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Abstract: Effective charging techniques must consider factors such as charging efficiency, lifecycle,
charging time (CT), and battery temperature. Currently, most charging strategies primarily focus on
CT and charging losses (CL), overlooking the crucial influence of battery temperature on battery life.
Therefore, this study proposes a constant temperature–constant voltage (CT-CV) charging method
based on minimizing energy losses. The charging process is primarily divided into three stages.
In the first stage, a constant current (CC) charging is implemented using a 2C rate that aims to
expedite battery charging but may result in a rapid temperature increase. The second stage involves
constant temperature charging, where the charging current is regulated based on battery temperature
feedback using a PID controller to maintain a stable battery temperature. The third stage is constant
voltage (CV) charging, where a fixed current is applied continuously until the current drops below the
charging cutoff current. After completion of the charging process, the charging time can be calculated,
and charging losses can be determined by incorporating the battery equivalent circuit model (ECM).
To determine the optimal transition time, the paper employs Coulomb counting and the battery ECM,
considering both CT and losses to simulate the transition time with minimal CL. This approach
achieves optimization of transition points by establishing ECM, measuring internal impedance of
the battery, and simulating various charging scenarios, and eliminates the need for multiple actual
experiments. Experimental results show that the charging time (CT) should be reduced and the
maximum temperature rise (TR) should be reduced under the same average TR condition of the
proposed method. At the same CT, the average TR and the maximum TR should both decrease.
The charging method proposed in this study exhibits the following advantages: (1) simultaneous
consideration of the battery’s equivalent circuit model and charging time; (2) the achieved transition
point demonstrates characteristics of minimized charging losses; (3) eliminates the need for multiple
experimental iterations.

Keywords: lithium-ion battery; equivalent circuit model; constant temperature–constant voltage
charging method (CT-CV); minimizing charging losses (CL)

1. Introduction

In recent years, due to the global advocacy for green energy, countries worldwide
have invested significant resources in the development of renewable energy, energy storage
systems, and the electric vehicle industry. This not only ensures a stable energy supply but
also reduces the reliance on traditional fossil fuel-based power generation, subsequently
decreasing air pollution and greenhouse gas emissions. Li-ion batteries are pivotal due to
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prolonged lifecycle span and capacity to endure strong power discharges. These characteris-
tics position them as the predominant choice for applications demanding sustained periods
of high-energy output, solidifying their status as the mainstream battery in the market.

As the use of lithium-ion batteries continues to grow in stationary and portable elec-
tronic devices, charging technology becomes paramount [1–5]. However, addressing key
challenges, including shortening charging time (CT), reducing battery charging temper-
ature rise (TR) generated within a battery during its usage or charging and discharging
processes due to internal electrochemical reactions, and improving prolonging battery
life, remains a focal point in lithium-ion battery charging technology research. Numerous
studies have already been conducted in this area [6–26].

Lithium-ion battery charging algorithms are mainly classified into three categories:
constant current–constant voltage (CC-CV) charging, pulse current charging, and multi-
stage constant current (MSCC) charging technique. The widely employed approach is
CC-CV charging, involving a two-stage process. Initially, the battery undergoes CC charg-
ing, followed by CV charging. In the constant current (CC) phase, the battery voltage
experiences a gradual increase. When the preset voltage is reached, the charging process
transitions to the constant voltage (CV) stage, where the charging current decreases. The
charging process is considered finished when the charging current decreases to the mini-
mum value set by the manufacturer, such as 0.02C. Although using a two-stage method
reduces implementation costs, it results in a higher average surface temperature of the
battery and longer CT during the constant voltage stage.

To address the limitations of the CC-CV charging technique, ref. [6] utilizes phase
control, employing error as a manipulation command. This output is fed into the current
source circuit, generating a corresponding charging current and achieving a profile similar
to CC-CV charging [7]. In CC mode, a current pump charging method is used, maintaining
a CT similar to CC-CV while significantly enhancing efficiency [8]. Utilizing battery open
circuit voltage (OCV) and representing the charging current using fuzzy input membership
functions produces the charging current as the output and allows for increased energy
injection during CV mode [9]. Focusing on the correlation between constant current charge
time (CCCT) and constant voltage charge time (CVCT) under a CC-CV profile with Li-ion
battery degradation and a novel health indicator, the CV-CC time ratio is introduced for
degradation analysis [10]. A grey-predicted Li-ion battery charge system is employed to
improve capacity during the CV stage.

