programming language. It can access local devices
such as GPU, sensors, actuators, and so on. It also seamlessly integrates with machine
learning models training in the cloud thanks to the AWS IoT Greengrass ML Inference
offering, which allows for running machine learning inference directly on edge devices,
enabling edge intelligence. It can be successfully used to implement a federated learning
approach [43]. It also has a dedicated Stream Manager module that allows organizing data
streams to collect and process incoming data from local IoT devices. It can also integrate
directly with cloud services such as AWS Kinesis or AWS S3. AWS IoT Greengrass is also
responsible for ensuring the security, authentication, and authorization of all services and
devices communicating locally and with the cloud-based components.

4.3. Balena

Balena [44] is a suite of tools dedicated to building, managing, and provisioning IoT
devices. The core part of the platform is BalenaCloud, which is used for managing the
fleet of IoT devices. Another part is BalenaOS, which is an operating system based on
Yocto Linux, optimized for edge devices, that provides balenaEngine, an optimized Docker-
compatible container engine for running custom containers on these devices. Thanks to
that, it is possible to use Balena to manage and deploy edge intelligence applications in a
secure and automated manner. They also offer an extensive repository of examples on how
to run various workloads with the use of Balena services [45].

4.4. KubeEdge.AI

KubeEdge [46] is an open-source, edge computing platform built based on Kubernetes
that provides support for application deployment, synchronization, and networking across
deployments in the cloud and at the edge. It is optimized to run successfully even on
low-powered devices, simplifies the device communication stack, and allows the edge
components to operate without issues, even without an Internet connection. Out of the box,
KubeEdge does not offer any dedicated solutions for running edge intelligence workloads.
That is where KubeEdge.AI [47] intends to improve the base capabilities of KubeEdge.
KubeEdge.AI is an edge intelligence framework that introduces a few dedicated modules
dedicated to working with machine learning workloads directly at the edge. One of the
modules is a data handling and processing engine built on top of TSDB (Time-Series
Database), Apache Flink, and Apache Spark. Another key module is a dedicated AI
engine that helps with model deployment and model refreshment, ensures the privacy
and security of the model, and includes an optimized runtime for performing machine
learning workloads. In addition to that, KubeEdge.AI also consists of a decision engine
and distributed query interface.

Electronics 2024, 13, 640 7 of 26

4.5. EdgeX Foundry

EdgeX Foundry [48] is an open-source, highly scalable, full-featured framework for
the management and orchestration of edge computing services primarily dedicated to
industrial environments. EdgeX Foundry is designed with cloud-native principles, making
it vendor- and operating system-agnostic. It supports all major platforms and operating
systems. EdgeX Foundry consists of loosely coupled microservices that are organized into
multiple layers. A core services layer hosts services like core data, registry and config,
command, and metadata. The second layer is the device services layer, which is responsible
for direct interaction with various IoT devices. An application services layer also manages
integration between the edge and cloud environment by handling data transmission and
processing. Another layer is the supporting services layer. It includes services like the rules
engine that can monitor incoming data from sensors and react to it. There is a scheduling
service that can, for example, aggregate data in predefined time intervals. Another service in
the supporting services layer is the alerts and notifications engine that handles alerting and
sending notifications to external systems. The next layer is a management services layer that
implements an API (Application Programming Interface) to control all the microservices
that build the whole EdgeX Foundry deployment. The last layer is the security services
layer which includes functionalities like a secret store service for handling secrets and an
API gateway service for external clients. It was also designed with interoperability in mind.
It provides implementations for all popular IoT protocols, such as MQTT, REST, or CoAP.

5. Edge Intelligence Frameworks and Libraries

In recent years, we have observed the development of more tools and libraries dedi-
cated to building and deploying machine learning models directly to edge devices. Some
of them are growing out of existing mature ML frameworks, and some are built from the
ground up for edge-based cases. This section provides an overview of selected frameworks
and libraries that help build edge intelligence applications. Table 1 presents a summary of
the discussed frameworks and libraries for edge intelligence.

5.1. TensorFlow Lite

The first presented machine learning framework is TensorFlow Lite [49]. It is an open-
source framework developed by Google that grew from the original TensorFlow offering.
It is specifically optimized to run machine learning workloads directly on constrained
devices. It supports various platforms, such as iOS and Android mobile operating systems,
single-board computers like Jetson Nano or Raspberry Pi, and even microcontrollers, par-
ticularly from the ARM Cortex-M series. It also supports multiple programming languages,
including Python, Java, Swift, and C++. It can also take advantage of hardware accelera-
tion, e.g., GPU on Jetson Nano boards or TPU from Coral USB Accelerator. It also has an
extensive community and multiple working examples available in the documentation.

5.2. edge-ml

Another framework dedicated to edge intelligence is edge-ml. It was developed by
Röddiger et al. [50], is open-source, and aims to allow the building of robust machine
learning models for microcontrollers using a browser-based environment. It supports the
whole model lifecycle, from data recording, labeling, and model training to deploying the
trained model to edge devices. It speeds up the entire process by automatically selecting
the best neural network architecture for the use case at hand. It then optimizes the trained
models for the chosen platform. Currently, it supports Arduino Nicla Sense ME, Arduino
Nano 33 BLE, all boards that are based on the ESP32 SOC microcontroller, as well as devices
based on the Android operating system.

Electronics 2024, 13, 640 8 of 26

Table 1. Summary of frameworks and libraries for edge intelligence.

Library Supported Devices
or Systems

Open
Source

First Released Edge Intelligence Features

TensorFlow Lite
iOS, Android,

Linux-based SBC Yes 2019
GPU/TPU acceleration

Optimization of TensorFlow models for edge devices

edge-ml
Arduino Nicla Sense ME,

Arduino Nano 33 BLE,
ESP32, Android

Yes 2020
End-to-end ML workflows for edge devices.

Automatic detection of optimal NN architecture

TinyDL NVIDIA Jetson TK1 Yes 2017
Optimization of deep learning models based

on available hardware on the edge device

PyTorch Mobile
iOS, Android,

Linux-based SBC Yes 2019
GPU/NPU acceleration (in beta)

Optimization of PyTorch models for edge devices

CoreML iOS, WatchOS, MacOS No 2017 GPU/NPU acceleration

ML Kit for Firebase iOS, Android No 2018 Unified SDK supporting multiple ML APIs

Apache MXNet
iOS (conversion),

Android,
Linux-based SBC

Yes 2015
GPU/TPU acceleration
Amalgamation support

Model conversion e.g., to CoreML

EEL Raspberry Pi,
Arduino, micro:bit Yes 2017

Support for workflow:
compilation-training-deployment to edge

DeepThings Raspberry Pi Yes 2018 Improves running inference on a cluster of edge devices

DeepIoT Intel Edison Yes 2017 Neural network compression for edge devices

Electronics 2024, 13, 640 9 of 26

5.3. TinyDL

TinyDL is a framework dedicated to the end-to-end integration of deep learning
models into edge-based systems. It was introduced by Rouhani et al. [51]. The TinyDL
framework improves the training and execution of the models by profiling and optimizing
the computation for the detected platform. It does so by introducing a signal transformation
algorithm to better accommodate available resources. In the experiments carried out on
the NVidia Jetson TK1 board, the authors validated that TinyDL allows for reducing the
training time while keeping the inference accuracy the same for speech recognition, indoor
localization, and smart sensing workflows.

5.4. PyTorch Mobile

Another framework that is a mobile version of a popular full-fledged machine learning
framework is PyTorch Mobile [52], based on the PyTorch framework. At the time of writing,
it is still the beta version, but it is already functional. It aims to train and deploy ML models
to edge devices while using a similar toolchain and APIs as when building regular PyTorch
projects. It also focuses on privacy preservation by offering dedicated support to federated
learning. Currently, it is available for Android, iOS, and Linux operating systems. Support
for hardware acceleration is still in development. Currently, there are only nightly releases
of the framework that offer support for GPU acceleration on iOS with Metal, GPU support
on Android with Vulkan, and NPU and DSP support on Android with NNAPI. While,
according to the documentation, the framework is already in wide use, the APIs still might
change before reaching a stable release.

5.5. CoreML

CoreML [53] is a closed-source, machine learning framework developed by Apple,
Inc. It supports multiple mobile devices, but due to being tied to a single company, it
only supports devices such as iPhones, iPads, and Apple Watches. It helps design and
train the models from scratch, as well as converting and optimizing models from other
frameworks. It is optimized to take advantage of the CPU, GPU, and Neural Engine
available on the selected device and also can integrate with existing applications within the
Apple ecosystem. It offers Vision, Natural Language, Speech, and Sound Analysis APIs.
While not being a multiplatform, it has the benefit of being tightly integrated with the
whole Apple ecosystem, both from a software and hardware perspective, which makes it
an excellent choice for building models that will run on Apple devices.

5.6. ML Kit for Firebase

ML Kit for Firebase [54] is a library that combines support for Google’s ML APIs and
custom TensorFlow Lite models into one easy-to-consume SDK (Software Development
Kit), allowing developers to use ML-based workflows with little or zero knowledge about
machine learning. It is dedicated to Android and iOS operating systems. Without using
custom models, it offers support for workflows such as text recognition, face detection,
image labeling, object detection, object tracking, barcode scanning, or translation. It
can also take advantage of cloud services to improve the performance or accuracy of
selected workflows.

5.7. Apache MXNet

Apache MXNet [55,56] is a general-purpose, deep learning framework focused on
efficiency and flexibility. It can be used across cloud and edge devices and is designed to
be portable and lightweight, supporting acceleration with TPUs and GPUs. It supports
multiple programming languages, including Python, Java, Go, Javascript, Perl, Julia, C++,
Scala, and Clojure. While being mostly used in cloud environments, it also has support
for amalgamation, which is a process for combining all required code along with minimal
dependencies into a single file that is easier to deploy and use on smart edge devices.

Electronics 2024, 13, 640 10 of 26

5.8. Embedded Learning Library (ELL)

The Embedded Learning Library (ELL) [57] is an open-source library and set of tools
for designing, developing, and deploying machine learning models to constrained devices
such as microcontrollers or single-board computers such as Raspberry Pi. It is currently an
early preview version and is being developed by the Microsoft Research team. It is written
in C++. However, it also offers an optional interface in Python programming language.
The ELL running on a laptop or a virtual machine takes care of the compilation, training,
and deployment of models to an edge device, which can later run the prepared model fully
independently. It is important to note that the ELL is still under development, and the APIs
and functionalities it offers might change in the future.

5.9. DeepThings

DeepThings is a deep learning framework introduced by Zhao et al. [58]. It aims
to improve the performance of running CNN-based inference workloads on clusters of
resource-constrained devices in edge-based architecture. In order to achieve that, it intro-
duces the Fused Tile Partitioning method that divides convolutional layers into separate
tasks that can be distributed across devices in an edge cluster. It also offers a dedicated
runtime system for such clusters to better distribute the partitions, especially in dynamic
systems. It is accompanied by a reference implementation in C [59], which was imple-
mented for Raspberry Pi 3 single-board computers.

