
Citation: Gorgin, S.; Karvandi, M.S.;

Moghari, S.; Fallah, M.K.; Lee, J.-A.

A Hardware Realization Framework

for Fuzzy Inference System

Optimization. Electronics 2024, 13, 690.

https://doi.org/10.3390/

electronics13040690

Academic Editors: Mariano

López-García and Enrique Cantó

Navarro

Received: 19 December 2023

Revised: 25 January 2024

Accepted: 31 January 2024

Published: 8 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Hardware Realization Framework for Fuzzy Inference
System Optimization
Saeid Gorgin 1,*, Mohammad Sina Karvandi 1, Somaye Moghari 2, Mohammad K. Fallah 1 and Jeong-A Lee 1,*

1 Department of Computer Engineering, Chosun University, Gwangju 61453, Republic of Korea;
karvandi@chosun.kr (M.S.K.); mkfallah@chosun.ac.kr (M.K.F.)

2 Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood 3619995161, Iran;
s.moghari@shahroodut.ac.ir

* Correspondence: gorgin@chosun.ac.kr (S.G.); jalee@chosun.ac.kr (J.-A.L.)

Abstract: Fuzzy inference systems (FISs) are a key focus for decision-making in embedded systems
due to their effectiveness in managing uncertainty and non-linearity. This study demonstrates that op-
timizing FIS hardware enhances performance, efficiency, and capabilities, improving user experience,
heightened productivity, and cost savings. We propose an ultra-low power FIS hardware framework
to address power constraints in embedded systems. This framework supports optimizations for
conventional arithmetic and Most Significant Digit First (MSDF) computing, ensuring compatibility
with MSDF-based sensors. Within the MSDF-computing FIS, fuzzification, inference, and defuzzi-
fication processes occur on serially incoming data bits. To illustrate the framework’s efficiency, we
implemented it using MATLAB, Chisel3, and Vivado, starting from high-level FIS descriptions and
progressing to hardware synthesis. A Scala library in Chisel3 was developed to connect these tools
seamlessly, facilitating design space exploration at the arithmetic level. We applied the framework by
realizing an FIS for autonomous mobile robot navigation in unknown environments. The synthesis
results highlight the superiority of our designs over the MATLAB HDL code generator, achieving a
43% higher clock frequency, and 46% and 67% lower resource and power consumption, respectively.

Keywords: embedded system; hardware optimization; MSDF computing; fuzzy inference system

1. Introduction

Fuzzy inference systems have emerged as a crucial component of contemporary tech-
nology, serving as a class of computational models proficient in addressing uncertainties
inherent in modeling and data [1,2]. FISs find applications in diverse domains, such as
information fusion [3], pattern recognition [4], prediction [5], decision-making [6,7], and
control systems [8]. Their ability to handle uncertain and imprecise information makes
them particularly useful in these areas, where the input data often contain noise, errors, or
missing values. FISs can help to identify patterns in complex datasets, make accurate pre-
dictions based on historical data, and make informed decisions in uncertain and dynamic
environments [9,10]. Furthermore, FISs can be integrated into control systems to regulate
the behavior of complex systems, such as robots, vehicles, or industrial processes [5,11,12].
Additionally, FISs play a pivotal role in financial applications by predicting stock prices and
analyzing market trends. In medical diagnosis systems, they assist doctors in interpreting
medical test results and making informed treatment decisions [13,14]. In light of their
critical role and widespread utilization, there is a compelling need to enhance the design of
FISs for greater efficiency and sustainability.

The endeavor to enhance efficiency and diminish the requisite processing demands
and power consumption through hardware redesign is widely embraced as a strategic
approach to optimizing systems within the realm of sustainable computing [15]. On
the other hand, as the need for high-speed computing intensifies, FISs have migrated to
VLSI, leading to a substantial improvement in their processing speed [16]. Nonetheless, the

Electronics 2024, 13, 690. https://doi.org/10.3390/electronics13040690 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13040690
https://doi.org/10.3390/electronics13040690
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8271-3885
https://orcid.org/0000-0002-5166-0629
https://doi.org/10.3390/electronics13040690
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13040690?type=check_update&version=1

Electronics 2024, 13, 690 2 of 15

considerable expenses associated with VLSI chip redesign or modification have necessitated
the adoption of field-programmable gate arrays (FPGAs) [17,18]. Therefore, FPGAs have
emerged as a favorable choice for implementing FISs owing to their cost-effectiveness and
flexibility in hardware design modifications. This trend has been favorably received by
research aimed at optimizing the implementation of target hardware on FPGA.

To optimize hardware through its high-level description, a range of optimization
techniques can be employed across different levels of granularity, from coarse-grained
levels such as task graphs to fine-grained levels such as data flow graphs [19,20]. Computer
arithmetic provides a suite of efficient methods and tools for minimizing the processing
requirements of specific tasks, particularly at the fine-grained level [21–23]. The MSDF data
processing technique is one such example that enables the early termination of computation
and the utilization of compact processing elements to handle data sequentially and at the
bit level [24]. MSDF computing leverages the significance of digits in data to minimize
the number of processing components and operations required for computation [25,26].
The technique processes data hierarchically, beginning with the most significant digit and
advancing toward the least significant digit. By prioritizing the most significant digits,
certain computations, such as comparison, can be terminated early [24,26]. Moreover,
because the data bits are processed serially, the effect of early termination can be propagated
back to the processing elements that are computing the next set of bits, resulting in reduced
processing time and power consumption.

