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Abstract: Blockwise reconstruction with adaptive rounding helps achieve acceptable 4-bit post-
training quantization accuracy. However, adaptive rounding is time intensive, and the optimization
space of weight elements is constrained to a binary set, thus limiting the performance of quantized
models. The optimality of block-wise reconstruction requires that subsequent network blocks remain
unquantized. To address this, we propose a two-stage post-training quantization scheme, AE-Qdrop,
encompassing block-wise reconstruction and global fine-tuning. In the block-wise reconstruction
stage, a progressive optimization strategy is introduced as a replacement for adaptive rounding,
enhancing both quantization accuracy and efficiency. Additionally, the integration of randomly
weighted quantized activation helps mitigate the risk of overfitting. In the global fine-tuning stage,
the weights of each quantized network block are corrected simultaneously through logit match-
ing and feature matching. Experiments in image classification and object detection tasks validate
that AE-Qdrop achieves high precision and efficient quantization. For the 2-bit MobileNetV2, AE-
Qdrop outperforms Qdrop in quantization accuracy by 6.26%, and its quantization efficiency is
fivefold higher.

Keywords: post-training quantization; adaptive rounding; block-wise reconstruction; progressive
optimization strategy; randomly weighted quantized activation; global fine-tuning

1. Introduction

In recent years, Convolutional Neural Networks (CNNs) have produced remarkable
performance across a variety of computer vision tasks. However, the extensive parameters
and high computational complexity associated with CNNs present challenges for devices
in terms of storage, power consumption, and computational capabilities. In resource-
constrained mobile applications, such as intelligent wearable devices, unmanned aerial
vehicles, and smart robots, CNNs quickly deplete storage, memory, battery, and computa-
tional resources. Therefore, reduction in the number of parameters and the computational
complexity of CNNs is a crucial objective for their deployment in mobile applications.

Researchers have proposed a range of CNN compression and acceleration tech-
niques, which include knowledge distillation [1,2], neural network architecture search [3,4],
pruning [5,6], and quantization [7]. Knowledge distillation uses a large model as a ‘teacher’
to guide the training of a smaller ‘student’ model, enabling the smaller model to assimi-
late the knowledge contained in the larger model. For example, Anfu Zhu [1] achieved
an 81.4% reduction in the number of parameters of the student model compared to the
teacher model by utilizing multi-dimensional knowledge distillation, increasing accuracy
by 2.5% over training the student model directly. Neural architecture search is a tech-
nique that employs automated methods to discover optimal neural network structures,
effectively balancing network accuracy and efficiency. Recently, MANAS [3] approached
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neural architecture search as a multi-agent problem and achieved a recognition rate of
74.74% on the ImageNet2012 dataset (https://image-net.org/challenges/LSVRC/2012/2
012-downloads.php, accessed on 31 January 2024), with a network parameter size of only
2.6 MB. Weiguo Shen [6] applied pruning technology to the mixed signal identification
network, removing 83.2% of the redundant weights in the network, and the accuracy only
dropped by 3.72%. Knowledge distillation, neural architecture search, and pruning all
involve adjusting network structures and retraining, making their time cost expensive.
Quantization converts floating-point (FP) network parameters to lower-bit parameters
without altering the network structure. This reduction in data bit-width directly decreases
power consumption and storage requirements and improves computational speed. For ex-
ample, INT8-based quantized models deliver 3.3× and 4× better performance over FP32
using OpenVINO on Intel CPU and TFLite on Raspberry Pi device, respectively, for the
MLPerf offline scenario [8]. Therefore, quantization is an exceptionally effective technique
for model compression and acceleration.

Due to the introduction of quantization noise through rounding and truncation opera-
tions in quantization computations, the accuracy of quantized models often experiences
some degree of degradation. To mitigate precision loss, current quantization techniques are
primarily categorized into Quantization-Aware Training (QAT) and Post-Training Quanti-
zation (PTQ). QAT relies on complete training data and labels, retraining network weights
and quantization parameters through backpropagation. Research in QAT primarily focuses
on gradient estimation [9–11]; optimization strategies [12–14]; binary networks [15–17];
quantization distillation [18–20]; etc. Although QAT can achieve higher quantization accu-
racy, it is not the primary choice for neural network quantization deployment due to its high
time costs and close relation to specific tasks. Different tasks exhibit significant differences
in model structure, loss functions, and training strategies. Therefore, QAT requires an
in-depth understanding of the model’s training details, increasing the manpower costs
of model deployment (considering that model training and quantization may be handled
by different personnel). In contrast, PTQ achieves network quantization based on a small
sample (calibration dataset) without the need for retraining, making it more favored in the
industry. However, PTQ faces a significant loss of accuracy. Through early research efforts
such as optimizing quantization factor scale [21,22], PTQ can achieve nearly lossless 8-bit
precision. Consequently, recent studies [23–25] have predominantly focused on low-bit
quantization (≤4 bits). In these studies, Qdrop [26] treats each network block as a funda-
mental unit and minimizes the output difference between floating-point and quantized
network blocks (block-wise reconstruction) by applying adaptive rounding and randomly
dropout quantized activation schemes, achieving acceptable 4-bit quantization accuracy.