For the pulse current (PC) charging method, efforts are made to obtain a larger pulse
charging current [11]. Adjustments are made to the pulse frequency [12], and modifications
are made to the pulse duty cycle [13,14]. To generate various charging waveform variations,
adjustments are made to the pulse current magnitude, pulse width, and pulse rest time. In
the pursuit of maximizing charging capacity and efficiency, minimizing CT, and reducing
charging losses (CL), ref. [15] uses Taguchi orthogonal array to find optimal parameters.

The MSCC charging technique involves the utilization of multiple CC parameters
for battery charging. The current literature highlights various benefits, such as prolonged
lifecycle, improved charging TR, high charging efficiency, and enhanced CT [13–20]. De-
termining optimal current parameters for each stage in this method poses challenges, and
the two following main approaches are commonly employed for identifying the optimal
charging profile (OCP): soft computing techniques and experimental design techniques.
Soft computing methods encompass orthogonal arrays [16,17], Taguchi methods [18,19],
optimization algorithms [20,21], and computational optimization [22]. To achieve a full
SOC of 100%, ref. [23] employs integer linear programming to find the OCP for MSCC,
followed by the CV stage after the OCP stages. Ref. [24] employs a Taguchi-based particle
swarm optimization algorithm to find an optimal four-stage constant current charge pattern
aiming to maximize capacity for prolonged runtimes in the shortest charging time. The
objective is to maximize the cost function considering both charging time and discharge
capacity ratio [25]. SOC serves as a switching condition in MSCC, and the Taguchi method
is employed to identify optimized current values for each stage.
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Charging techniques must consider factors such as TR, CT, and lifecycle. Although
various optimization algorithms show promising results, their practical applicability in prac-
tical situations may be limited. The recent trend of fast charging, accomplished by elevating
currents to reduce times, raises safety concerns regarding heightened battery temperatures.
This paper addresses this issue using the CT-CV charging method [26]. By establishing
a battery ECM, the parameters of the ECM are measured using AC impedance analysis.
Gaussian curve fitting is employed to establish the relationship between different state of
charge (SOC) levels and battery model parameters. Subsequently, MATLAB is utilized to
simulate a charging process using the 0.5C to 4C constant current–constant voltage (CC-CV)
charging method, and simulating CL and CT, the optimal transition time for modes is deter-
mined to minimize losses. During the charging process, a proportional–integral–derivative
(PID) controller is integrated to regulate the current in real-time, maintaining the battery
temperature at a set level. This approach mitigates the risk of damage from excessively
high temperatures, ensuring practical and safe charging.

2. Lithium-Ion Battery Model
2.1. Lithium-Ion Battery Equivalent Circuit Model (ECM)

Given the complex composition of lithium-ion batteries, this study utilizes a battery
equivalent circuit model to approximate the internal electrochemical characteristics. A
precise ECM can more closely match the response of real battery operation, enabling the cre-
ation of more efficient charging techniques. Consequently, this contributes to advancements
in CT, TR during charging, and the extension of battery lifespan.

To capture the response of a real battery, this paper employs the ECM illustrated in
Figure 1, representing a Thevenin battery model. The battery is conceptualized as a voltage
source VCeq in series with an Ohmic resistor Rs and in parallel with a set of polarization
capacitor Cp and polarization resistor Rp. Here, VOCV is the open-circuit voltage of the
battery and VT is the terminal voltage of the battery. By incorporating Rp and Cp, the model
aims to simulate the response of a real battery, closely resembling real-world charging and
discharging scenarios.
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Figure 1. Thevenin battery circuit model.