5.10. DeepIoT

DeepIoT is a library developed and presented by Yao et al. [60] in their paper. The
authors proposed a solution for compressing the neural networks by reducing the number
of required hidden elements without compromising the accuracy of the network. The
compressed models can then be successfully deployed and used on constrained devices
without additional modifications and adjustments. The authors also performed experiments
on platforms such as Intel Edison and confirmed that the use of DeepIoT helped reduce the
execution time and energy consumption while maintaining the same accuracy. The authors
also provided a reference implementation based on the TensorFlow framework [61].

6. Use Cases

The inherent features of edge computing make this approach an important option
when designing the architecture of IT systems built in various areas. However, some
areas especially benefit from the advantages of this computing model. These areas include
manufacturing, healthcare, smart cities, the environment, and autonomous and unmanned
devices. We will focus on these areas in this section.

6.1. Industrial Applications

A combination of machine learning and edge computing has been highlighted by Hu
et al. [62] in their work, where the authors described the “iRobot-Factory”, which is an
intelligent robot factory that takes advantage of edge computing techniques. In the pro-
posed system, the edge node can carry out analysis with machine learning/deep learning
models, which, according to the authors, improves service scheduling and helps with the
efficient management of edge computing resources. The authors also highlighted that of-
floading some analytical operations to the edge tier reduces the delay in executing real-time
monitoring and allows for achieving autonomous monitoring and more dynamic feedback.

Another industrial application has been presented by Boguslawski et al. [63] in their
paper. The authors described an analytical solution for the predictive maintenance of rod
pumps with machine learning models deployed directly at the edge. The proposed solution
is capable of working fully offline, without any Internet access, while at the same time
preserving data security requirements specific to the gas and oil industry. In order to deploy
prepared intelligence models, the authors used Microsoft IoT Edge, Docker, and Ubuntu
Core. It is worth noting that the authors decided that using multiple models instead of

Electronics 2024, 13, 640 11 of 26

one is feasible and additionally improves the performance of the system. Thanks to the
proposed solution, it was possible to detect such failures as a fluid pound or gas interference.
Edge intelligence can also help ensure the reliability and resilience of the power grid. One
such example has been proposed and described by Matthews et al. [64]. In their works,
the authors proposed an edge-based system for anomaly detection in synchrophasor data,
allowing the system to detect anomalies quicker and be more resilient to network outages.

The following example of using machine learning algorithms directly on edge devices
in an industrial environment has been presented by Don et al. [65]. In their works, the
authors highlighted the issue of reliable video streaming and proposed an algorithm to
improve that reliability by intelligently processing the stream and discarding the video
frames that are considered unnecessary, given current network conditions. Using an
edge server for that processing enables better detection of the network quality from the
perspective of a user that is receiving the video stream.

Another architecture that combines edge and machine learning techniques in an
industrial setting has been proposed by Zhang et al. [66], where the authors presented
an architecture for federated learning across multiple devices based on edge computing
and blockchain technology for authentication. In the proposed architecture, each factory
has a dedicated edge server responsible for training models on local data from the factory
before sending them to a centralized server, where the data are combined with models
from other factories and distributed back to the edge servers and end devices. Using that
technique allows for achieving better accuracy and preservation of the security and privacy
of the data of individual factories. Another use of federated learning in the industrial
application has been recently presented by Shubyn et al. [67]. The authors introduced a
federated learning-based algorithm for anomaly detection for autonomous guided vehicles
in factories. Using that technique improves prediction accuracy and also helps preserve
the security of local data. Yet another use of federated learning techniques in the industry
has been proposed and described by Liu et al. [68]. The authors introduced a framework
for anomaly detection for time-series data in the Industrial Internet of Things based on
federated learning and deep anomaly detection. In the experiments, the authors proved that
the proposed approach could be used for processing power demand or engine data sets.

Another promising use case in the industry for the edge computing and machine
learning combination is visual inspection of conveyor belts. Zeng et al. [69] introduced
“Boomerang”, which is a framework for cooperative deep neural network inference for
edge devices in industrial settings. In the proposed approach, the model deployed on
each edge device is adjusted and optimized for the specific inference scenario, further
improving accuracy. The inference is run both on the IoT device and edge server in a
cooperative manner for further improvement in the performance of the whole system. The
authors cited that such an approach can result in improved manufacturing productivity
and reduced operational costs. A similar system has also been proposed by Li et al. [70]
in their work. The authors introduced a manufacturing visual inspection system for
defect detection. However, they used fog intelligence nodes instead of edge servers and
cooperative inference between IoT and the edge server. Moreover, sensors only pass raw
data directly to intelligence nodes for processing.

Another important use case is predictive maintenance and real-time fault detection.
In their works, Park et al. [71] presented a lightweight, edge-based fault detection system
for industrial robot manipulators called “LiRed”. The system has two parts: an edge
device and a central server. The central server is responsible for ingesting data and training
LSTM-based inference models, while the edge device runs the inference and raises alarms
via the fault monitor interface. According to the authors, using an edge-based approach
improves the analysis speed and reduces data processing costs.

6.2. Healthcare Applications

A combination of the edge computing paradigm with machine learning techniques
can also significantly improve healthcare systems. One such example has been presented

Electronics 2024, 13, 640 12 of 26

by Mohan et al. [72]. The authors proposed a Convolutional Neural Network architecture
optimized for resource-constrained devices capable of detecting whether people are wear-
ing medical face masks. This is a very fitting use case, given the COVID-19 pandemic. The
authors were able to optimize the model built with the TensorFlow Lite framework in a way
that it can run successfully on a low-powered ARM Cortex-M7 microcontroller. While the
model runs on a microcontroller, the authors opted to train the models in the cloud, using
Kaggle kernels with TPU acceleration to shorten the training time. The authors concluded
the paper with experiments that show over 99 percent accuracy for the tested data set.

A similar approach has been proposed by Faleh et al. [73]. The authors introduced a
system based on a more powerful device, the Jetson Nano board, capable of performing
mask recognition in real time directly at the edge. The authors used the MobileNetV2
classifier that was trained on a central server, and then the model was deployed to be run in
an edge manner, connected to an alarm system when a missing mask was detected. Based
on the experimental results, the authors were able to achieve over 99% accuracy.

Another use case aimed at improving the ability to detect and diagnose COVID-19 has
been presented by Qayyum et al. [74]. The authors proposed a system based on a clustered
federated learning approach to perform multi-modal COVID-19 diagnosis directly at the
edge, processing X-ray and ultrasound images. Using that approach reduces the data
transmission, reduces the processing time, and ensures the privacy of local patients’ data.
The experiments carried out by the authors confirm that such a system could be successfully
used for diagnosis by remote healthcare units.

Still, within the topic of COVID-19, Adhikari and Munusamy [75] present research that
proposes an intelligent health monitoring system based on edge computing and machine
learning called “iCovidCare”. While the two previously presented solutions were based on
image processing, “iCovidCare” evaluates patients’ health using readings from wearable
temperature sensors and fuses them with previous medical records. The application
performs classification using the ensemble random forest technique, running directly on
edge devices. Based on the experimental results obtained by the authors, the proposed
approach achieves over 95% accuracy. The authors highlighted that an edge-based solution
allows immediate risk assessment for monitored patients.

Another solution that aims to improve the response to the COVID-19 pandemic
has been proposed by Velichko [76]. In his paper, the author presents a novel method for
analyzing medical data based on the LogNNet neural network, which allows for calculating
risk factors for selected diseases based on medical data. The proposed system has been
implemented for COVID-19 risk assessment, as well as for perinatal risk assessment. While
the model training was carried out on a centralized server, the final model was optimized
to the extent that it was possible to run it even on such a low-powered device as an Arduino
microcontroller, being able to achieve over 91% of accuracy while requiring as low as 3 kB
of RAM. The presented results clearly highlight that even low-powered devices can be very
valuable for clinical decision systems.

Yang et al. [77], in their paper, proposed a robust, featureful, visual healthcare platform
based on an intelligent, multi-tiered architecture. The proposed architecture consists of
three layers: end devices, edge, and cloud. While the cloud is the central part of the system,
the edge nodes are responsible for reducing the amount of data that need to be sent to
the central system and improving the efficiency of the whole system. It is achieved by
offloading part of the computation directly to the edge nodes, which includes running
machine learning-based analytics.

Another use case for intelligent edge devices has been implemented and presented by
Mrozek et al. [78] in their paper. The authors introduced a scalable system for large-scale
fall detection based on a central system deployed in data centers and mobile phones that
serve as edge devices. The edge devices are the key to the system, as they are responsible
for data collection and processing. They used machine learning models directly at the
edge, allowing them to detect falls more quickly. An edge-based approach also reduces the
amount of data that need to be sent to the cloud and enables fall detection to function even

Electronics 2024, 13, 640 13 of 26

without constant Internet access. Experiments carried out by the authors also confirm that
an edge-based model can be successfully used to detect such dangerous events reliably.

Ahmed et al. [79], in their paper, presented another innovative use of edge computing.
The authors proposed a smart healthcare monitoring system that allows for the noninvasive
detection of patients’ discomfort based on the analysis of camera output and the patient’s
posture and position. The whole analysis is performed directly on the edge device, using a
deep learning method called Mask-RCNN. After detection, data are also forwarded to a
central system for further processing. Experiments carried out by the authors prove that
the system can operate with success, recording 94% true-positive records.

Another interesting healthcare solution has been developed and described by Liu et al. [80].
In their works, the authors proposed a food recognition system for dietary assessment,
using deep learning, edge devices in the form of smartphones, and a centralized server.
The authors used the edge-based approach to reduce the amount of data that need to be
sent to the cloud, improve the response time, and lower energy consumption. However, the
actual detection is still performed in the cloud using a CNN-based algorithm. The authors
plan to improve their solution to complete the detection fully offline on the edge device,
which will make the proposed solution more robust.

In order to enhance the performance of healthcare-related wearables, Xu et al. [81]
proposed “DeepWear”, which is a deep learning framework dedicated to wearable devices
that allows them to offload some of the computational tasks to edge devices such as smart-
phones. This technique allows for improvement in their performance and reduces energy
consumption. It also allows running computations that require more computing power
than it can achieve directly on the wearable device. The DeepWear uses TensorFlow and
has been evaluated on Android and Android Wear OS systems. The experiments confirm
that combining the wearable-smartphone approach allows for lower reaction time and
energy consumption compared to fully on-wearable and fully on-smartphone approaches.

Another example of combining wearable devices with edge intelligence has been
presented by Pramukantoro and Gofuku [82]. The authors, in their paper, introduced a
wearable system based on a Polar H10 device and personal computer that is able to perform
real-time heartbeat monitoring, thanks to the use of machine learning algorithms. In the
proposed system, Polar H10 communicates via Bluetooth Low Energy with a personal
computer that receives readings from the wearable device and evaluates them against a
designed machine learning model. In the considered case, the SVM-based model turned out
to offer the best accuracy while being able to perform classification in less than one second.