However, Qdrop still harbors certain drawbacks stemming from adaptive round-
ing [24] and block-wise reconstruction [25]. The adaptive rounding technique confines
the optimization space of weight elements to a binary set. As the bit-width of activation
quantization reduces, the perturbation to weights due to activation quantization noise
progressively intensifies. This restricted optimization space may not yield the optimal solu-
tion, thereby limiting the precision of quantization. More crucially, the adaptive rounding
technique necessitates numerous iterative cycles to gradually weaken (through a linear
annealing mechanism) the regularization constraints of rounding, which significantly di-
minishes quantization efficiency. For instance, early post-training quantization techniques
such as MSE [21] only require approximately 3 min to complete the quantization of Mo-
bileNetV2, often deployed on mobile devices, whereas Qdrop demands about 40 min
(running on the NVIDIA GeForce RTX 3090 GPU and Intel(R) Core(TM) i7-7700K CPU). Re-
garding block-wise reconstruction, its optimality relies on the assumption that subsequent
network blocks are not quantized, which contradicts the reality where all network blocks
are intended to be quantized. Consequently, there is still potential for further improvement
in the accuracy of the quantized models.

Based on the above observations, we aim to achieve high-precision and efficient low-bit
quantization, which prompts the proposal of AE-Qdrop. AE-Qdrop consists of block-wise
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reconstruction and global fine-tuning. Considering the constraints of adaptive rounding on
the optimization space and its time-intensive nature, we propose a progressive optimization
strategy in block-wise reconstruction. By gradually constraining the optimization space,
higher quantization accuracy and efficiency are to be achieved. A randomly weighted
quantized activation scheme is to be introduced so as to reduce the risk of overfitting.
To address the shortcomings of block-wise reconstruction, global fine-tuning synchronously
corrects all weights through logit matching and feature matching, further improving
quantization accuracy. Our contributions can be summarized as follows:

• We perform a theoretical analysis of the shortcomings associated with adaptive round-
ing and block-wise reconstruction.

• We introduce AE-Qdrop, a two-stage algorithm that includes block-wise reconstruction
and global fine-tuning. AE-Qdrop combines a progressive optimization strategy with
randomly weighted quantization activation, enhancing the accuracy and efficiency
of block-wise reconstruction. Subsequently, global fine-tuning is applied to further
optimize the weights, thereby improving the overall quantization accuracy.

• Extensive experiments are conducted to evaluate the quantization results of main-
stream networks, demonstrating the excellent performance of AE-Qdrop in quantiza-
tion accuracy and quantization efficiency.

The subsequent content of this paper is organized as follows: Section 2 introduces
related studies on PTQ. In Section 3, we introduce the linear quantization and adaptive
rounding technique, then elucidate the limitations of adaptive rounding and block-wise
reconstruction through theoretical analysis. Section 4 expounds on the specific details of
AE-Qdrop. Section 5 delves into an in-depth analysis and discussion of the experimental
results. Ultimately, the conclusions are presented in Section 6.

2. Related Work

PTQ is based on a small number of calibration samples to achieve network quanti-
zation. Compared to QAT, it is more efficient and convenient, which offers it brighter
prospects for application in the industry. Table 1 summarizes some classical post-training
quantization schemes. Early PTQ focused on minimizing the quantization error of net-
work parameters through techniques such as optimizing quantization factor scale [21,22],
bias correction [27,28], piecewise linear quantization [29,30], and outlier separation [31,32].
For example, Nvidia’s TensorRT [22], a widely used quantization tool, searched for the opti-
mal quantization factor scale by minimizing the Kullback–Leibler (KL) distance between FP
activation and quantized activation. Although these PTQ schemes achieved near-lossless
8-bit quantization accuracy, they faced challenges at low bit-widths (such as 4 bit). This
limitation can be attributed to the fact that minimizing the quantization error of network
parameters does not necessarily result in optimal quantization.

Subsequently, LAPQ [23] proposed optimizing the quantization scale factor by mini-
mizing the loss function. Inspired by this, AdaRound [24] designed an adaptive rounding
technique to minimize the output activation difference between the quantized network
layer and the FP network layer (layer-wise reconstruction), which significantly enhanced
low-bit quantization accuracy. Adaptive rounding was subsequently widely adopted in
post-training quantization. Among these developments, researchers using BrecQ [25]
argued that layer-wise reconstruction ignored dependencies between network layers. It
considered block-wise reconstruction as the optimal optimization target and employed
the Fisher matrix to approximate the Hessian matrix. Building upon BrecQ, RAPQ [33]
improved Power-of-Two low-bit quantization accuracy through Power-of-Two Scale Group
and BN-based L-P Loss. Using Mr.BiQ [34], researchers explored the minimization of
reconstruction error using nonlinear quantizers. Furthermore, scientists using Qdrop [26]
pointed out that BrecQ overlooked the impact of activation quantization in weight opti-
mization and demonstrated that activation quantization noise could be translated into
weight perturbation. The algorithm designed a randomly dropout quantized activation
strategy in block-wise reconstruction, achieving acceptable 4-bit quantization accuracy.
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However, the limitation of adaptive rounding on the weight optimization space and
the neglect of inter-block dependencies in block-wise reconstruction limited the quanti-
zation accuracy of Qdrop, and the time-intensive nature of adaptive rounding led to low
quantization efficiency. Therefore, our goal is to achieve accurate and efficient low-bit
quantization. AdaQuant [35] directly optimized quantized weights through the Straight-
Through Estimator (STE). The optimization process was efficient, but the STE faced serious
gradient mismatch problem at low bit-widths; in addition, an insufficient number of cal-
ibration samples can easily lead to overfitting. The proposed progressive optimization
strategy in AE-Qdrop gradually confines the optimization space of weight values from
arbitrary values to a binary set. This approach enhances quantization efficiency while,
to some extent, mitigating issues such as gradient mismatch and overfitting. Although
BrecQ assumes that network-wise reconstruction is an ideal optimization goal, constrained
by the limited number of calibration samples, the quantization model based on network-
wise reconstruction had poor generalization performance. AE-Qdrop effectively avoids
this problem through a two-stage process of block-wise reconstruction followed by global
fine-tuning. In addition, global fine-tuning is also efficient, and the formal derivation of
the optimal quantization for network blocks provides a more rigorous explanation for the
optimization objective of global fine-tuning.