2.2. ECM Characteristics

To examine the electrochemical reaction of the battery across different states and
deduce the equivalent impedance of the battery under various conditions, this study
employs the method of alternating current impedance analysis to investigate the internal
characteristics of the battery. Through this approach, this study aims to measure and
acquire the parameters Rs, Rp, and Cp for the ECM of the lithium-ion battery applied in this
study. The forthcoming sections will present the experimental procedures for alternating
current impedance analysis.
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2.2.1. Introduction to the Selected Battery

The selected battery for this study is the INR-18650-P28A lithium-ion battery intro-
duced by Molicel, as depicted in Figure 2. The battery specifications are elaborated in
Table 1.
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Table 1. INR-18650-P28A lithium-ion specifications [27].

Molicel INR-18650-P28A Lithium-Ion Battery

Related Capacity 2800 mAh
Minimum Related capacity 2600 mAh

Related Voltage 3.6 V
Standard Charging CC-CV, 2800 mA

Weight 46 g
Suitable Temperature for Charge 0 ◦C to 60 ◦C

Suitable Temperature for Discharging −40 ◦C to 60 ◦C

2.2.2. AC Impedance Analysis

AC impedance analysis involves the application of a low-amplitude AC sinusoidal
voltage or current to disturb a battery’s positive and negative electrodes. The obtained data
encompass current, voltage, and frequency, subsequently converted into AC impedance
parameters. This dataset employs the ECM and determines relevant values. When adjust-
ing the input AC frequency, changes in the response curves of real-axis impedance and
imaginary-axis impedance can be observed. This graphical representation is commonly
called the electrochemical impedance spectrum (EIS).

The Nyquist plot illustrates internal reactions of the battery. Its analysis results, consist-
ing of components such as resistors, inductors, and capacitors, are similar to other response
plots with these three components. The response varies depending on the frequency of
the applied perturbation. Figure 3 provides a schematic Nyquist plot that illustrates the
impedance effects within a battery system.
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2.2.3. Constant Potential Detection for AC Impedance Analysis

When conducting AC impedance measurements, apply a variable-frequency sinu-
soidal voltage or current signal. In constant voltage mode, the perturbation amplitude
should not be too large. Excessive perturbation can disrupt the battery’s equilibrium state,
leading to measurement distortion.

During the constant potential perturbation detection experiment, the battery responds
with a corresponding current due to the perturbation voltage. By detecting the amplitude
and phase angle of the current and adjusting and converting signal values, the connec-
tion between the perturbation voltage and the corresponding current, considering both
magnitude and phase, can be calculated. This process provides the impedance and phase
angle. The measurement continues until the specified frequency range is covered. After
completing the measurement, the analysis of AC impedance parameters can begin. Figure 4
depicts the flowchart outlining the process of AC impedance analysis.
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2.2.4. Experimental for AC Impedance Analysis

The AC impedance analyzer utilized is the VSP-300 manufactured by Biologic (Seyssinet-
Pariset, France). The battery experiments and result analysis are conducted using EC-Lab
V11.30 software. Before measuring AC impedance, ensuring that the remaining capacity of
the battery is 100% is crucial. In planning the AC impedance experiment, attention should
be paid to adjusting the charge and discharge currents according to the specific battery.
For example, in the case of the selected 2.8 Ah lithium-ion battery in this study, a charge
or discharge current of 2.8 A represents 1C, indicating that the battery can discharge at
2.8 A for 1 h. The AC impedance of the battery is correlated with its remaining capacity.
When conducting measurements, it is crucial to simultaneously consider both the accuracy
of the remaining capacity and the required measurement time. In this study, a balance is
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struck between the accuracy of the battery’s ECM and the duration of the measurement. A
precision of 1% remaining capacity is chosen for the AC impedance measurement. Before
each electrochemical impedance spectroscopy (EIS) test, the battery undergoes a one-hour
rest period to attain electrochemical equilibrium, thereby improving the accuracy of the
experimental outcomes. The following section will elucidate the experimental settings for
AC impedance analysis.

The EC-Lab user interface is illustrated in Figure 5, and the operational steps are
divided into five parts:
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Step 1: establish a connection between the computer and VSP-300 and confirm the
connection is normal.