The topic of wearable devices has also been explored by Zanetti et al. [83]. The authors,
in their paper, introduced a cognitive workload monitor based on a wearable device running
a machine learning workload. The authors introduced several optimizations in order to
reduce the model size and the memory requirements in order to run the model directly on
the e-Glass wearable device, equipped with a low-power microcontroller from the ARM
Cortex-M4 family. The authors concluded the paper with experiments that confirm that the
proposed solution can be successfully implemented on the proposed device.

Another platform that takes advantage of edge intelligence has been proposed and
presented by Puerta et al. [84]. In their works, the authors implemented and evaluated
several machine learning models for seizure detection in cloud, fog, and edge computing
scenarios. While training has to be carried out in the cloud environment, the detection can
successfully be executed on fog or edge devices, with the Multi-layer Perceptron neural
network being most fitting for edge nodes due to its relatively high accuracy and low
computational cost.

A common use case for wearable devices is their ability to perform human activity
recognition, such as classifying if a person is running or walking. A dedicated framework
for deploying human activity recognition tasks directly on wearable devices with deep
learning models has been proposed by Coelho et al. [85]. The use of the edge computing
paradigm allows to enable real-time detection, reduces energy consumption, and improves
the privacy of the user’s data. The implemented human activity detection model was

Electronics 2024, 13, 640 14 of 26

evaluated on the STM32F411VE microcontroller, performing detection with over 97%
accuracy, confirming that it would be the suitable choice for running such detection on
wearable devices in an energy-efficient manner.

Another use case where the federated learning approach shines is a smart healthcare
system responsible for person movement identification based on signals from wearable
sensors. Arikumar et al. [86] proposed such a solution, in which they employ edge
computing to auto-label the data incoming from sensors, and then use that data to train
models using federated learning. This approach allows the processing of all the sensor
data on edge servers, without the need to send them to the cloud for processing. Based on
the carried out experiments, the taken approach resulted in lowered memory usage and
computation costs and allowed to reduce the volume of transmitted data by over 36%.

6.3. Smart Cities and Environmental Applications

Edge computing combined with machine learning is also becoming ubiquitous when
it comes to environmental applications. One such example has been highlighted by
Zhang et al. [87]. In their article, they presented a microseismic monitoring platform. In
the proposed solution, called “Edge-to-Center LearnReduce”, the authors took advantage
of the edge computing paradigm to resolve the problem of real-time data transmission,
which is cited as one of the main challenges. The authors used a solution where the neural
network models are trained in a data center and then deployed to edge nodes in order to
perform event detection and reduce the data volume before they are sent back to the data
centers. Based on the presented experimental results, the use of the described approach
resulted in high detection accuracy and significantly reduced data transmission.

Another example has been presented by Kumar et al. [88], who proposed and de-
scribed a water quality monitoring system based on edge devices. The authors initially
deployed edge devices that were responsible for collecting data and forwarding them to
the data center where the analysis was performed. In the second step, the machine learning
model was trained in a data center and embedded on an edge device to enable sensing and
reasoning without any communication with central servers.

The intelligent edge is also important when it comes to enabling smart cities. One
such use case has been described in detail by Liu et al. [89]. The authors, in their article,
described energy management platforms for smart cities. The architecture consists of
energy edge servers and energy cloud servers and aims to solve the problem of efficient
energy scheduling. The proposed approach takes advantage of edge servers to run neural
network models that, according to the authors, reduce the energy cost and the observed
delay compared to the solution that uses only centralized servers.

Another case in which edge intelligence is used to improve energy management has
been presented by Cicirelli et al. [90]. In their work, they proposed an edge-based system
for reducing the energy cost incurred by in-home appliances. The proposed solution allows
users to request a schedule for running predefined tasks on home appliances. To do so,
it takes advantage of reinforcement learning algorithms and the COGITO platform on
Raspberry Pi devices. The experimental results obtained by the authors prove the feasibility
of the proposed architecture.

Another class of use cases in smart city environments where edge-based analytics
shines is real-time object detection, identification, and classification. In the paper [91], Ali
and Ishak presented a real-time object detection system running on edge IoT devices that
can detect ambulances, fire engines, or police cars on the city streets. Their solution is based
on the Microsoft Azure Custom Vision model, trained in the cloud environment. The model
was then deployed directly on edge devices thanks to Microsoft Azure IoT Edge. The
authors highlighted that the selected approach allows for the reduction in overall latency
and improves the reaction times of the system. Additionally, by reducing the dependency
on centralized cloud services, the potential scalability of the system is also improved, as
the devices can operate independently.

Electronics 2024, 13, 640 15 of 26

An aspect that is also important in the environment of smart cities is the ability to
detect dangerous events such as gunshots, sirens, screaming, or shattering glass sounds. In
their article, Janjua et al. [92] presented a system called IRESE, which stands for “Intelligent
Rare-Event Detection System”, that is capable of capturing and identifying such dangerous
events. The authors identified that the main issue in such systems is the amount of data that
have to be transferred and processed. They decided that using intelligent edge modules
would allow for a significant reduction in data volume and reduce the time it takes to
detect and identify certain events. In their system, the authors decided to use unsupervised
learning algorithms that were implemented directly on the edge devices, in this case,
Raspberry Pis, that operate on incoming sound data streams.

Another approach to an emergency detection system has been proposed by
Orfanidis et al. [93]. The authors, in their paper, introduced a long-range emergency
system based on wearable devices capable of performing edge intelligence tasks with com-
munication relying on a Low-Power Wide Area Network. The designed machine learning
model is intended to run directly on an edge device in the form of a microcontroller placed
in a shoe. The algorithm is able to detect specific foot gestures and trigger an alarm in
case of a detected emergency. The authors experimentally confirmed that the implemented
neural network classifier is able to perform detection directly on an ESP32 MCU with 98%
accuracy, proving that the system can be used effectively in the defined scenarios.

The following use case in the context of smart cities has been presented by
Nikouei et al. [94]. In their research, the authors described an edge-based system for
real-time human detection in video streams for surveillance purposes. In the presented
works, the authors decided to use a lightweight Convolutional Neural Network that was
trained on cloud servers. The network was then optimized and deployed on edge servers.
It was highlighted that moving the computation to the edge devices improves communi-
cation time and reduces data volume overhead, resulting in reduced latency and quicker
system reaction.

A similar use case has been presented by Pang et al. [95]. In their paper, the authors
presented a surveillance system that can identify the same person on multiple cameras.
The proposed solution is based on a Convolutional Network Architecture that was trained
on a dedicated machine but is lightweight enough to run detection routines on edge
devices successfully.

Another scenario in which machine learning performed directly at the edge is bene-
ficial is the security of houses and residences. A system for home intrusion monitoring
has been introduced by Dhakal and Ramakrishnan in their work [96]. They proposed a
fully edge-based system that can operate without a centralized cloud server and can train
machine learning models directly at the edge of the network. The experiments carried
out by the authors also suggest that a single edge node could support monitoring even
thousands of homes at a close distance.

A more complex smart city system called “UrbanEdge” has been proposed by Fan et al. [97].
They proposed a multi-layered architecture that is capable of running prediction algorithms
on various time-series data, such as Air Quality Index, traffic volume, electricity usage, or
building occupancy data. In their proposal, they suggested a solution with two types of
edge servers, one responsible for data preprocessing and basic analytics and another one,
more powerful, that can run deep learning-based prediction algorithms.

Yet another surveillance use case has been presented by Sabella [98] in their thesis. The
author proposed and implemented a fire and smoke detection system for smart cities based
on edge computing, video processing, and deep neural networks. In the implemented
system, learning happens on a centralized server, while inference is performed on the
edge, using the OpenVINO toolkit, as well as Intel NCS2 and Movidius NCS accelerators.
According to the author, using an edge-based solution reduced the time from sending the
alert from 30 to 20 s compared to a cloud-based platform.

An innovative approach to taking advantage of edge intelligence has been presented by
Silva et al. [99]. Their paper introduced a wearable device in the form of a helmet, equipped

Electronics 2024, 13, 640 16 of 26

with a camera and an additional edge server that is capable of running edge intelligence
workloads for performing leaf disease detection in forests. The authors tested the workflows
on various platforms and concluded that Jetson Nano offers the best performance. It also
has been confirmed that the proposed device is capable of classifying leaf diseases in the
field, with over 90% accuracy.

6.4. Satellite–Terrestrial Integrated Networks

Another area where the combination of edge computing and machine learning is
gaining popularity is satellite–terrestrial integrated networks. Such a use case has been
presented by Zhu et al. [100] in their works. The authors considered a scenario of task
offloading in satellite–terrestrial computing networks. In their article, they described a
task-offloading algorithm, based on deep reinforcement learning. The proposed algorithm
achieves a performance cost similar to that of existing algorithms. However, it signifi-
cantly reduces runtime consumption, making it more suitable for satellite–terrestrial edge
computing networks.

Another example of edge computing and machine learning in the context of satellite–
terrestrial integrated networks has been presented by Jiang et al. [25]. In their work,
the authors proposed a split-then-federated learning framework dedicated to satellite–
terrestrial networks. It is optimized for handling sequential data and is based on LSTM
cells. The authors also evaluated the proposed algorithm based on a specific case study of
electricity theft detection. The carried out experiments highlight that the proposed model
is an effective solution, offering comparable performance metrics to centralized models.

Yet another case for satellite–terrestrial edge networks has been presented by
Zhang et al. [101]. In their paper, the authors introduced a novel, double-edge architecture
called DILIGENT, with edge computing devices being deployed across ground stations
and satellites. The proposed approach allows for cooperative learning of the system. It also
allows for intelligent task offloading, cooperative resource allocation, and more efficient
cache and content delivery. In their experimental simulation, the authors highlighted a
reduction in the average delay of a processing task of about 40%.

6.5. Autonomous and Intelligence-Assisted Vehicles

A combination of edge computing and machine learning is becoming very important
for autonomous and intelligence-assisted vehicles. One such use case has been described
by de Prado et al. [102]. In their work, the authors proposed and implemented several
machine learning models for steering autonomous mini vehicles. Such an approach aims
to reduce reaction time, preserve energy, decrease the volume of transmitted data, and
reduce dependency on unreliable connections to remote servers that usually perform
such computations. To achieve that, the authors took advantage of tinyML for building
machine learning models that are highly optimized for low-powered devices. The created
models use data from a linear camera mounted on the devices. While the training of
models happens on centralized servers, the prepared models could run entirely offline on
edge devices.

Another solution aimed at autonomous vehicles has been presented by Kocić et al. [103].
In their article, the authors focused on an autonomous driving intelligence module that can
be successfully used directly by embedded automotive platforms. The implementation uses
real-time input from the camera and outputs a steering wheel angle to ensure autonomous
driving capabilities. To make it possible to run on embedded devices, the authors proposed
a novel architecture called J-Net. During the experiments, it turned out to be faster by up to
280 times than the AlexNet architecture used for comparison. The authors concluded that
using lightweight solutions, such as the one developed as a part of their works, enables
direct deployment on low-powered embedded devices.