Table 1. Overview of the classic PTQ.

Bit-Width Optimization Goal Related Work

≥6 bit The Quantization
Error of Network Parameters

Optimizing Quantization Factor Scale [21,22]
Bias Correction [27,28]

Piecewise Linear Quantization [29,30]
Outlier Separation [31,32]

≤4 bit

Layer-wise Reconstruction
LAPQ [23]

AdaRound [24]
AdaQuant [35]

Block-wise Reconstruction

BrecQ [25]
RAPQ [33]
Mr.BiQ [34]
Qdrop [26]

3. Background and Theoretical Analysis
3.1. Quantizer

For a FP tensor (activation or weight) x, we can map it to an integer tensor q according
to the following equation [36]:

q = clip
(

round
( x

s

)
+ z, qmin, qmax

)
,

s =
xmax − xmin

2b − 1
,

z = qmin − round
( xmin

s

)
,

xq = s(q− z).

(1)

clip(·) and round(·) denote truncation and rounding operations, respectively. Variable s
represents the quantization scaling factor, indicating the proportional relationship between
FP values and integers. Variable z is defined as the offset corresponding to the zero
point. The maximum and minimum values in the vector are denoted by xmax and xmin,
respectively. The quantization range, specified by [qmin, qmax], is determined by bit-width b.
This paper focuses solely on uniform unsigned symmetric quantization, the most common
quantization setting, where qmin equals 0 and qmax is 2b − 1. Non-linear quantization is
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not considered due to its challenges in hardware deployment. xq refers to the FP tensor,
also known as the fake-quantized tensor. In the FP domain, the quantizer discretizes
continuous FP values into 2b distinct values. The difference between xq and x is defined as
the parameter quantization error.

3.2. AdaRound

AdaRound [24] reexamines the effect of weight quantization on the loss function using
a second-order Taylor expansion. For the lth layer of the network fl(·), the change in the
loss function L(·) due to weight quantization is defined as

L
(

fn( fn−1 . . . fl(x f , wq)))
)
− L

(
fn( fn−1 . . . fl(x f , w f )))

)
=L

(
x f , w f + ∆w

)
−L

(
x f , w f

)
≈∆wTgw

(
x f , w f

)
+

1
2

∆wTHw

(
x f , w f

)
∆w

≈1
2

∆wTJT
y:w

(
x f , w f

)
Hy

(
x f , w f

)
Jy:w

(
x f , w f

)
∆w

=
1
2

∆yTHy

(
x f , w f

)
∆y

≈1
2

∆yTI∆y

=
1
2
∥∆y∥2

2,

(2)

where L(·) is equal to L( fn( fn−1 . . . fl(·))), gw

(
x f , w f

)
represents the gradient matrix and

Hw

(
x f , w f

)
represents the Hessian matrix. Considering that the FP model has converged,

gw

(
x f , w f

)
is approximately zero. By introducing network layer output y and the Jaco-

bian matrix, Jy:w

(
x f , w f

)
of y with respect to w, Hw

(
x f , w f

)
can be decomposed into

JT
y:w

(
x f , w f

)
Hy

(
x f , w f

)
Jy:w

(
x f , w f

)
[25]. ∆y = Jy:w

(
x f , w f

)
∆w = y− yq is the difference

in network layer output before and after weight quantization. By approximating the Hes-
sian matrix, Hw

(
x f , w f

)
with the identity matrix, I, the change in the loss function caused

by weight quantization is approximately equal to the change in the output of the network
layer. Therefore, the optimization goal of weight quantization can be defined as layer-wise
reconstruction:

min
∆w
L
(

x f , w f + ∆w
)
−L

(
x f , w f

)
→ min

∆w
∥∆y∥2

2. (3)

AdaRound introduces the trainable tensor v, which has the same dimension as w,
into the weight quantizer to indirectly optimize ∆w:

qw = clip
(

floor
(w f

sw

)
+ h(v) + z, qmin, qmax

)
,

h(v) = clip
(

1.2
1 + exp(−v)

− 0.1, 0, 1
)

,

∆w = w f − sw(qw − z).

(4)

This scheme is called adaptive rounding. To ensure that h(v) converges to zero or one,
AdaRound introduces a regularization term for Equation (3). Therefore, the final optimiza-
tion goal is

min
v
∥∆y∥2

2 + λ ∑(1− |2h(v)− 1|)β, (5)

where β and λ are parameters governing the regularization. The value of β is adjusted
based on linear annealing. In the initial stages, the value of β is higher, which weakens
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the constraint of the regularization term, facilitating the reduction in the reconstruction
loss, ∥∆y∥2

2. In the later stages, the value of β is lower, enhancing the constraint of the
regularization term, encouraging h(v) to converge to zero or one. If w f contains M elements,
then adaptive rounding provides ∆w with a solution space of size 2M. Nearest neighbor
rounding is only one set of solutions, but there may be better solutions that minimize
Equation (3). Therefore, adaptive rounding can effectively improve quantization accuracy.