Step 2: Add a battery test experiment by selecting “Modulo Bat” under the electro-
chemical techniques list. Modulo Bat provides various battery test experiments, such as
constant voltage, constant current, constant power (CP), and electrochemical impedance
spectroscopy (EIS).

Step 3: Arrange the experimental procedure. Before starting the experiment, charge
the battery to SOC = 100%. During the experiment, discharge the battery to the desired
remaining capacity using a constant current and perform AC impedance measurement
after allowing the battery to reach electrochemical equilibrium.

Step 4: Set experiment-related parameters. In this study, AC impedance is measured
for every 1% remaining capacity. Considering measurement time, the discharge current
is set to 0.1 C (0.28 A), estimating an EIS measurement time of approximately 6 min per
1% remaining capacity plus a one-hour rest time. Then, set the constant potential voltage
signal with the frequency in the range from 0.1 Hz to 100 kHz and the intervals set at 6 dB,
covering most battery operating frequencies. The input voltage amplitude is set to 10 mV
to avoid battery damage or induce other electrochemical reactions.

Step 5: commence the AC impedance analysis test.
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2.2.5. AC Impedance Data Analysis

Following the AC impedance measurement, Nyquist impedance plots can be created
for various remaining capacity levels, as depicted in Figure 6. The Z-Fit function in
EC-Lab provides different ECMs that can be used to analyze Nyquist impedance plots
according to specific requirements. This study employs the Warburg battery equivalent
circuit model. The subsequent section offers a comprehensive explanation of the steps
involved in analyzing AC impedance, with the operational interface depicted in Figure 7.
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The following introduces the operation steps of the Z-Fit function.

(1) Choose the data presentation method for the measurement, select “Nyquist Impedance”
for the Nyquist plot, and choose “z cycle” to show Nyquist plots at various remaining
capacity levels.
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(2) Z-Fit function is found in “Analysis” option under “Electrochemical Impedance
Spectroscopy” within the EC-Lab interface. For this experiment, the chosen model is
the ECM. Therefore, select the equivalent model composed of the internal resistance
R1, polarization resistance R2, and polarization capacitance C2 for parameter fitting.

(3) The analysis of AC impedance is carried out for each 1% increment in remaining
capacity. Begin by selecting the Nyquist plots corresponding to the SOC aspired and
subsequently choose the fitting range.

(4) After selecting the fitting range, initiate the curve fitting process by clicking “Mini-
mize” and “Calculate,” which will yield the parameters of the fitted curve.

(5) Once the fitted curve parameters are obtained, record them for further analysis.

2.3. AC Impedance Characteristics and Fitting

AC impedance provides essential foundational data for constructing equivalent circuit
models. In every discharge cycle, the discharge is initiated at 1%, commencing rated
capacity for initial experiments. Hence, a total of 101 data points can be obtained, spanning
from 100% to 0% capacity. Figure 8 illustrates the relationship curve among Rs, Rp, and Req
at various SOC levels. The Req is the sum of Rs and Rp. Figure 9 depicts the curve depicting
the relationship of the battery OCV at various SOC levels.
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To simultaneously consider CL and CT while identifying the optimal transition point,
it is necessary to take into account the alternating impedance of the battery at various
states of charge (SOC). Consequently, this paper imports the measured AC impedance
data into MATLAB and utilizes the curve-fitting tool (cftool) to be utilized to create curves
for fitting remaining capacity and AC impedance. The curve-fitting method in this paper
utilizes a Gaussian summation function model, achieves data fitting through nonlinear
mapping, and minimizes the loss function. It exhibits good performance in handling
complex nonlinear relationship problems, as shown in Equation (1), where Req represents
the battery’s equivalent impedance, defined as Req = Ro + Rp, and SOC represents the
battery’s remaining capacity.

The steps to obtain the Gaussian model coefficients are as follows:
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(1) Within the Curve Fitter application, proceed to the Curve Fitter tab and access the
Data section. Click on “Select Data”. In the ensuing “Select Fitting Data” dialog box,
designate the X and Y data values.