One of the most important objectives when building autonomous cars is ensuring the
safety of pedestrians and other vehicles. The system that allows for pedestrian detection
for autonomous vehicles has been developed and presented by Navarro et al. [104]. In

Electronics 2024, 13, 640 17 of 26

their article, the authors described a machine learning approach, using the LIDAR sensor’s
data, running in an edge computing manner.

A more advanced system aimed at detecting all kinds of road anomalies for au-
tonomous vehicles has been developed by Bibi et al. [105]. The authors implemented a
vehicular ad hoc network where autonomous cars can share detected anomalies with each
other, further improving road safety. Each autonomous vehicle is equipped with an edge
intelligence module that processes camera data and detects anomalies such as potholes,
road bumps, and cracks. The deep learning models are trained on centralized servers, but
the inference is made directly at the edge.

In their article, Ferdowsi et al. [106] focused on a more complex Intelligent Transporta-
tion System that takes advantage of multiple edge analytics nodes equipped with deep
learning modules. According to the authors, the use of deep learning techniques allows for
the optimization of latency, robustness, and reliability of the proposed system. In the paper,
the authors proposed algorithms that help with path planning and controlling autonomous
vehicles, or ones that improve the security and privacy of data.

Object detection is essential not only for autonomous cars but also for smaller vehicles
like autonomous robots. An approach for object detection for such small robots has been
introduced by Hu et al. [107]. In their article, the authors presented a novel object detection
algorithm based on YOLOv4 and GhostNet, performing training on a centralized server
and then deploying the trained model to run directly on an edge device, in this case, Jetson
TX2. In their work, Febbo et al. [108] also focused on small autonomous robots. In their
paper, the authors described how they designed both the robot and the control system for
it, based on a deep neural network model, running directly on board the vehicle, in this
case on Jetson Nano. The authors also took advantage of the transfer learning technique to
speed up the learning process.

Another class of autonomous vehicles is drones, which also require edge-based intelli-
gence for navigation purposes. One such system has been presented by Palossi et al. [109].
In their paper, the authors described a deep neural network navigation solution for au-
tonomous nano-drones. Due to their size, more powerful edge devices such as Jetson
Nano or Raspberry Pi cannot be used, which poses an even more significant challenge
regarding implementation. The author’s implementation can execute on COTS Crazyflie
2.0 nano-drone while consuming as low as 64 [mW], processing data from the onboard
ultralow-power camera. The author’s development enables such nano-drones to be au-
tonomous and carry out various tasks such as sensing and data collection.

Drones are also often used to help manage various disasters by assessing risks, pro-
viding real-time data about emergencies, and helping to understand better the scope of
the issues, which in the end, often can result in saving people’s lives. Alsamhi et al. [110]
presented their research on a robust system for data sharing between intelligent drones
and smart wearables used during disasters, highlighting how valuable such drones are
in various environmental disasters due to their capabilities to carry out further analysis
directly on the device, in an edge-based manner, including running machine learning
models. The authors evaluate the impact of network connectivity in the case of such events
and highlight that properly optimized transmission is crucial in enabling search–rescue
teams to operate efficiently.

One of the most critical tasks drones can carry out, especially in disastrous scenarios,
is surveillance with onboard cameras. However, doing so in real time can be challenging
due to unreliable network connections. To tackle that issue, Wang et al. [111] proposed an
architecture that allows for bandwidth-efficient real-time video analytics in an edge-based
manner. The authors proposed a system where a swarm of drones can store all needed
video footage and preprocess it in a way that would significantly reduce the amount of
data that need to be sent for further processing. The preprocessing pipeline can also take
advantage of deep learning techniques. In the paper, the authors introduced the use of
just-in-time learning directly on the drones to optimize the preprocessing pipeline and
further reduce the amount of data that need to be sent for additional processing. Then,

Electronics 2024, 13, 640 18 of 26

the prepared payload is sent to an edge server capable of performing full analytics of the
footage, taking advantage of deep neural network models.

7. Trends and Future Developments in Edge Computing

The landscape of edge computing is evolving rapidly, propelled by technological
advancements and changing business needs. Key trends and future developments include
the widespread expansion of edge infrastructure, driven by the proliferation of edge nodes
and micro data centers at the network edge. This expansion is closely intertwined with the
convergence of edge computing and 5G networks, which promise ultra-low latency and
high-bandwidth communication [112], enabling real-time applications like autonomous
vehicles and smart cities [113]. Additionally, the integration of artificial intelligence (AI)
and machine learning (ML) at the edge will enable faster decision-making and improved
operational efficiency [114]. The emergence of hybrid cloud–edge architectures will facili-
tate the seamless integration and orchestration of computing resources across distributed
environments, optimizing workload placement and resource utilization. There will also
be a heightened focus on enhancing security and privacy measures at the edge, including
advanced encryption and authentication mechanisms [115]. The development of edge–
native applications and services tailored for specific use cases and industries will accelerate,
delivering low-latency, high-performance experiences to end users. Moreover, edge or-
chestration platforms and management tools will become more sophisticated, enabling
the efficient provisioning, monitoring, and management of edge resources [116]. Edge
computing will play a crucial role in IoT and industrial IoT (IIoT) deployments, enabling
real-time data processing, analysis, and control [117]. Efforts to establish industry stan-
dards and promote interoperability between edge devices and platforms will intensify,
fostering collaboration and innovation. With these trends, edge computing is poised to
drive innovation, transform industries, and unlock new opportunities for businesses and
organizations to leverage its power for competitive advantage and value creation.

8. Discussion

Our review shows that edge computing has gained much popularity in the last decade
and, next to cloud computing, is now an important computing model that should be
considered while planning the construction of modern sensor-based and IoT-based systems.
This approach can be supportive for centralized computations and data processing, off-
loading the data centers from performing time-consuming operations for large numbers
of data batches generated by thousands of IoT devices, industrial, institutional, social,
and personal. The constantly increasing compute capabilities of edge devices make them
useful platforms not only for storing and processing local data but also for inferencing with
sophisticated machine learning models. Local data processing combined with the central
one increases the possibilities for scaling the solution proportionally to the IoT installations
mounted in a particular area. Locally performed computations with edge devices may also
increase the speed of decision-making while decreasing the intensity of communication and
reducing data transfers. This leads to significant savings in energy consumption, which is
especially necessary for edge devices working in difficult environmental conditions. Finally,
several use cases have confirmed that edge computing plays a vital role in data security
and privacy, which is critical not only in smart home solutions but also in sensitive areas of
manufacturing and extraction of natural resources.

Table 2 summarizes the application areas of edge computing and the benefits achieved
from using it in particular use cases. Based on our survey, we can see that edge intelli-
gence already plays an important role in healthcare systems, enables autonomous vehicles,
enables smart cities, and enhances industrial applications.

Our review has also revealed that there are still several challenges for edge computing.
IoT units working as edge devices still have limited computing capabilities compared
to traditional workstations and even virtual machines in the cloud that can be scaled
vertically and horizontally. This requires the prepared implementations to be tailored to the

Electronics 2024, 13, 640 19 of 26

capabilities of a particular edge device, sometimes requiring optimizations and trade-offs
that might result in reduced accuracy or degraded performance. The energy consumption
of edge devices is one of the main challenges that should be considered due to limited
battery capacities or power constraints flowing from the larger platforms the edge devices
are mounted on (e.g., autonomous guided vehicles). Finally, management of the fleet of
edge devices requires well-designed frameworks that implement industry standards and
can register, identify, and monitor the state of the whole fleet of connected edge devices.

Table 2. Summary of use cases for edge computing and machine learning

Paper Use Case Devices/Platforms Benefits

Hu et al. [62] Intelligent robot factory
Robot with Android
Edge server CentOS 7
Cloud Server Ubuntu 16.04

Reduced delay in real-time monitoring
Improved recognition accuracy
Improved resource management

Boguslawski
et al. [63]

Predictive maintenance
of rod pumps

Microsoft IoT Edge
Docker, Ubuntu Core Ability to operate offline

Matthews et al. [64]
Synchrophasor data
analysis Jetson Nano

Improved performance
Reduced energy consumption

Don et al. [65] Video streaming Edge server with Tesla V100 GPU Improved detection of network quality
Improved reliability of video stream

Zhang et al. [66] IIoT authentication Simulation Improved data security
and privacy

Shubyn et al. [67] Predictive maintenance Simulation
Improved prediction accuracy
Improved data security

Liu et al. [68] IIoT anomaly detection
Virtual edge server
with Ubuntu 18.04 Reduced communication overhead

Zeng et al. [69] IIoT image recognition
Raspberry Pi 3
Desktop PC edge server

Reduced latency
Improved performance

Li et al. [70] IIoT defect detection N/A Improved computing efficiency

Park et al. [71]
Predictive maintenance
Real-time fault detection Raspberry Pi 3

Improved performance
Reduced data analysis costs

Mohan et al. [72] Face mask detection
ARM Cortex M7
microcontroller

Ability to run on a microntroller
Over 99% accuracy

Faleh et al. [73] Face mask detection Jetson Nano
Ability to run on an edge device
Over 99% accuracy

Qayuum et al. [74] COVID-19 diagnostics N/A
Reduced data transmission
Reduced processing time
Improved data privacy

Adhikari et al. [75]
COVID-19 health
monitoring system N/A

Improved accuracy
Allows for immediate risk assessment

Velichko [76]
Diseases risk
assessment

Arduino Uno
Arduino Nano

Ability to run detection on
low-powered devices

Yang et al. [77]
Visual healthcare
platform N/A

Reduced amount of data sent
Improved efficiency

Mrozek et al. [78] Fall detection system iPhone 8
Reduced latency
Reduced data transfer

Ahmed et al. [79]
Monitoring patients’
discomfort N/A Allows for noninvasive monitoring

Electronics 2024, 13, 640 20 of 26

Table 2. Cont.