3.3. Drawbacks of Adaptive Rounding

Considering that both weight and activation are quantized simultaneously, Equation (2)
can be generalized as follows:

L
(

fn( fn−1 . . . fl(xq, wq)))
)
− L

(
fn( fn−1 . . . fl(x f , w f )))

)
= L

(
x f + ∆x, w f + ∆w

)
−L

(
x f , w f

)
≈ ∆xTgx

(
x f , w f

)
+ 1

2 ∆xTHx

(
x f , w f

)
∆w+

∆wTgw

(
x f , w f

)
+ 1

2 ∆wTHw

(
x f , w f

)
∆w + ∆xTHxw

(
x f , w f

)
∆w

≈ 1
2 ∆xTHx

(
x f , w f

)
∆x + 1

2 ∆wTHw

(
x f , w f

)
∆w + ∆xTHxw

(
x f , w f

)
∆w

= 1
2 ∆xTJT

y:x

(
x f , w f

)
Hy

(
x f , w f

)
Jy:x

(
x f , w f

)
∆x+

1
2 ∆wTJT

y:w

(
x f , w f

)
Hy

(
x f , w f

)
Jy:w

(
x f , w f

)
∆w+

∆xTJT
y:x

(
x f , w f

)
Hy

(
x f , w f

)
Jy:w

(
x f , w f

)
∆w

= 2 · ∆yTHy

(
x f , w f

)
∆y

≈ 2 · ∆yTI∆y.

(6)

Qdrop demonstrates that activation quantization noise can be converted into weight
perturbation τ(x):

L
(

x f + ∆x, w f + ∆w
)
−L

(
x f , w f

)
= L

(
x f , (w f + ∆w)⊙ (1 + τ(x)

)
−L

(
x f , w f

)
= L

(
x f , w f + ∆w + w f ⊙ τ(x) + ∆w⊙ τ(x)

)
−L

(
x f , w f

)
.

(7)

Considering fl(·) as the lth network block, Equation (6) can be generalized for block-wise
reconstruction, as derived in [25]. The optimization goal for block-wise reconstruction can
be derived based on Equations (6) and (7):

min
∆w f
L

x f , w f + ∆w + w f ⊙ τ(x) + ∆w⊙ τ(x)︸ ︷︷ ︸
(∆w f )

−L(x f , w f

)
→ min

∆w f
∥∆y∥2

2. (8)

In Qdrop, the optimization of Equation (8) is achieved through adaptive rounding.
However, adaptive rounding constrains the optimization space of each element in wq to a
binary set. As the activation quantization bit-width decreases, weight perturbation τ(x)
incrementally intensifies, making the variation of ∆w f more complex. This escalation can
lead to a situation where the binary set may not provide the optimal ∆w f , potentially
compromising the quantization performance. To illustrate this point, we consider the
example depicted in Figure 1. In this scenario, FP output y f equals 0.98. While the best
quantized output, yada

q , achievable through adaptive rounding stands at 0.85, the actual
ideal quantized output, ybest

q , is found to be 0.95. The linear annealing mechanism of
parameter β results in adaptive rounding requiring a significant number of iterative cycles,
which considerably increases the time cost of network quantization. Lastly, an adversarial
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relationship exists between the regularization term and the reconstruction loss. This
antagonism can impede the efficient optimization of the reconstruction error.

Figure 1. A simple calculation example illustrates that adaptive rounding cannot provide an opti-
mal solution.

3.4. Drawbacks of Block-Wise Reconstruction

The derivation of Equation (6) actually relies on the assumption that the network
blocks from the lth to the nth are not quantized. If all network blocks are quantized, then
the optimization objective for the lth network block can be transformed into

min
∆w f

L
(

f q
n( f q

n−1 . . . fl(xq, wq)))
)
− L

(
fn( fn−1 . . . fl(x f , w f )))

)
. (9)

It is evident that the optimal quantization of the lth network block is correlated with
subsequent quantized network blocks. The applicability of the optimal solution for
Equations (8)–(13) depends on the discrepancy between f q

n( f qn− 1. . . fl(·)) and
fn( fn−1. . . fl(·)). Consequently, block-wise quantization disregards the influence of subse-
quent quantized network blocks, potentially leading to suboptimal quantization of each
network block.

4. AE-Qdrop

To address the issues with adaptive rounding and block-wise reconstruction, we
propose a two-stage post-training quantization algorithm, AE-Qdrop. In the block-wise
reconstruction phase (as shown in Figure 2), a progressive optimization strategy is designed
to replace adaptive rounding. This strategy offers a larger space for weight optimization and
higher optimization efficiency. Additionally, randomly weighted quantized activation is
introduced to enhance the diversity of activations, effectively improving the generalization
performance of the quantized model. Block-wise reconstruction provides a pre-quantized
model for global fine-tuning. Global fine-tuning (as shown in Figure 3) aims to correct
suboptimal weights caused by block-wise reconstruction through feature matching and
logit matching. It should be emphasized that, similar to network-wise reconstruction,
global fine-tuning cannot achieve high-precision quantization directly using only a small
number of unlabeled samples. Therefore, the block-wise reconstruction process is crucial
and indispensable, which is the rationale behind adopting a two-stage quantization design.
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Figure 2. The block-wise reconstruction stage of AE-Qdrop.

Figure 3. The global fine-tuning stage of AE-Qdrop.

4.1. Block-Wise Reconstruction: Progressive Optimization Strategy

AE-Qdrop indirectly optimizes ∆w f by adjusting w f . However, there are some chal-
lenges in directly using STE to optimize weights, as Adaquant [35] does. On the one hand,
the gradient mismatch problem of the straight-through estimator becomes prominent when
weights and activations are quantized to low bit-widths, potentially causing confusion
in the optimization direction. On the other hand, a limited number of calibration sam-
ples can easily lead to overfitting. To address these challenges, we propose a progressive
optimization strategy (POS).

At first, we quantize the activation but do not quantize the weight. Weight w f can
be updated along the correct gradient direction since the STE is not required. It is worth
noting that the updated weight can absorb the weight perturbation generated by activation
quantization, i.e., w f ← w f ⊙ (1 + τ(x)).