(2) Navigate to the Curve Fitter tab, and within the Fit Type section, click the arrow to reveal
the gallery. Within the fit gallery, choose Custom Equation from the Custom group.

(3) In the Fit Options pane, replace the placeholder text in the equation edit box. “The
Gaussian coefficients have a straightforward interpretation, and the exponential
background is well-defined”.

a. In the Fit Options pane, proceed to Advanced Options.
b. In the Coefficient Constraints table within the Advanced Options, adjust the Lower

bound to 0, recognizing that peak amplitudes and widths cannot be negative.
c. Input the StartPoint values as indicated for the specified coefficients.
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Table 2 presents the coefficients obtained from the curve fitting. Figure 10 compares
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are all within 0.014%, validating the application of curve fitting to determine the equivalent
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Table 2. Curve fitting coefficient of battery equivalent impedance.

a1 0.08086 b1 −0.6111 c1 0.4565
a2 0.07118 b2 9.659 c2 11.19
a3 0.0008875 b3 0.2467 c3 0.124
a4 0.001624 b4 0.447 c4 0.2168
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3. Implementation of Constant Temperature–Constant Voltage Charging for
Loss Minimization

This study involves simulating CC-CV charging under various C-rates to identify
the minimum and maximum CT and losses. Subsequently, the CT and losses for CT-CV
charging are simulated. Taking into consideration both the CT and losses, fitness values are
computed for each transition point, aiming to identify the optimal transition points.

3.1. CC-CV Charging Method

The constant current–constant voltage (CC-CV) charging method divides the charging
process into two stages. Initially, the battery is charged with a constant current until
the battery terminal voltage reaches the rated cutoff voltage. Subsequently, the charging
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is continued using the cutoff voltage and, at this point, the charging current gradually
decreases due to the difference between terminal voltage and internal voltage. When the
current drops to the rated cutoff current, it is considered fully charged. This charging
method is simple and easy to implement, combining the advantages of both constant
current and constant voltage charging methods. However, its drawback is the prolonged
charging time [6–9].

3.2. CT-CV Charging Method

CT-CV is an improved charging method based on battery temperature. It utilizes
closed-loop control to regulate the charging current. Generally, a higher charging current is
required to achieve faster charging of lithium batteries. However, this can lead to increased
temperature, and prolonged high-temperature charging accelerates capacity degradation
and increases battery impedance [26]. The literature [26] proposes and implements the
CT-CV charging technique for lithium-ion batteries. Under the same average TR, CT-CV
charging saves 20% of CT compared with 1C CC-CV charging. Additionally, under the
same CT, CT-CV charging reduces the average TR by 20% compared with 1C CC-CV
charging. This indicates that it is possible to reduce CT without compromising battery life
due to excessive TR. Control of the charging current is necessary to achieve acceptable TR
at high currents. Figure 12 illustrates the control block of the CT-CV charging method.
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The equations of the PID controller are shown in the following Equations (2)–(6):

e(n) = Tset(n)− Tb(n) (2)

Ip(n) = Kpe(n) (3)

Ii(n) = Ii(n − 1) + Kie(n) (4)

Id(n) = Kd[e(n)− e(n − 1)] (5)

Ipid(n) = Ip + Ii + Id (6)

The temperature of the battery surface (Tb), the set temperature (Tset), and the tem-
perature error (e(n)) are defined in the context. The charging current (Ich) is the sum of the
feedforward component (Iff) and the current adjusted based on the temperature error (Ipid).
As shown in Figure 13, it illustrates the charging current and battery temperature profiles
for both the CT-CV and the CC-CV charging method. Table 3 shows the comparison of the
CT-CV charging method to the CC-CV charging method.
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Table 3. Comparison of the CT-CV charging method with the CC-CV charging method.