Paper Use Case Devices/Platforms Benefits

Liu et al. [80]
Food recognition for
dietary assessment

Android 6.0.1 device
Edge server with CentOS 7

Improved response time
Reduced data transfer

Xu et al. [81]
Healthcare-related
wearable devices

Nexus 6 with Android 7
LG Watch Urbane

Improved reaction time
Reduced energy consumption

Pramukantoro
et al. [82]

Real-time heartbeat
monitoring

Polar H10
Desktop PC edge server

Ability to perform
classification at the edge

Zanetti et al. [83]
Cognitive workload
monitoring

eGlass
ARM Cortex-M4

Ability to perform
classification at the edge

Puerta et al. [84] Seizure detection N/A
Low computational cost
High accuracy

Coelho et al. [85]
Human activity
recognition STM32F411VE

Ability to perform
classification at the edge
Energy efficiency

Arikumar et al. [86]
Person movement
identification N/A

Reduced computation cost
Reduced memory usage
Reduced data transmission

Zhang et al. [87]
Microseismic
monitoring platform

Xilinx FPGA
Intel-based edge server Reduced data transmission

Kumar et al. [88] Water monitoring
AquaSense Sensor
Arduino Uno

No need to communicate
with central servers

Liu et al. [89]
Smart city
energy management N/A

Reduced cost
Reduced latency

Cicirelli et al. [90]
Home energy
management Raspberry Pi Reduced energy consumption

Ali et al. [91]
Real-time object
detection

Raspberry Pi
Azure IoT Edge

Reduced latency
Improved scalability

Janjua et al. [92]
Dangerous event
detection in smart cities Raspberry Pi

Reduced data transmission
Reduced latency

Orfanidis et al. [93]
Long-range
emergency system ESP32

Ability to run detection
on an edge device

Nikouei et al. [94]
Real-time
human detection
in video streams

Raspberry Pi 3
Reduced data transmission
Reduced latency

Pang et al. [95] Surveillance N/A Improved performance

Dhakal et al. [96]
Home intrusion
monitoring OpenNet VM

Ability to operate
without central server

Sabella [98]
Fire and smoke
detection

Intel NCS2
Movidius NCS
Intel-based edge server

Improved response time

Silva et al. [99] Leaf disease detection Jetson Nano
Ability to operate without
centralized service

de Prado et al. [102]
Steering mini
autonomous vehicles

STM32L4
GAP8
NXP k64f

Reduced reaction time
Reduced data transmission
Reduced energy consumption

Kocic et al. [103]
Steering autonomous
vehicles Desktop PC edge server

Ability to execute
on edge devices

Navarro et al. [104] Pedestrian detection N/A Improved performance

Electronics 2024, 13, 640 21 of 26

Table 2. Cont.

Paper Use Case Devices/Platforms Benefits

Bibi et al. [105]
Vehicular ad-hoc
network for anomalies Simulation Improved road safety

Ferdowsi et al. [106]
Intelligent transportation
system (ITS) N/A

Reduced latency
Improved reliability

Hu et al. [107]
Object detection for
autonomous vehicles Jetson TX2 Improved detection performance

Febbo et al. [108] Autonomous robots Jetson Nano
Ability to operate without
centralized service

Palossi et al. [109]
Autonomous
nano-drones

GAP8
COTS Crazyflie 2.0 Ability to operate autonomously

Alsamhi et al. [110]
Data sharing between
drones and wearables Simulation

Optimized data transmission
Reduced latency

Zhu et al. [100]
Task offloading in
satellite-terrestrial
computing networks

Simulation Reduced runtime consumption

Jiang et al. [25] Electricity theft detection Simulation Ability to take advantage of federated learning

Zhang et al. [101]
Task offloading
cache content delivery Simulation Reduced average delay of task processing

Wang et al. [111] Drone surveillance
Intel Aero Drone
Jetson TX2 Reduced data transmission

Author Contributions: Conceptualization, P.G. and D.M.; methodology, formal analysis, D.M.;
investigation, P.G.; resources, P.G. and D.M.; writing—original draft preparation, P.G. and D.M.;
writing—review and editing, P.G. and D.M.; visualization, P.G.; supervision, D.M.; project adminis-
tration, D.M.; funding acquisition, D.M. All authors have read and agreed to the published version of
the manuscript.

Funding: The research was supported by the Norway Grants 2014–2021 operated by the Na-
tional Centre for Research and Development under the project Automated Guided Vehicles in-
tegrated with Collaborative Robots for Smart Industry Perspective (Project Contract no. NOR/POL-
NOR/CoBotAGV/0027/2019-00), partially by a pro-quality grant for highly scored publications or
issued patents (grant No 02/100/RGJ23/0026), Statutory Research funds of Department of Applied
Informatics, Silesian University of Technology, Gliwice, Poland (grants No. 02/100/BK_24/0035),
Polish Ministry of Science and Higher Education as a part of the CyPhiS program at the Silesian
University of Technology, Gliwice, Poland (Contract No. POWR.03.02.00-00-I007/17-00), and partially
by the ReActive Too project that has received funding from the European Union’s Horizon 2020
Research, Innovation and Staff Exchange Programme under the Marie Skłodowska-Curie Action
(Grant Agreement No. 871163).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AGV Autonomous Guided Vehicles
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
AWS Amazon Web Services
BLE Bluetooth Low Energy
CNN Convolutional Neural Network
CPU Central Processing Unit
DL Deep Learning

Electronics 2024, 13, 640 22 of 26

DSP Digital Signal Processing
ELL Embedded Learning Library
GPU Graphics Processing Unit
IIoT Industrial Internet of Things
IoT Internet of Things
LSTM Long Short-Term Memory
MES Manufacturing Execution System
ML Machine Learning
MLP Multi-Layer Perception
MQTT Message Queuing Telemetry Transport
NLP Natural Language Processing
NPU Neural Processing Unit
OPC UA OPC Unified Architecture
PdM Predictive Maintenance
PLC Programmable Logical Controller
PSO Particle Swarm Optimization
RFID Radio-Frequency Identification
RNN Recurrent Neural Network
SCADA Supervisory Control And Data Acquisition
SDK Software Development Kit
SQL Structured Query Language
STFT Short-Time Fourier Transform
SVM Support Vector Machine
TPU Tensor Processing Unit
TSDB Time-Series Database
UML Unified Modeling Language
VPU Visual Processing Unit
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol

References
1. Paul, A.; Pinjari, H.; Hong, W.H.; Seo, H.; Rho, S. Fog Computing-Based IoT for Health Monitoring System. J. Sens. 2018,

2018, 1386470. [CrossRef]
2. Krasniqi, X.; Hajrizi, E. Use of IoT Technology to Drive the Automotive Industry from Connected to Full Autonomous Vehicles.

IFAC-PapersOnLine 2016, 49, 269–274. [CrossRef]
3. Renart, E.G.; Diaz-Montes, J.; Parashar, M. Data-Driven Stream Processing at the Edge. In Proceedings of the 2017 IEEE 1st

International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14–15 May 2017 ; pp. 31–40. [CrossRef]
4. Liu, X.; Nielsen, P. Air Quality Monitoring System and Benchmarking. In Big Data Analytics and Knowledge Discovery; Springer:

Cham, Switzerland, 2017; pp. 459–470. [CrossRef]
5. Fadhel, M.; Sekerinski, E.; Yao, S. A Comparison of Time Series Databases for Storing Water Quality Data. In Mobile Technologies

and Applications for the Internet of Things; Springer: Cham, Switzerland, 2019; pp. 302–313. [CrossRef]
6. Greco, L.; Ritrovato, P.; Xhafa, F. An edge-stream computing infrastructure for real-time analysis of wearable sensors data. Future

Gener. Comput. Syst. 2019, 93, 515–528. [CrossRef]
7. Singh, S. Optimize cloud computations using edge computing. In Proceedings of the 2017 International Conference on Big Data,

IoT and Data Science (BID), Pune, India, 20–22 December 2017; pp. 49–53. [CrossRef]
8. Khan, L.U.; Yaqoob, I.; Tran, N.H.; Kazmi, S.M.A.; Dang, T.N.; Hong, C.S. Edge-Computing-Enabled Smart Cities: A Comprehen-

sive Survey. IEEE Internet Things J. 2020, 7, 10200–10232. [CrossRef]
9. Dong, P.; Ning, Z.; Obaidat, M.S.; Jiang, X.; Guo, Y.; Hu, X.; Hu, B.; Sadoun, B. Edge Computing Based Healthcare Systems:

Enabling Decentralized Health Monitoring in Internet of Medical Things. IEEE Netw. 2020, 34, 254–261. [CrossRef]
10. Singh, A.; Chatterjee, K. Securing smart healthcare system with edge computing. Comput. Secur. 2021, 108, 102353. [CrossRef]
11. Stankovski, S.; Ostojić, G.; Baranovski, I.; Babić, M.; Stanojević, M. The Impact of Edge Computing on Industrial Automation.

In Proceedings of the 2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and
Herzegovina, 18–20 March 2020; pp. 1–4. [CrossRef]

12. Benecki, P.; Kostrzewa, D.; Grzesik, P.; Shubyn, B.; Mrozek, D. Forecasting of Energy Consumption for Anomaly Detection in
Automated Guided Vehicles: Models and Feature Selection. In Proceedings of the 2022 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), Prague, Czech Republic, 9–12 October 2022.

13. Le, N.; Ou, Y. Incorporating efficient radial basis function networks and significant amino acid pairs for predicting GTP binding
sites in transport proteins. Bmc Bioinform. 2016, 17 (Suppl. S19), 183–192. [CrossRef]

http://doi.org/10.1155/2018/1386470
http://dx.doi.org/10.1016/j.ifacol.2016.11.078
http://dx.doi.org/10.1109/ICFEC.2017.18
http://dx.doi.org/10.1007/978-3-319-64283-3_34
http://dx.doi.org/10.1007/978-3-030-11434-3_33
http://dx.doi.org/10.1016/j.future.2018.10.058
http://dx.doi.org/10.1109/BID.2017.8336572
http://dx.doi.org/10.1109/JIOT.2020.2987070
http://dx.doi.org/10.1109/MNET.011.1900636
http://dx.doi.org/10.1016/j.cose.2021.102353
http://dx.doi.org/10.1109/INFOTEH48170.2020.9066341
http://dx.doi.org/10.1186/s12859-016-1369-y

Electronics 2024, 13, 640 23 of 26

14. Le, N.Q.K.; Nguyen, T.T.D.; Ou, Y.Y. Identifying the molecular functions of electron transport proteins using radial basis function
networks and biochemical properties. J. Mol. Graph. Model. 2017, 73, 166–178. [CrossRef]

15. Cupek, R.; Drewniak, M.; Fojcik, M.; Kyrkjebø, E.; Lin, J.C.W.; Mrozek, D.; Øvsthus, K.; Ziebinski, A. Autonomous Guided
Vehicles for Smart Industries–The State-of-the-Art and Research Challenges. In Proceedings of the Computational Science–ICCS
2020, Amsterdam, The Netherlands, 3–5 June 2020; pp. 330–343.

16. Grzesik, P.; Benecki, P.; Kostrzewa, D.; Shubyn, B.; Mrozek, D. On-Edge Aggregation Strategies over Industrial Data Produced by
Autonomous Guided Vehicles. In Proceedings of the Computational Science–ICCS 2022, London, UK, 21–23 June 2022; Groen, D.,
de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A., Eds.; Springer: Cham, Switzerland, 2022;
pp. 458–471.

17. Steclik, T.; Cupek, R.; Drewniak, M. Automatic grouping of production data in Industry 4.0: The use case of internal logistics
systems based on Automated Guided Vehicles. J. Comput. Sci. 2022, 62, 101693. [CrossRef]

18. Wang, J.; Pan, J.; Esposito, F.; Calyam, P.; Yang, Z.; Mohapatra, P. Edge Cloud Offloading Algorithms: Issues, Methods, and
Perspectives. ACM Comput. Surv. 2019, 52, 1–23. [CrossRef]

19. Grzesik, P.; Mrozek, D. Accelerating Edge Metagenomic Analysis with Serverless-Based Cloud Offloading. In Proceedings of the
Computational Science–ICCS 2022, London, UK, 21–23 June 2022; Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya,
V.V., Dongarra, J.J., Sloot, P.M.A., Eds.; Springer: Cham, Switzerland, 2022; pp. 481–492.

20. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv.
Tutorials 2017, 19, 1628–1656. [CrossRef]

21. Ribeiro, S.L.; Nakamura, E.T. Privacy Protection with Pseudonymization and Anonymization In a Health IoT System: Results
from OCARIoT. In Proceedings of the 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE),
Athens, Greece, 28–30 October 2019; pp. 904–908. [CrossRef]

22. Silveira, M.M.; Portela, A.L.; Menezes, R.A.; Souza, M.S.; Silva, D.S.; Mesquita, M.C.; Gomes, R.L. Data Protection based on
Searchable Encryption and Anonymization Techniques. In Proceedings of the NOMS 2023–2023 IEEE/IFIP Network Operations
and Management Symposium, Miami, FL, USA, 8–12 May 2023; pp. 1–5. [CrossRef]

23. Ma, R.; Feng, T.; Fang, J. Edge Computing Assisted an Efficient Privacy Protection Layered Data Aggregation Scheme for IIoT.
Secur. Commun. Netw. 2021, 2021, 7776193. [CrossRef]

24. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol.
(TIST) 2019, 10, 1–19. [CrossRef]

25. Jiang, W.; Han, H.; Zhang, Y.; Mu, J. Federated split learning for sequential data in satellite–terrestrial integrated networks. Inf.
Fusion 2024, 103, 102141. [CrossRef]

26. Pasquini, D.; Francati, D.; Ateniese, G. Eluding Secure Aggregation in Federated Learning via Model Inconsistency. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, CA, USA, 7–11
November 2022; CCS’22; pp. 2429–2443. [CrossRef]

27. Tao, Y.; Xu, P.; Jin, H. Secure Data Sharing and Search for Cloud-Edge-Collaborative Storage. IEEE Access 2020, 8, 15963–15972.
[CrossRef]

28. Zheng, K.; Ding, C.; Wang, J. A Secure Data-Sharing Scheme for Privacy-Preserving Supporting Node–Edge–Cloud
Collaborative Computation. Electronics 2023, 12, 2737. [CrossRef]

29. Roman, R.; Lopez, J.; Mambo, M. Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges.
Future Gener. Comput. Syst. 2018, 78, 680–698. [CrossRef]

30. Yahuza, M.; Idris, M.Y.I.B.; Wahab, A.W.B.A.; Ho, A.T.S.; Khan, S.; Musa, S.N.B.; Taha, A.Z.B. Systematic Review on Security and
Privacy Requirements in Edge Computing: State of the Art and Future Research Opportunities. IEEE Access 2020, 8, 76541–76567.
[CrossRef]

31. Gowers, G.O.F.; Vince, O.; Charles, J.H.; Klarenberg, I.; Ellis, T.; Edwards, A. Entirely Off-Grid and Solar-Powered DNA
Sequencing of Microbial Communities during an Ice Cap Traverse Expedition. Genes 2019, 10, 902. [CrossRef] [PubMed]

32. Xu, J.; Chen, L.; Ren, S. Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing. IEEE
Trans. Cogn. Commun. Netw. 2017, 3, 361–373. [CrossRef]

33. Mao, Y.; Zhang, J.; Letaief, K.B. Dynamic Computation Offloading for Mobile-Edge Computing With Energy Harvesting Devices.
IEEE J. Sel. Areas Commun. 2016, 34, 3590–3605. [CrossRef]

34. Ku, Y.J.; Chiang, P.H.; Dey, S. Quality of Service Optimization for Vehicular Edge Computing with Solar-Powered Road Side Units.
In Proceedings of the 2018 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou,
China, 30 July 2018–2 August 2018; pp. 1–10. [CrossRef]

35. Li, B.; Fei, Z.; Shen, J.; Jiang, X.; Zhong, X. Dynamic Offloading for Energy Harvesting Mobile Edge Computing: Architecture,
Case Studies, and Future Directions. IEEE Access 2019, 7, 79877–79886. [CrossRef]

36. Zhou, H.; Jiang, K.; Liu, X.; Li, X.; Leung, V.C.M. Deep Reinforcement Learning for Energy-Efficient Computation Offloading in
Mobile-Edge Computing. IEEE Internet Things J. 2022, 9, 1517–1530. [CrossRef]

37. Donta, P.K.; Dustdar, S. Towards Intelligent Data Protocols for the Edge. In Proceedings of the 2023 IEEE International Conference
on Edge Computing and Communications (EDGE), Chicago, IL, USA, 2–8 July 2023. [CrossRef]

38. Li, B.; He, Q.; Cui, G.; Xia, X.; Chen, F.; Jin, H.; Yang, Y. READ: Robustness-Oriented Edge Application Deployment in Edge
Computing Environment. IEEE Trans. Serv. Comput. 2022, 15, 1746–1759. [CrossRef]

http://dx.doi.org/10.1016/j.jmgm.2017.01.003
http://dx.doi.org/10.1016/j.jocs.2022.101693
http://dx.doi.org/10.1145/3214306
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/BIBE.2019.00169
http://dx.doi.org/10.1109/NOMS56928.2023.10154280
http://dx.doi.org/10.1155/2021/7776193
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1016/j.inffus.2023.102141
http://dx.doi.org/10.1145/3548606.3560557
http://dx.doi.org/10.1109/ACCESS.2019.2962600
http://dx.doi.org/10.3390/electronics12122737
http://dx.doi.org/10.1016/j.future.2016.11.009
http://dx.doi.org/10.1109/ACCESS.2020.2989456
http://dx.doi.org/10.3390/genes10110902
http://www.ncbi.nlm.nih.gov/pubmed/31703372
http://dx.doi.org/10.1109/TCCN.2017.2725277
http://dx.doi.org/10.1109/JSAC.2016.2611964
http://dx.doi.org/10.1109/ICCCN.2018.8487353
http://dx.doi.org/10.1109/ACCESS.2019.2922362
http://dx.doi.org/10.1109/JIOT.2021.3091142
http://dx.doi.org/10.1109/EDGE60047.2023.00060
http://dx.doi.org/10.1109/TSC.2020.3015316

Electronics 2024, 13, 640 24 of 26

39. Song, H.; Dautov, R.; Ferry, N.; Solberg, A.; Fleurey, F. Model-Based Fleet Deployment of Edge Computing Applications. In
Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, Virtual
Event, 16–23 October 2020; MODELS’20; pp. 132–142. [CrossRef]

40. Wang, E.; Li, D.; Dong, B.; Zhou, H.; Zhu, M. Flat and hierarchical system deployment for edge computing systems. Future Gener.
Comput. Syst. 2020, 105, 308–317. [CrossRef]

41. Microsoft Azure IoT Edge Documentation. Available online: https://azure.microsoft.com/en-us/products/iot-edge/ (accessed
on 24 November 2022).

42. AWS IoT Greengrass Documentation. Available online: https://docs.aws.amazon.com/greengrass/index.html (accessed on
24 November 2022).

43. Applying Federated Learning for ML at the Edge. Available online: https://aws.amazon.com/blogs/architecture/applying-
federated-learning-for-ml-at-the-edge/ (accessed on 24 November 2022).

44. Balena Documentation. Available online: https://www.balena.io/docs/learn/welcome/primer/ (accessed on 24 November 2022).
45. Balena Labs Projects Repository. Available online: https://github.com/balena-labs-projects (accessed on 24 November 2022).
46. KubeEdge Documentation. Available online: https://kubeedge.io/en/ (accessed on 24 November 2022).
47. Wang, S.; Hu, Y.; Wu, J. KubeEdge.AI: AI Platform for Edge Devices. arXiv 2020, arXiv:2007.09227.
48. EdgeX Foundry Documentation. Available online: https://www.edgexfoundry.org/why-edgex/ (accessed on 24 November 2022).
49. TensorFlow Lite Documentation. Available online: https://www.tensorflow.org/lite (accessed on 24 November 2022).
50. Röddiger, T.; King, T.; Lepold, P.; Münk, J.; Du, S.; Riedel, T.; Beigl, M. edge-ml.org-End-To-End Embedded Machine Learning.

Available online: https://edge-ml.org/ (accessed on 24 November 2022).
51. Darvish Rouhani, B.; Mirhoseini, A.; Koushanfar, F. TinyDL: Just-in-time deep learning solution for constrained embedded

systems. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA,
28–31 May 2017; pp. 1–4. [CrossRef]

52. PyTorch Mobile Documentation. Available online: https://pytorch.org/mobile/home/ (accessed on 24 November 2022).
53. CoreML Documentation. Available online: https://developer.apple.com/documentation/coreml (accessed on 24 November 2022).
54. ML Kit for Firebase Documentation. Available online: https://firebase.google.com/docs/ml-kit. (accessed on 24 November 2022).
55. Chen, T.; Li, M.; Li, Y.; Lin, M.; Wang, N.; Wang, M.; Xiao, T.; Xu, B.; Zhang, C.; Zhang, Z. MXNet: A Flexible and Efficient

Machine Learning Library for Heterogeneous Distributed Systems. arXiv 2015, arXiv:1512.01274.
56. Apache MXNet Documentation. Available online: https://mxnet.apache.org/versions/1.9.0/api (accessed on 24 November 2022).
57. Microsoft Embedded Learning Library Documentation. Available online: https://microsoft.github.io/ELL/ (accessed on

24 November 2022).
58. Zhao, Z.; Barijough, K.M.; Gerstlauer, A. DeepThings: Distributed Adaptive Deep Learning Inference on Resource-Constrained

IoT Edge Clusters. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 2348–2359. [CrossRef]
59. Reference Implementation in C of DeepThigns Framework. Available online: https://github.com/zoranzhao/DeepThings

(accessed on 24 November 2022).
60. Yao, S.; Zhao, Y.; Zhang, A.; Su, L.; Abdelzaher, T. DeepIoT: Compressing Deep Neural Network Structures for Sensing Systems

with a Compressor-Critic Framework. In Proceedings of the Proceedings of the 15th ACM Conference on Embedded Network
Sensor Systems, Delft, The Netherlands, 6–8 November 2017; SenSys’17. [CrossRef]

61. Reference Implementation of DeepIoT Framework. Available online: https://github.com/yscacaca/DeepIoT (accessed on
24 November 2022).