Next, the new weight is quantized. Considering that the previous optimization has
significantly reduced weight perturbation, Equation (8) is close to Equation (3). Therefore,
we only optimize the weight rounding direction to avoid overfitting. Unlike AdaRound,
POS achieve optimal rounding by setting the upper and lower bounds of w f :

w∗f ∈ [sw(clip(floor
(w f

sw

)
+ z, qmin, qmax)− z),

sw(clip(floor
(w f

sw

)
+ 1 + z, qmin, qmax)− z)].

(10)

If the updated weight w∗f ≥ sw(clip
(

floor
(

w1
f

sw

)
+ 0.5 + z, qmin, qmax

)
− z), rounding up

is the best rounding. Conversely, rounding down is preferable. This scheme does not
introduce additional optimization tensors to the weight quantizer and does not require
additional regularization terms. It focuses entirely on minimizing the reconstruction error.
Due to the stepwise nature of rounding operations, minor weight updates may not alter
the computed results of reconstruction loss, thereby increasing the difficulty of rounding
optimization. To address this, in the early stages of rounding optimization, we retain
the truncation operation of the weight quantizer but eliminate the rounding operation.
This approach ensures that weight updates of any magnitude are promptly reflected in
the computation results. It also avoids the gradient mismatch issue caused by rounding
operations, thus accelerating the convergence of weights in the rounding direction.

In conclusion, POS can be divided into three stages:
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1. Quantize the activation while keeping the weight unquantized. Optimize w f to absorb
weight perturbations caused by activation quantization and then set the upper and
lower bounds of w f according to Equation (10).

2. Quantize the activation and maintain truncation calculation of the weight quantizer
but disable the rounding calculation.

3. Quantize both the activation and the weight.

In the first phase, the weights are not quantized, which means that the optimization
space for ∆w f is unconstrained, allowing for w f to be efficiently optimized to absorb
perturbations caused by activation quantization. In the second phase, since the upper and
lower bounds of w f are set and the weight rounding operation is canceled, the value space
for each element in wq and ∆w f is restricted to a continuous interval. In the third phase,
with the restoration of the rounding operation, the value space for each element in ∆w f is
limited to a binary set. Compared to adaptive rounding or AdaQuant, POS progressively
increases the constraints on weight optimization, considering both the effective reduction
in reconstruction error and the potential overfitting issues caused by excessive optimization
space. Furthermore, POS directly adjusts the weights, eliminating the need to balance
regularization terms with reconstruction loss through parameter annealing, thus offering
higher optimization efficiency.

4.2. Block-Wise Reconstruction: Randomly Weighted Quantized Activation

Considering the limited number of samples available for post-training quantization,
Qdrop introduces a random dropout quantized activation (RDQA) scheme to alleviate
overfitting in block-wise reconstruction:

qy ← y
(

1 + u(y)
qy − y

y

)
. (11)

Here, u(y) is a binary tensor randomly sampled from the Bernoulli distribution B(1, 0.5)
with the same dimension as y. Similar to the Dropout mechanism [37], RDQA is only
employed during the quantization phase and is not applied during the inference stage,
which can also be regarded as a data augmentation scheme.

Inspired by Mixup [38], we propose a randomly weighted quantized activation
(RWQA) scheme in AE-Qdrop:

qy ← t(y)qy + (1− t(y))y = y(1 + t(y)
qy − y

y
). (12)

Here, t(y) is a FP tensor sampled from a uniform distribution U(0, 1) with the same
dimensions as y. In comparison to RDQA, RWAQ offers a more diverse set of feature
inputs for block reconstruction, further enhancing the generalization capability of the
quantization model.

4.3. Global Fine-Tuning

Block-wise reconstruction produces a pre-quantized model. The analysis presented
in Section 3.4 reveals that each quantized network layer still has the potential for further
optimization. As a result, AE-QDrop introduces global fine-tuning. We further analyze the
optimization in the lth network block in the pre-quantized model:
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Therefore, global fine-tuning aims to minimize ∑n
i=1 ∆yT

i I∆yi, g(q,i)
x , and g(q,i)

w . ∑n
i=1 ∆yT

i I∆yi
can be calculated directly, indicating that the output of each quantized network block should
simultaneously match the output of the FP network block. We refer to this as feature match-
ing. However, g(q,i)

x and g(q,i)
w cannot be calculated directly because the label of the sample

is unknown.
If the quantized network converges just like the FP network, g(q,i)

x and g(q,i)
w are ap-

proximately equal to zero. Qualitatively speaking, for the same input sample, if the output
of the quantized network aligns with that of the FP network, it is posited that the quantized
network is also in a state of convergence. Therefore, we optimize ∑n

i=l ∆xT
i g(q,i)

x

(
xi

f , wi
f

)
and ∑n

i=l ∆wT
i g(q,i)

w

(
xi

f , wi
f

)
based on the perspective of knowledge distillation. The FP

model is regarded as the teacher, while the quantized model is perceived as the student.
The KL distance between the output z of the FP network and the output zq of the quantized
network is minimized, which is called logit matching. In order to avoid overfitting, we only
correct the rounding direction of the weight. To sum up, the loss function Lg f of global
fine-tuning is defined as

Li
f m =∆yT

i I∆yi = ∥yi
q − yi∥2

2,

Llm =
m

∑
i=1

pi(z; T ) log
(

pi(z; T )
pi(zq; T )

)
, pi(z; T ) = ezi/T

∑m
j ezj/T

,

Lg f =Llm +
θ

n

n

∑
i=1

Li
f m,

(14)

where T and θ represent the distillation temperature and the hyperparameter, respectively.