Charging Time (CT) Charging Loss (CL) Complexity

CC-CV method Long High Low
CT-CV method Short Low High

In general, the TR is relatively slow during the CC phase of CC-CV charging. By
increasing the charging current during the CC phase, the battery temperature can quickly
reach the preset temperature. Subsequently, the charging current is reduced after reaching
the preset temperature to maintain the battery temperature within the desired range. This
approach ensures that the highest temperature is equivalent to CC-CV charging. When
the battery’s remaining capacity exceeds 70%, reducing the charging current helps prevent
lithium deposition. Therefore, an exponential decay method is employed, decreasing Iff
from 2C to 1C. When the remaining capacity of the lithium battery is low, the internal
resistance of the battery is higher. Charging with a higher current at this point would cause
the TR to increase rapidly to the preset temperature. Figure 14 illustrates the program
flowchart for implementing the CT-CV charging method as tested.

3.3. The Derivation of the CT-CV Charging Technique Formula

The method employed in this study to estimate the remaining capacity utilizes
Coulomb integration, as shown in Equation (7):

SOC(t) = SOC0 +

∫ t
0 Icharge(τ) dτ

Qrated
(7)

In accordance with Kirchhoff’s voltage law, it can be inferred that the sum of the
voltage drops across the components in a closed loop is zero. Therefore, the battery
terminal voltage VT can be expressed by Equation (8):

VT = Vceq + Icharge × Ro + Vp (8)

where Vp is the voltage drop across Rp and Cp.
The charging duration of the battery can be derived from Equation (7) to obtain

Equation (9):

∆t =
Qrated
Icharge

× (SOC(t)− SOC0) (9)

where SOC0 is the initial state of charge before charging, Qrated is the rated capacity of the
battery, and Icharge is the charging current.
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The charging current of the CT-CV charging technique is segmented into three stages:
the first stage of CC charging, the second stage of exponential current charging, and the
third stage of CV charging. The charging current for each stage can be expressed by
Equation (10):

Icharge =


2C , 0 ≤ t < tpk

C × (1 + e−
t−tpk

τ ) , tpk ≤ t < tcv
(4.2 − Vocv)/Req , t ≥ tcv

(10)

The parameters in the formula include τ = tpk, Vocv and Req represent the OCV and
equivalent resistance of the battery at every 1% remaining capacity, tpk is the duration of the
transition to the CV stage, t is the current CT, and tcv is the time at which the battery voltage
achieves 4.2 V. The charging process ends when the current in the third stage is less than or
equal to 50 mA, as specified in the battery’s user manual for the termination current.

The CT can be obtained from the above equation, and the charging loss L can be
simulated and expressed by Formula (11):

∆L =
∫ t

0
I2
charge × Req(t) dt (11)
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3.4. Fitness Evaluation

The fitness value can be used to confirm whether the found solution is optimal. The
optimization method in this paper simultaneously considers both CT and CL as parameters.
Hence, this section proposes a method to normalize these two parameters for seamless
integration into a fitness value function for performance evaluation. This paper’s fitness
value evaluation method utilizes the straight-line distance between two points as the score.
Figure 15 illustrates the simulation graph of CT and CL for CC-CV charging from a 0.5C
rate to a 4C rate. The fitness value is deemed superior if the distance d between the current
point (T_now, L_now) and the ideal optimal point (T_min, L_min) is lower. The mathematical
expression for the distance d between the two points is given by Equation (12).

d =

√
(T_now − T_min)

2 + (L_now − L_min)
2 (12)

where L is CL and T is CT. To adjust the weight coefficient between the two parameters, this
paper introduces a weighting factor, w = 0.5, and rewrites Equation (12) as Equation (13).

Fitness =

√
α ×

(
T_now − T_min
T_max − T_min

)2
+ (1 − α)×

(
L_now − L_min
L_max − L_min

)2
(13)
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4. Simulation and Experimental Results
4.1. Experimental Setup

The charging equipment used for extended experiments in this study is the PSR 36-7
programmable power supply and human–machine interface produced by GW Instek (New
Taipei City, Taiwan). It allows the configuration of various charging modes. The NI-9211
and NI-6009 measurement modules measure battery TR and voltage values during battery
charging. The battery testing environment is placed inside the Desk-Top DDTH-080-20-
BP-43 constant temperature chamber, with the ambient temperature set at 25 ◦C. Figure 16
depicts the experimental environment setup employed in this study.
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4.2. Simulation Results for Minimizing Charging Loss