62. Hu, L.; Miao, Y.; Wu, G.; Hassan, M.M.; Humar, I. iRobot-Factory: An intelligent robot factory based on cognitive manufacturing
and edge computing. Future Gener. Comput. Syst. 2019, 90, 569–577. [CrossRef]

63. Boguslawski, B.; Boujonnier, M.; Bissuel-Beauvais, L.; Saghir, F.; Sharma, R. IIoT Edge Analytics: Deploying Machine Learning at
the Wellhead to Identify Rod Pump Failure. In Proceedings of the SPE Middle East Artificial Lift Conference and Exhibition,
Manama, Bahrain, 28–29 November 2018. [CrossRef]

64. Matthews, S.J.; Leger, A.S. Energy-Efficient Analysis of Synchrophasor Data using the NVIDIA Jetson Nano. In Proceedings of
the 2020 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 22–24 September 2020; pp. 1–7.
[CrossRef]

65. Dou, W.; Zhao, X.; Yin, X.; Wang, H.; Luo, Y.; Qi, L. Edge Computing-Enabled Deep Learning for Real-time Video Optimization
in IIoT. IEEE Trans. Ind. Inform. 2021, 17, 2842–2851. [CrossRef]

66. Zhang, P.; Sun, H.; Situ, J.; Jiang, C.; Xie, D. Federated Transfer Learning for IIoT Devices With Low Computing Power Based on
Blockchain and Edge Computing. IEEE Access 2021, 9, 98630–98638. [CrossRef]

67. Shubyn, B.; Mrozek, D.; Maksymyuk, T.; Sunderam, V.; Kostrzewa, D.; Grzesik, P.; Benecki, P. Federated Learning for Anomaly
Detection in Industrial IoT-Enabled Production Environment Supported by Autonomous Guided Vehicles. In Proceedings of the
Computational Science–ICCS 2022: 22nd International Conference, London, UK, 21–23 June 2022; Proceedings, Part IV; Springer:
Cham, Switzerland , 2022; pp. 409–421. [CrossRef]

68. Liu, Y.; Garg, S.; Nie, J.; Zhang, Y.; Xiong, Z.; Kang, J.; Hossain, M.S. Deep Anomaly Detection for Time-Series Data in Industrial
IoT: A Communication-Efficient On-Device Federated Learning Approach. IEEE Internet Things J. 2021, 8, 6348–6358. [CrossRef]

69. Zeng, L.; Li, E.; Zhou, Z.; Chen, X. Boomerang: On-Demand Cooperative Deep Neural Network Inference for Edge Intelligence
on the Industrial Internet of Things. IEEE Netw. 2019, 33, 96–103. [CrossRef]

http://dx.doi.org/10.1145/3365438.3410951
http://dx.doi.org/10.1016/j.future.2019.12.004
https://azure.microsoft.com/en-us/products/iot-edge/
https://docs.aws.amazon.com/greengrass/index.html
https://aws.amazon.com/blogs/architecture/applying-federated-learning-for-ml-at-the-edge/
https://aws.amazon.com/blogs/architecture/applying-federated-learning-for-ml-at-the-edge/
https://www.balena.io/docs/learn/welcome/primer/
https://github.com/balena-labs-projects
https://kubeedge.io/en/
https://www.edgexfoundry.org/why-edgex/
https://www.tensorflow.org/lite
https://edge-ml.org/
http://dx.doi.org/10.1109/ISCAS.2017.8050343
https://pytorch.org/mobile/home/
https://developer.apple.com/documentation/coreml
https://firebase.google.com/docs/ml-kit
https://mxnet.apache.org/versions/1.9.0/api
https://microsoft.github.io/ELL/
http://dx.doi.org/10.1109/TCAD.2018.2858384
https://github.com/zoranzhao/DeepThings
http://dx.doi.org/10.1145/3131672.3131675
https://github.com/yscacaca/DeepIoT
http://dx.doi.org/10.1016/j.future.2018.08.006
http://dx.doi.org/10.2118/192513-MS
http://dx.doi.org/10.1109/HPEC43674.2020.9286226
http://dx.doi.org/10.1109/TII.2020.3020386
http://dx.doi.org/10.1109/ACCESS.2021.3095078
http://dx.doi.org/10.1007/978-3-031-08760-8_35
http://dx.doi.org/10.1109/JIOT.2020.3011726
http://dx.doi.org/10.1109/MNET.001.1800506

Electronics 2024, 13, 640 25 of 26

70. Li, L.; Ota, K.; Dong, M. Deep Learning for Smart Industry: Efficient Manufacture Inspection System With Fog Computing. IEEE
Trans. Ind. Inform. 2018, 14, 4665–4673. [CrossRef]

71. Park, D.; Kim, S.; An, Y.; Jung, J.Y. LiReD: A Light-Weight Real-Time Fault Detection System for Edge Computing Using LSTM
Recurrent Neural Networks. Sensors 2018, 18, 2110. [CrossRef] [PubMed]

72. Mohan, P.; Paul, A.; Chirania, A. A Tiny CNN Architecture for Medical Face Mask Detection for Resource-Constrained Endpoints.
In Innovations in Electrical and Electronic Engineering; Springer: Singapore, 2021; pp. 657–670. [CrossRef]

73. Faleh, N.; Abdul Hassan, N.; Abed, A.; Abdalla, T. Face mask detection using deep learning on NVIDIA Jetson Nano. Int. J.
Electr. Comput. Eng. 2022, 12, 5427–5434. [CrossRef]

74. Qayyum, A.; Ahmad, K.; Ahsan, M.A.; Al-Fuqaha, A.; Qadir, J. Collaborative Federated Learning for Healthcare: Multi-Modal
COVID-19 Diagnosis at the Edge. IEEE Open J. Comput. Soc. 2022, 3, 172–184. [CrossRef]

75. Adhikari, M.; Munusamy, A. iCovidCare: Intelligent health monitoring framework for COVID-19 using ensemble random forest
in edge networks. Internet Things 2021, 14, 100385. [CrossRef]

76. Velichko, A. A Method for Medical Data Analysis Using the LogNNet for Clinical Decision Support Systems and Edge Computing
in Healthcare. Sensors 2021, 21, 6209. [CrossRef]

77. Yang, Z.; Liang, B.; Ji, W. An Intelligent End–Edge–Cloud Architecture for Visual IoT-Assisted Healthcare Systems. IEEE Internet
Things J. 2021, 8, 16779–16786. [CrossRef]

78. Mrozek, D.; Koczur, A.; Małysiak-Mrozek, B. Fall detection in older adults with mobile IoT devices and machine learning in the
cloud and on the edge. Inf. Sci. 2020, 537, 132–147. [CrossRef]

79. Ahmed, I.; Jeon, G.; Piccialli, F. A Deep-Learning-Based Smart Healthcare System for Patient’s Discomfort Detection at the Edge
of Internet of Things. IEEE Internet Things J. 2021, 8, 10318–10326. [CrossRef]

80. Liu, C.; Cao, Y.; Luo, Y.; Chen, G.; Vokkarane, V.; Yunsheng, M.; Chen, S.; Hou, P. A New Deep Learning-Based Food Recognition
System for Dietary Assessment on An Edge Computing Service Infrastructure. IEEE Trans. Serv. Comput. 2018, 11, 249–261.
[CrossRef]

81. Xu, M.; Qian, F.; Zhu, M.; Huang, F.; Pushp, S.; Liu, X. DeepWear: Adaptive Local Offloading for On-Wearable Deep Learning.
IEEE Trans. Mob. Comput. 2020, 19, 314–330. [CrossRef]

82. Pramukantoro, E.S.; Gofuku, A. A real-time heartbeat monitoring using wearable device and machine learning. In Proceedings
of the 2022 IEEE 4th Global Conference on Life Sciences and Technologies (LifeTech), Osaka, Japan, 7–9 March 2022; pp. 270–272.
[CrossRef]

83. Zanetti, R.; Arza, A.; Aminifar, A.; Atienza, D. Real-Time EEG-Based Cognitive Workload Monitoring on Wearable Devices. IEEE
Trans. Biomed. Eng. 2022, 69, 265–277. [CrossRef]

84. Puerta, G.; Le Mouël, F.; Carrillo, O. Machine Learning Models for Seizure Detection: Deployment Insights for e-Health IoT
Platform. In Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI’2021), Virtual,
27–30 July 2021.

85. Coelho, Y.L.; Santos, F.d.A.S.d.; Frizera-Neto, A.; Bastos-Filho, T.F. A Lightweight Framework for Human Activity Recognition
on Wearable Devices. IEEE Sen. J. 2021, 21, 24471–24481. [CrossRef]

86. Arikumar, K.S.; Prathiba, S.B.; Alazab, M.; Gadekallu, T.R.; Pandya, S.; Khan, J.M.; Moorthy, R.S. FL-PMI: Federated Learning-
Based Person Movement Identification through Wearable Devices in Smart Healthcare Systems. Sensors 2022, 22, 1377. [CrossRef]
[PubMed]

87. Zhang, X.; Lin, J.; Chen, Z.; Sun, F.; Zhu, X.; Fang, G. An Efficient Neural-Network-Based Microseismic Monitoring Platform for
Hydraulic Fracture on an Edge Computing Architecture. Sensors 2018, 18, 1828. [CrossRef]

88. Kumar, Y.; Udgata, S.K. Machine learning model for IoT-Edge device based Water Quality Monitoring. In Proceedings of the
IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), New York, NY, USA,
2–5 May 2022; pp. 1–6. [CrossRef]

89. Liu, Y.; Yang, C.; Jiang, L.; Xie, S.; Zhang, Y. Intelligent Edge Computing for IoT-Based Energy Management in Smart Cities. IEEE
Netw. 2019, 33, 111–117. [CrossRef]

90. Cicirelli, F.; Gentile, A.F.; Greco, E.; Guerrieri, A.; Spezzano, G.; Vinci, A. An Energy Management System at the Edge based on
Reinforcement Learning. In Proceedings of the 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and
Real Time Applications (DS-RT), Prague, Czech Republic, 14–16 September 2020; pp. 1–8. [CrossRef]

91. Ali, O.; Ishak, M.K. Bringing intelligence to IoT Edge: Machine Learning based Smart City Image Classification using Microsoft
Azure IoT and Custom Vision. J. Phys. Conf. Ser. 2020, 1529, 042076. [CrossRef]

92. Janjua, Z.H.; Vecchio, M.; Antonini, M.; Antonelli, F. IRESE: An intelligent rare-event detection system using unsupervised
learning on the IoT edge. Eng. Appl. Artif. Intell. 2019, 84, 41–50. [CrossRef]

93. Orfanidis, C.; Hassen, R.B.H.; Kwiek, A.; Fafoutis, X.; Jacobsson, M. A Discreet Wearable Long-Range Emergency System Based
on Embedded Machine Learning. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events (PerCom Workshops), Kassel, Germany, 22–26 March 2021; pp. 182–187.
[CrossRef]

94. Nikouei, S.Y.; Chen, Y.; Song, S.; Xu, R.; Choi, B.; Faughnan, T.R. Real-Time Human Detection as an Edge Service Enabled by a
Lightweight CNN. arXiv 2018, arXiv:1805.00330.