5. Experimental Result
5.1. Experimental Setup and Implementation Details

Experiments are organized in both image recognition and object detection tasks to
verify the performance of AE-Qdrop. The ImageNet2012 dataset and the PASCAL VOC2007
dataset (http://host.robots.ox.ac.uk/pascal/VOC, accessed on 31 January 2024) are used
for image recognition and object detection tasks, respectively. The ImageNet2012 dataset
includes 1.2 million training images and 50,000 test images, with the top-1 recognition
accuracy as the evaluation metric. The VOC2007 dataset consists of 2501 training images
and 4951 test images, with MAP0.5 as the evaluation metric.

For the image recognition task, the quantized networks include ResNet18 (Res18),
ResNet50 (Res50), MobileNetV2 (MV2), RegNet-600MF (Reg600M), RegNet-3.2GF (Reg3.2G),
and MnasNetx2 (MNx2). For the object detection task, the quantized networks are
MobileNetV1-SSD and MobileNetV2-SSD. All experiments are based on the hardware
platform of GeForce RTX 3090 Ti GPU and Intel(R) Core(TM) i7-7700K CPU. The software
environment mainly includes Python 3.8 and Pytorch 2.1. The pre-trained models of the
image recognition networks are sourced from Pytorchcv (https://github.com/donnyyou/

http://host.robots.ox.ac.uk/pascal/VOC
https://github.com/donnyyou/PyTorchCV
https://github.com/donnyyou/PyTorchCV
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PyTorchCV, accessed on 31 January 2024), and the SSD pre-trained models are obtained
from the open-source project pytorch-ssd (https://github.com/qfgaohao/pytorch-ssd,
accessed on 31 January 2024).

The code of AE-Qdrop is based on the open-source implementation of Qdrop and
follows its related settings (https://github.com/wimh966/QDrop, accessed on 31 January
2024). For example, the BN layers in the network are merged with the convolutional layers;
the first and last layers of the quantized network are kept at 8 bit (we note that only the
Backbone part is quantized for SSD networks); the activation quantization scale factors
are also optimized simultaneously, among others. A total of 1024 random samples from
the training set are selected as the calibration dataset for the image recognition task (the
calibration dataset for the object detection task includes 256 random training samples).

During the block-wise reconstruction phase, each network block undergoes 2000
optimization iterations. The three phases of POS consist of 800, 400, and 800 iterations,
respectively. The Adam optimizer is used with an initial learning rate of 4× 10−5 (the
initial learning rate for 2-bit quantization is 4× 10−4), and it varies based on a cosine
decay strategy. The global fine-tuning iteration number is set to 2000, with a distillation
temperature of T = 20 and a hyperparameter of θ = 0.1. The SGD optimizer is utilized
with an initial learning rate of 1× 10−7 (the initial learning rate for 2-bit quantization is
1× 10−6), also varying based on a cosine decay strategy. For the object detection task,
the logit matching loss is adjusted to ∥zq − z∥2

2.

5.2. Comprehensive Comparison

Table 2 presents the quantization results of various post-training quantization tech-
niques in image recognition networks. Under W4A4, LAPQ only optimizes the quantization
scale factor without adjusting weights, resulting in significantly lower quantization ac-
curacy compared to other schemes that involve weight adjustment. For MV2, Reg600M,
and Reg3.2G, its average quantization accuracy loss exceeds 20%. AdaRound, BrecQ,
and Qdrop all employ adaptive rounding technique. Due to the neglect of inter-layer
dependencies, the quantization accuracy of AdaRound, which is based on layer-wise
reconstruction, is significantly lower than that of BrecQ, which is based on block-wise re-
construction. However, BrecQ does not quantize activations during the adaptive rounding
process, resulting in its inability to perceive the weight perturbation caused by activation
quantization noise, which leads to a significant loss in 4-bit quantization accuracy. Particu-
larly for MobileNetV2, the accuracy loss in BrecQ reaches 10.54%. The average accuracy
loss for Qdrop is only 2.76%, achieving acceptable quantization accuracy. Under W4A4,
the weight perturbation caused by activation quantization is relatively small, and the
impact of subsequent quantized network blocks on the current block is also lower, thus the
disadvantages of adaptive rounding and block-wise reconstruction are less evident. Conse-
quently, the quantization accuracy of Qdrop and AE-Qdrop is comparable, but AE-Qdrop
offers higher quantization efficiency (as detailed in Table 3).

As bit-width decreases, AE-Qdrop demonstrates a significant accuracy advantage on
lightweight networks such as MV2 and MNx2. For example, under W2A2, the quantization
accuracy of AE-Qdrop exceeds that of Qdrop by 6.49% (MV2) and 3.22% (MNx2). Typically,
lightweight networks feature broader numerical distribution ranges and fewer weights.
The former leads to larger parameter quantization errors, exacerbating the discrepancy
between the optimal solutions of Equations (7) and (8). The latter diminishes the efficacy
of adaptive rounding, analogous to a consensus that fewer neural network parameters
result in weaker fitting optimization capability. Notably, under W4A2, the performance
advantage of AE-Qdrop is most pronounced, exceeding Qdrop by 12.07% (MV2) and 8.36%
(MNx2). Compared to 2-bit weights, 4-bit weights can encapsulate more information.
AE-Qdrop’s progressive optimization strategy relaxes constraints on weights, enabling
4-bit weights to fully exploit their representational capacity. This allows for them to absorb
the perturbations caused by activation quantization and minimize reconstruction loss.
Consequently, under W4A2, AE-Qdrop achieves its greatest performance advantage.

https://github.com/donnyyou/PyTorchCV
https://github.com/donnyyou/PyTorchCV
https://github.com/donnyyou/PyTorchCV
https://github.com/qfgaohao/pytorch-ssd
https://github.com/wimh966/QDrop
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Table 2. Quantization results of various post-training quantization techniques for image recogni-
tion networks.