As shown in Figure 17, the adaptation value curves for different transition times in
the basic CT-CV charging method are depicted. The calculated fitness values based on
Equation (13) range from 267 s to 296 s, all approximately equal to 0.2861. Among them,
the fitness value at 282 s is the lowest (0.286101). Therefore, this study will compare these
three sets to demonstrate that the simulation yields the best-adapted solution, as indicated
by the lowest adaptation value. Table 4 presents the simulation results for CL and CT
after 0.5C and 4C CC-CV charging. These values represent the extremes of the CT and CL
solution space. Therefore, these two point values are set as the maximum and minimum
values for T and L when normalizing, i.e., T4C = Tmin, T0.5C = Tmax, L4C = Lmax, L0.5C = Lmin.
Subsequent adaptation value calculations will use these parameters.
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Table 4. CL and CT for 0.5C and 4C CC-CV charging.

C-Rate CT (s) CL (J)

0.5 9062 566.2
4 3414 3540.5
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4.3. Experimental Results

The comparison in this paper includes charging TR, charging efficiency, and CT. The
proposed loss-minimization CT-CV charging method, the basic CT-CV charging method
with the same transition temperature, and the CC-CV charging technique are compared.
The following explains the experimental results.

4.3.1. Comparison of Loss-Minimization CT-CV with Different Transition Times

This section compares the three optimized transition times, which are 267 s, 282 s, and
296 s, respectively. The PID parameters used in this experiment are kp = 8, ki = 0.005, and
kd = 0.1. Figures 16 and 17 show the battery temperature waveform and charging current
waveform for the three transition times of CT-CV charging. Table 4 compares the CT-CV
charging effects for the three transition times. From Figures 18 and 19, and Table 5, it is
observed that the 296 s transition time results in a larger maximum TR due to the extended
2C CT. On the other hand, the 267 s transition time results in a longer total CT due to the
short 2C CT. By calculating the fitness value with the CT and CL for each set of parameters,
it is determined that the 282 s transition time yields the lowest fitness value. Therefore, the
282 s transition time is considered the loss-minimization CT-CV charging method.
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4.3.2. Comparison of Different PID Parameters

Due to the Li-ion battery utilized in this paper, charging at 2C constant current for
282 s results in a battery temperature of 28.9 ◦C. Therefore, this section compares the
performance of three types of PID value sets to maintain the battery temperature at 28.9 ◦C.
The three sets of parameters are kp = 8, ki = 0.005, kd = 0.1; kp = 6, ki = 0.01, kd = 0.1; and
kp = 4, ki = 0.015, kd = 0.1. Figures 18 and 19 show the battery temperature and charging
current waveforms for each PID parameter set, and Table 6 compares their performance
in stabilizing the battery temperature at 28.9 ◦C. Based on Figures 20 and 21 and Table 5,
it is observed that the set of PID parameters kp = 8, ki = 0.005, and kd = 0.1 achieves the
fastest stabilization at the set temperature with the least overshoot. Therefore, this set of
PID parameters is used in all experiments in this study.
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Table 5. Comparison of the charging effects for three transition times in CT-CV charging method.

Transition
Times (s) CT (s) Average TR

(◦C) Max TR (◦C) Charging
Efficiency (%) Fitness

267 5100 2.48 3.91 98.60 0.2551
282 4944 2.49 3.91 99.34 0.2535
296 4942 2.49 4.09 98.88 0.2547

Note: charging efficiency (%) = discharging capacity (mAh)/charging capacity (mAh).

Table 6. Comparison of three PID parameters to stabilize the battery at 28.9 ◦C.