http://dx.doi.org/10.1109/TII.2018.2842821
http://dx.doi.org/10.3390/s18072110
http://www.ncbi.nlm.nih.gov/pubmed/29966374
http://dx.doi.org/10.1007/978-981-16-0749-3_52
http://dx.doi.org/10.11591/ijece.v12i5.pp5427-5434
http://dx.doi.org/10.1109/OJCS.2022.3206407
http://dx.doi.org/10.1016/j.iot.2021.100385
http://dx.doi.org/10.3390/s21186209
http://dx.doi.org/10.1109/JIOT.2021.3052778
http://dx.doi.org/10.1016/j.ins.2020.05.070
http://dx.doi.org/10.1109/JIOT.2021.3052067
http://dx.doi.org/10.1109/TSC.2017.2662008
http://dx.doi.org/10.1109/TMC.2019.2893250
http://dx.doi.org/10.1109/LifeTech53646.2022.9754747
http://dx.doi.org/10.1109/TBME.2021.3092206
http://dx.doi.org/10.1109/JSEN.2021.3113908
http://dx.doi.org/10.3390/s22041377
http://www.ncbi.nlm.nih.gov/pubmed/35214282
http://dx.doi.org/10.3390/s18061828
http://dx.doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798212
http://dx.doi.org/10.1109/MNET.2019.1800254
http://dx.doi.org/10.1109/DS-RT50469.2020.9213697
http://dx.doi.org/10.1088/1742-6596/1529/4/042076
http://dx.doi.org/10.1016/j.engappai.2019.05.011
http://dx.doi.org/10.1109/PerComWorkshops51409.2021.9430981

Electronics 2024, 13, 640 26 of 26

95. Pang, S.; Qiao, S.; Song, T.; Zhao, J.; Zheng, P. An Improved Convolutional Network Architecture Based on Residual Modeling
for Person Re-Identification in Edge Computing. IEEE Access 2019, 7, 106748–106759. [CrossRef]

96. Dhakal, A.; Ramakrishnan, K.K. Machine learning at the network edge for automated home intrusion monitoring. In Proceedings
of the 2017 IEEE 25th International Conference on Network Protocols (ICNP), Toronto, ON, Canada, 10–13 October 2017; pp. 1–6.
[CrossRef]

97. Fan, X.; Xiang, C.; Gong, L.; He, X.; Chen, C.; Huang, X. UrbanEdge: Deep Learning Empowered Edge Computing for Urban IoT
Time Series Prediction. In Proceedings of the ACM Turing Celebration Conference-China, Chengdu, China, 17–19 May 2009;
ACM TURC’19. [CrossRef]

98. Sabbella, S.R. Fire and Smoke Detection for Smart Cities Using Deep Neural Networks and Edge Computing on Embedded
Sensors. Ph.D. Thesis, Sapienza University of Rome, Rome, Italy, 2020. [CrossRef]

99. Silva, M.C.; da Silva, J.C.F.; Delabrida, S.; Bianchi, A.G.C.; Ribeiro, S.P.; Silva, J.S.; Oliveira, R.A.R. Wearable Edge AI Applications
for Ecological Environments. Sensors 2021, 21, 82. [CrossRef]

100. Zhu, D.; Liu, H.; Li, T.; Sun, J.; Liang, J.; Zhang, H.; Geng, L.; Liu, Y. Deep Reinforcement Learning-based Task Offloading in
Satellite-Terrestrial Edge Computing Networks. In Proceedings of the 2021 IEEE Wireless Communications and Networking
Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–7. [CrossRef]

101. Zhang, J.; Zhang, X.; Wang, P.; Liu, L.; Wang, Y. Double-edge intelligent integrated satellite terrestrial networks. China Commun.
2020, 17, 128–146. [CrossRef]

102. de Prado, M.; Rusci, M.; Capotondi, A.; Donze, R.; Benini, L.; Pazos, N. Robustifying the Deployment of tinyML Models for
Autonomous Mini-Vehicles. Sensors 2021, 21, 1339. [CrossRef] [PubMed]

103. Kocić, J.; Jovičić, N.; Drndarević, V. An End-to-End Deep Neural Network for Autonomous Driving Designed for Embedded
Automotive Platforms. Sensors 2019, 19, 2064. [CrossRef] [PubMed]

104. Navarro, P.J.; Fernández, C.; Borraz, R.; Alonso, D. A Machine Learning Approach to Pedestrian Detection for Autonomous
Vehicles Using High-Definition 3D Range Data. Sensors 2017, 17, 18. [CrossRef] [PubMed]

105. Bibi, R.; Saeed, Y.; Zeb, A.; Ghazal, T.; Said, R.; Abbas, S.; Ahmad, M.; Khan, M. Edge AI-Based Automated Detection and
Classification of Road Anomalies in VANET Using Deep Learning. Comput. Intell. Neurosci. 2021, 2021, 6262194. [CrossRef]

106. Ferdowsi, A.; Challita, U.; Saad, W. Deep Learning for Reliable Mobile Edge Analytics in Intelligent Transportation Systems.
IEEE Veh. Technol. Mag. 2017, 14, 62–70. [CrossRef]

107. Hu, Y.; Liu, G.; Chen, Z.; Guo, J. Object Detection Algorithm for Wheeled Mobile Robot Based on an Improved YOLOv4. Appl.
Sci. 2022, 12, 4769. [CrossRef]

108. Febbo, R.; Flood, B.; Halloy, J.; Lau, P.; Wong, K.; Ayala, A. Autonomous Vehicle Control Using a Deep Neural Network and Jetson
Nano. In Proceedings of the Practice and Experience in Advanced Research Computing, Portland, OR, USA, 26–30 July 2020;
PEARC’20; pp. 333–338. [CrossRef]

109. Palossi, D.; Loquercio, A.; Conti, F.; Flamand, E.; Scaramuzza, D.; Benini, L. A 64-mW DNN-Based Visual Navigation Engine for
Autonomous Nano-Drones. IEEE Internet Things J. 2019, 6, 8357–8371. [CrossRef]

110. Alsamhi, S.; Almalki, F.; Al-Dois, H.; Shvetsov, A.; Ansari, S.; Hawbani, A.; Gupta, D.S.; Lee, B. Multi-Drone Edge Intelligence
and SAR Smart Wearable Devices for Emergency Communication. Wirel. Commun. Mob. Comput. 2021, 2021, 6710074. [CrossRef]

111. Wang, J.; Feng, Z.; Chen, Z.; George, S.; Bala, M.; Pillai, P.; Yang, S.W.; Satyanarayanan, M. Bandwidth-Efficient Live Video
Analytics for Drones Via Edge Computing. In Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing (SEC),
Seattle, WA, USA, 25–27 October 2018; pp. 159–173. [CrossRef]

112. Tsakanikas, V.; Dagiuklas, T.; Iqbal, M.; Wang, X.; Mumtaz, S. An intelligent model for supporting edge migration for virtual
function chains in next generation internet of things. Sci. Rep. 2023, 13, 1063. [CrossRef]

113. Ju, Y.; Cao, Z.; Chen, Y.; Liu, L.; Pei, Q.; Mumtaz, S.; Dong, M.; Guizani, M. NOMA-Assisted Secure Offloading for Vehicular
Edge Computing Networks With Asynchronous Deep Reinforcement Learning. IEEE Trans. Intell. Transp. Syst. 2023, in press.
[CrossRef]

114. Yan, J.; Zhang, M.; Jiang, Y.; Zheng, F.C.; Chang, Q.; Abualnaja, K.M.; Mumtaz, S.; You, X. Double Deep Q-Network based Joint
Edge Caching and Content Recommendation with Inconsistent File Sizes in Fog-RANs. IEEE Trans. Veh. Technol. 2023, 1–14.
[CrossRef]

115. Liu, J.; Fan, Y.; Sun, R.; Liu, L.; Wu, C.; Mumtaz, S. Blockchain-Aided Privacy-Preserving Medical Data Sharing Scheme for
E-Healthcare System. IEEE Internet Things J. 2023, 10, 21377–21388. [CrossRef]

116. Guim, F.; Metsch, T.; Moustafa, H.; Verrall, T.; Carrera, D.; Cadenelli, N.; Chen, J.; Doria, D.; Ghadie, C.; Prats, R.G. Autonomous
Lifecycle Management for Resource-Efficient Workload Orchestration for Green Edge Computing. IEEE Trans. Green Commun.
Netw. 2022, 6, 571–582. [CrossRef]

117. Hanzel, K.; Grzechca, D.; Ziebinski, A.; Chruszczyk, L.; Janus, A. Estimating the AGV load and a battery lifetime based on the
current measurement and random forest application. In Proceedings of the 2023 IEEE International Conference on Big Data
(BigData), Sorrento, Italy, 15–18 December 2023; pp. 5057–5063. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2933364
http://dx.doi.org/10.1109/ICNP.2017.8117594
http://dx.doi.org/10.1145/3321408.3323089
http://dx.doi.org/10.13140/RG.2.2.21025.12643/1
http://dx.doi.org/10.3390/s21155082
http://dx.doi.org/10.1109/WCNC49053.2021.9417127
http://dx.doi.org/10.23919/JCC.2020.09.011
http://dx.doi.org/10.3390/s21041339
http://www.ncbi.nlm.nih.gov/pubmed/33668645
http://dx.doi.org/10.3390/s19092064
http://www.ncbi.nlm.nih.gov/pubmed/31058820
http://dx.doi.org/10.3390/s17010018
http://www.ncbi.nlm.nih.gov/pubmed/28025565
http://dx.doi.org/10.1155/2021/6262194
http://dx.doi.org/10.1109/MVT.2018.2883777
http://dx.doi.org/10.3390/app12094769
http://dx.doi.org/10.1145/3311790.3396669
http://dx.doi.org/10.1109/JIOT.2019.2917066
http://dx.doi.org/10.1155/2021/6710074
http://dx.doi.org/10.1109/SEC.2018.00019
http://dx.doi.org/10.1038/s41598-023-27674-5
http://dx.doi.org/10.1109/TITS.2023.3320861
http://dx.doi.org/10.1109/TVT.2023.3328554
http://dx.doi.org/10.1109/JIOT.2023.3287636
http://dx.doi.org/10.1109/TGCN.2021.3127531
http://dx.doi.org/10.1109/BigData59044.2023.10386420

	Introduction
	Challenges of Edge Computing
	Constrained Devices and Computation Offloading
	Security and Privacy
	Energy Consumption
	Device Fleet Management

	Motivations for Combining Machine Learning and Edge Computing
	More Powerful Devices Available at the Edge
	Reducing Reliance on Centralized Services and Decreasing Latency
	Improving Privacy of Personal Data

	Edge Computing Platforms
	Microsoft Azure IoT Edge
	AWS IoT Greengrass
	Balena
	KubeEdge.AI
	EdgeX Foundry

	Edge Intelligence Frameworks and Libraries
	TensorFlow Lite
	edge-ml
	TinyDL
	PyTorch Mobile
	CoreML
	ML Kit for Firebase
	Apache MXNet
	Embedded Learning Library (ELL)
	DeepThings
	DeepIoT

	Use Cases
	Industrial Applications
	Healthcare Applications
	Smart Cities and Environmental Applications
	Satellite–Terrestrial Integrated Networks
	Autonomous and Intelligence-Assisted Vehicles

	Trends and Future Developments in Edge Computing
	Discussion
	References