Method Bits(W/A) Res18 Res50 MV2 Reg600M Reg3.2G MNx2

FP32 32/32 71.01 76.63 72.62 73.52 78.46 76.52

LAPQ

4/4

60.30 70.00 49.70 57.71 55.89 65.32
AdaRound 67.96 73.88 61.52 68.20 73.85 68.86

BrecQ 68.16 72.95 62.08 68.94 73.94 71.01
Qdrop-4k 69.05 74.79 67.72 70.60 76.21 72.57

Qdrop 69.16 74.91 67.86 70.95 76.45 72.81
AE-Qdrop 69.24 74.98 67.93 70.83 76.54 72.68

AdaRound

4/2

0.44 0.17 0.29 2.14 0.10 0.93
BrecQ 31.19 16.95 0.28 4.22 3.47 6.34

Qdrop-4k 56.46 61.87 10.26 46.68 59.58 16.71
Qdrop 58.10 63.26 17.03 49.78 61.87 33.96

AE-Qdrop 58.48 64.53 29.10 52.71 64.29 42.32

AdaRound

2/2

0.39 0.13 0.12 0.79 0.11 0.40
BrecQ 25.91 8.26 0.19 2.49 1.72 0.38

Qdrop-4k 46.12 48.81 6.18 31.30 48.38 16.37
Qdrop 51.55 55.21 9.97 39.31 53.88 24.21

AE-Qdrop 52.24 55.55 16.46 40.58 54.56 27.43

Table 3. Comparison of quantization time (minute).

Res18 Res50 MV2 Reg600M Reg3.2G MNx2

AdaRound 19.4 65.1 42.8 38.6 75.6 58.9
BrecQ 17.3 51.2 28.7 28.9 60.4 44.7
Qdrop 19.1 64.4 37.7 32.8 74.8 58.4

Qdrop-4k 4.6 15.1 8.6 7.4 16.8 13.8
BR 2.4 8.7 4.7 3.8 9.7 7.8
GF 1.9 5.8 2.9 2.8 7.1 5.1

AE-Qdrop 4.3 13.5 7.6 6.6 16.8 12.9

Table 3 displays the quantization times for AdaRound, BrecQ, Qdrop, and AE-Qdrop.
Among these, AdaRound exhibits the lowest quantization efficiency. While BrecQ demon-
strates slightly greater efficiency in quantization time compared to Qdrop, it fails to offset
its significant disadvantage in quantization accuracy. For MV2, commonly used in mobile
deployment, AE-Qdrop requires only 7.6 min to complete quantization, with block-wise
reconstruction (BR) and global fine-tuning (GF) taking 4.7 min and 2.9 min, respectively.
The efficiency of AE-Qdrop is fivefold that of Qdrop, and it achieves higher quantization
accuracy as shown in Table 2, thereby confirming that it is a high-accuracy and efficient
quantization scheme. Qdrop-4k represents the quantization results with the number of
adaptive rounding iterations set at 4000. Its efficiency is comparable to that of AE-Qdrop,
but the reduced iteration count leads to a noticeable decrease in accuracy. As indicated in
Table 2, under W2A2, the accuracy of Qdrop-4k falls by 3.79%∼8.01% compared to Qdrop,
and by 6.06%∼11.06% compared to AE-Qdrop. These results highlight the dependence of
adaptive rounding technology on sufficient iteration cycles.

The quantization results of the object detection network are presented in Table 4. Un-
der W4A4, the quantization accuracy loss of AE-Qdrop is only 3.39% and 3.6%, respectively,
surpassing Qdrop by 0.73% and 0.46%. The reduction in quantization bit-width further
highlights the accuracy advantage of AE-Qdrop. Under W2A2, AE-Qdrop’s quantization
accuracy surpasses Qdrop by 1.49% and 1.59%, respectively. Notably, although Qdrop-4k
shows a small difference from Qdrop under 4w4a, its accuracy loss is quite significant
under W4A2 or W2A2. In particular, for the W2A2 MobileNetV1-SSD, its quantization
accuracy drops to only 21.98%, a decline of 9.71% compared to Qdrop. Therefore, simply
reducing the number of iterations for adaptive rounding can directly improve quantization
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efficiency, but it brings catastrophic consequences to low-bit quantization accuracy. Similar
to the results of quantizing image recognition networks, AE-Qdrop shows the most sig-
nificant accuracy advantage under 4w2a. For MobileNetV1-SSD and MobileNetV2-SSD,
AE-Qdrop’s quantization accuracy improves by 6.06% and 9.79%, respectively, compared
to Qdrop.

Table 4. The low-bit quantization accuracy (MAP0.5) of SSD.

Method Bits (W/A) MobileNetV1-SSD MobileNetV2-SSD

FP32 32/32 67.60 68.70

Qdrop-4k
4/4

63.46 63.91
Qdrop 63.48 64.09

AE-Qdrop 64.21 65.10

Qdrop-4k
4/2

36.77 24.81
Qdrop 38.61 28.10

AE-Qdrop 44.67 37.89

Qdrop-4k
2/2

21.98 19.58
Qdrop 30.18 26.45

AE-Qdrop 31.69 28.04

Figures 4 and 5 visualize the detection results of quantized SSD networks. Clearly,
the detection results of AE-Qdrop are closer to those of the FP networks in terms of category
confidence and the positioning of object bounding boxes. Taking Figure 4 as an example,
under W4A4, AE-Qdrop shows a confidence of 82% for the train, while Qdrop and Qdrop-
4k show confidences of 70% and 57%, respectively, for the train. Under W4A2, compared
to the detection results of the FP network, AE-Qdrop only leads to a decrease in object
confidence but does not cause any missed or false detections. However, Qdrop fails to
detect the dining table and incorrectly detects a human target. Under W2A2, both Qdrop
and Qdrop-4k result in greater decreases in confidence.