PID Parameter Maximum Overshoot (◦C) Time Required for
Temperature Stabilization (s)

kp = 8, ki = 0.005, kd = 0.1 0.00 280
kp = 6, ki = 0.01, kd = 0.1 0.18 366
kp = 4, ki = 0.015, kd = 0.1 0.18 783

4.3.3. Comparison between Loss-Minimization CT-CV and Various Cases

To ensure fairness in the comparison, this section compares the loss-minimization
CT-CV charging method with the following methods: the basic CT-CV charging method
with the same transition temperature of 28.9 ◦C, a 1.21C CC-CV charging method with an
average temperature close to the loss-minimization CT-CV method, and a 1.40C CC-CV
charging technique with CT close to the loss-minimization CT-CV charging technique. This
comparison aims to validate the advantages of the proposed method. Figures 22–24 show
the temperature, current, and voltage waveforms for each charging method, and Table 7
presents a comparison of these methods. According to Table 7, the loss-minimization CT-CV
method has the lowest adaptation value. Compared with the fundamental CT-CV charging
method with the same transition temperature of 28.9 ◦C, the proposed charging method
increases the CT by 1.56% but reduces the average TR by 12.01% and the maximum TR by
24.81%. In comparison with the CC-CV charging technique with the same CT, it improves
the average TR by 28.45% and the maximum TR by 27.46%. Compared with charging
methods with the same average TR, it reduces the CT by 18.64% and the maximum TR by
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19.05%. The improvement percentage, as indicated in Table 6, is calculated based on the
proposed method in comparison to other charging methods.
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Table 7. Comparison of charging methods.

Charging Method CT (s) Average TR (◦C) Max TR (◦C) Charging
Efficiency (%) Fitness

Loss optimization
CT-CV 4944 2.49 3.91 99.34 0.2535

28.9 degrees
fundamental CT-CV

4868
(−1.56%)

2.83
(+12.01%)

5.20
(+24.81%) 98.71 0.2638

Same CT CC-CV
(1.40C CC-CV)

4926
(−0.37%)

3.48
(+28.45%)

5.39
(+27.46%) 99.32 0.2828

Same average TR
CC-CV

(1.21C CC-CV)

6077
(+18.64%)

2.49
(+0.00%)

4.83
(+19.05%) 99.48 0.3648

Note: charging efficiency (%) = discharging capacity (mAh)/charging capacity (mAh).
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5. Conclusions

This paper is based on the CT-CV charging method, utilizing the Coulomb counting
method and the ECM of the battery to calculate the CL and CT for the CT-CV charging
method. Using Matlab for the simulation involves assessing the charging losses and
charging time resulting from CC-CV charging at rates ranging from 0.5C to 4C. Additionally,
fitness evaluation is incorporated, utilizing the straight-line distance between two points as
the score for the fitness value. Consequently, both objectives are simultaneously considered
in searching for the transition point that minimizes losses, aiming to reduce CT while
lowering the battery TR. The proposed charging method is applied to charge lithium-
ion batteries to validate simulation results. Comparative analyses are conducted with
the CT-CV charging method and the conventional CC-CV charging method. The results
confirm the advantages of the proposed loss-minimizing CT-CV charging method in terms
of shortened CT and reduced TR during charging. In comparison with the fundamental CT-
CV charging method at 28.9 degrees Celsius, the proposed method increases CT by 1.56%
but reduces average TR by 12.01% and maximum TR by 24.81%. Compared with the CC-CV
charging method with the same CT, the proposed method reduces average TR by 28.45%
and maximum TR by 27.46%. Furthermore, compared with the CC-CV charging method
with the same average TR, the proposed method shortens CT by 18.64% and reduces
maximum TR by 19.05%. Finally, the proposed method is verified to have the optimal
fitness value by substituting the obtained CT and CL into the fitness calculation formula.
It will be important for future research to investigate and establish an equivalent circuit
model for a battery pack with multiple cells in series. Additionally, applying optimization
methods to consider battery lifecycle and searching for the optimal PID parameters will
be crucial.

From the experimental results, it is evident that the loss-minimizing CT-CV charging
method proposed in this paper simultaneously considers reducing CL and shortening CT
for lithium-ion battery charging. The method offers the following advantages:

1. This paper considers the equivalent impedance of the battery at different remaining
capacities, enabling accurate estimation of CL.

2. The method identifies the optimal transition time.
3. It allows for the incorporation of other charging constraints for further optimiza-

tion analysis.
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