Figure 4. Detection results of MobileNetV1-SSD under different bit-widths.
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Figure 5. Detection results of MobileNetV2-SSD under different bit widths.

5.3. Ablation Study

In Table 5, we explore the impact of various design components on quantization
performance under W2A2. The baseline represents the result of minimizing the block recon-
struction error by directly optimizing the weights using STE (consistent with AdaRound),
without employing progressive optimization strategies and data augmentation. The limited
number of calibration samples tends to make block reconstruction susceptible to overfitting;
therefore, the benefits of data augmentation become quite substantial, particularly for
larger networks such as ResNet and RegNet, which see an accuracy improvement of over
3.6%. Compared to RDQA proposed in Qdrop, RWQA offers a performance gain of 0.6%
to 3.7%, which means that RWQA can better reduce the risk of overfitting. In contrast to
the direct optimization of weights using the STE, the implementation of POS effectively
mitigates challenges like gradient mismatch and overfitting by gradually shrinking the
optimization space. This approach results in a widespread enhancement of quantization
precision. Notably, in the cases of MV2 and MNx2, there are marked accuracy increments
of 4.66% and 4.77% respectively. The Baseline+RWQA+POS configuration epitomizes the
quantization accuracy achieved in the first phase (block-wise reconstruction) of AE-Qdrop.
The combination of RWQA and POS results in an accuracy enhancement ranging from 5.3%
to 13.15%, which further corroborates the efficacy of RWQA and POS. The quantization re-
sults of AE-Qdrop are obtained by conducting global fine-tuning subsequent to block-wise
reconstruction. As observed, GF significantly enhances the quantization precision for MV2,
MNx2, and Reg600M. We hypothesize that the larger parameter volume of ResNet and
Reg3.2G imparts robustness against quantization noise, diminishing the disparity between
f qn( f qn− 1 . . . fl(·)) and fn( fn−1 . . . fl(·)), thereby resulting in a comparatively lower gain
from global fine-tuning.
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In Table 6, we explore the quantization results achieved solely through single-stage
global fine-tuning. MSE [21] represents an early approach to post-training quantization. It
determines quantization scale factors by minimizing the L2 norm of parameter quantization
errors. In recent works [25,26] and in AE-Qdrop, MSE is utilized to provide a pre-quantized
network for block-wise reconstruction. Under W4A4, although the quantization results of
MSE lead to significant accuracy loss, the quantized models retain some image recognition
capability. Global fine-tuning significantly enhances performance, but there is a notable dis-
parity compared to the results of Brecq and Qdrop. As the quantization bit-width decreases,
especially under W2A2, the MSE-derived quantized model completely fails, and global
fine-tuning offers no benefits, indicating that global fine-tuning alone cannot retrain a
quantized network with just 1024 calibration samples. Therefore, for optimal quantization
performance, the block-wise reconstruction phase in AE-Qdrop is indispensable, providing
a favorable initial state for global fine-tuning.

Table 5. Under W2A2, the impact of various design components on quantization performance.

Method Res18 Res50 MV2 Reg600M Reg3.2G MNx2

Baseline 46.40 47.90 6.44 27.73 41.17 15.72
Baseline+RDQA 50.00 52.29 7.52 36.29 52.89 16.64
Baseline+RWQA 51.05 52.89 8.78 36.92 53.51 20.35

Baseline+POS 47.12 49.55 11.10 28.75 41.74 20.49
Baseline+RWQA+POS 51.73 55.36 13.33 39.06 54.32 24.61

Baseline+RWQA+POS+GF 52.24 55.55 16.46 40.58 54.56 27.43

Table 6. The quantization results achieved solely through single-stage global fine-tuning.

Method Res18 Res50 MV2 Reg600M Reg3.2G MNx2

W4A4 MSE 49.75 65.54 22.40 51.70 66.75 49.71
MSE+GF 65.05 69.10 36.69 60.05 70.24 56.68

W4A2 MSE 9.33 4.35 0.11 1.9 2.01 0.27
MSE+GF 25.18 6.98 0.18 3.3 4.43 0.28

W2A2 MSE 0.08 0.16 0.11 0.15 0.11 0.10
MSE+GF 0.08 0.10 0.09 0.16 0.17 0.10

6. Conclusions

This paper theoretically analyzes the deficiencies of adaptive rounding and block-wise
reconstruction and proposes a highly precise and efficient quantization scheme-AE-Qdrop.
Addressing the constraints in the weight optimization space imposed by adaptive rounding
and its time-consuming nature, AE-Qdrop introduces a progressive optimization strategy
to enhance the optimization space and efficiency. Moreover, the randomly weighted
quantized activation diversifies the activation inputs for block-wise reconstruction, further
mitigating the overfitting issue caused by insufficient samples. To counter the shortcomings
of block-wise reconstruction, the proposed global fine-tuning considers the dependencies
between network blocks and enhances quantization accuracy through feature matching
and logit matching. The precision advantages of AE-Qdrop are effectively evaluated
in image recognition and object detection tasks, and its quantization efficiency is five
times that of Qdrop. Ablation experiments further assess the performance gains of the
progressive optimization strategy, random weighted quantized activation, and block-wise
reconstruction.

However, there remains a significant gap in accuracy between AE-Qdrop and QAT.
Observing the significant improvements in quantization performance due to data augmen-
tation, we plan to delve deeper into the integration of various data augmentation techniques
with block-wise reconstruction and global fine-tuning in our future work, aiming to further
enhance quantization accuracy.
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