This paper introduces a hardware realization framework that leverages conventional
arithmetic and MSDF computing techniques to conduct hyper-exploration on the design
space and optimize FISs for sustainable computing. In addition, the proposed framework
connects high-level FIS description tools, such as MATLAB, and hardware synthesis tools,
such as Synopsys Design Compiler and Xilinx Vivado Design Suite. The framework pro-
posed in this study is implemented and tested by realizing an FIS for a robot navigation case
study. Our paper’s contribution and novelties are as follows: (a) Optimization strategies for
sustainable computing leveraging FPGAs and MSDF computing, (b) Bridging high-level
and hardware description tools through a comprehensive framework, and (c) Implemen-
tation and hardware realization in a real-world robot navigation case study using the
suggested framework.

The remainder of this paper is structured as follows. Section 2 overviews the necessary
background information and foundational concepts related to FIS and MSDF computing.
The proposed framework is detailed in Section 3. Section 4 outlines the experimental design
and case study utilized to evaluate the framework’s effectiveness. Section 5 presents the
experimental results and corresponding discussions. Finally, Section 6 concludes the paper.

2. Background and Preliminaries
2.1. Fuzzy Set Theory

Fuzzy sets are an extension of the classical notion of a set, where each element has a
degree of membership, enhancing its capability to handle uncertainty [27].

Definition 1. Let X be the universe of discourse. Then, a fuzzy set A on X is characterized by
membership function µA : X → [0, 1].

Definition 2. Let A and B be two fuzzy sets defined on set X. The standard form of the set
operations intersection and union calculate the membership of each x ∈ X by Equations (1) and (2),
respectively.

µA∩B(x) = min{µA(x), µB(x)}. (1)

µA∪B(x) = max{µA(x), µB(x)}. (2)

2.2. Fuzzy Inference System (FIS)

An FIS is an artificial intelligence framework that utilizes fuzzy logic for inference. An
FIS consists of three main building blocks, namely fuzzification, inference, and defuzzification.

Electronics 2024, 13, 690 3 of 15

Fuzzification is the process of associating each crisp input value with a set of fuzzy
values based on the corresponding linguistic terms defined for that input.

By inference, the fuzzy set operations are used to evaluate predefined rules that
specify how the input variables should be combined to generate the output. Each rule
is a combination of antecedent (if) and consequent (then) clauses, where the antecedent
specifies the conditions under which the rule applies, and the consequent specifies the
action to be taken. In the inference, the process of composing fuzzy relations is generally
accomplished using either max-min or max-product compositions.

The defuzzification process involves converting each fuzzy output to a crisp numerical
value. This numerical value is then sent to the control system, which adjusts the system’s
behavior. Several defuzzification methods are available to accomplish this task, including
the centroid method, the max or mean-max membership principles, and the weighted
average method.

2.3. MSDF Computing

In MSDF arithmetic, also known as Left to Right Arithmetic, the computation com-
mences from the Most Significant Digit (MSD) for all arithmetic operations, unlike con-
ventional arithmetic, where addition and multiplication are performed from the least
significant digit to the most significant positions. As a result, in the serial fashion of MSDF
(also called Online arithmetic), the result digits can be generated upon receiving a limited
number of digits from the operands, even as the remaining input digits are being received.
This computational approach offers lower latency and power consumption advantages
by terminating unnecessary computations. The serial nature of MSDF computing further
contributes to a reduced area for the arithmetic unit, resulting in a smaller memory foot-
print and fewer interconnects. Furthermore, dependent operations can be executed nearly
simultaneously, considering a delay parameter.

By employing MSDF arithmetic, computations can be terminated once the desired
precision is achieved, eliminating the need for additional computations [24]. In contrast,
conventional arithmetic requires generating the least significant part of the result, which
is discarded based on the required precision. Furthermore, in specific operations, such as
finding the maximum and minimum values, the result becomes evident upon encountering
the first unequal digits among the operands.

In the context of MSDF computing, the online delay is defined as the time interval
required for generating the output digits while the input digits are sequentially received. It
signifies the duration between the arrival of input data and the corresponding production
of output digits in a serial fashion. Due to the prioritization of the most significant digits
in MSDF computing, result digits are generated only after receiving a limited number of
operand digits. Consequently, there is a gradual accumulation of delay until the final result
is achieved. This characteristic is crucial to consider when assessing the computational
efficiency and performance of MSDF computing. Figure 1 depicts the progressive accumu-
lation of online delay in MSDF computing. In this context, each operation i contributes an
online delay δi to the overall online delay δtotal of the chained operations.

An Efficient Implementation of Online Arithmetic
Yiren Zhao ∗, John Wickerson †, George A. Constantinides ‡

Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, United Kingdom
yiren.zhao13, j.wickerson, g.constantinides@imperial.ac.uk

Abstract—We propose the first hardware implementation of
standard arithmetic operators – addition, multiplication, and
division – that utilises constant compute resource but allows
numerical precision to be adjusted arbitrarily at run-time.
Traditionally, precision must be set at design-time so that addition
and multiplication, which calculate the least significant digit
(LSD) of their results first, and division, which calculates the
most significant digit (MSD) first, can be chained together. To
get around this, we employ online operators, which are always
MSD-first, and thus allow successive operations to be pipelined.
Even online operators require precision to be fixed at design-time
because multiplication and division traditionally involve parallel
adders. To avoid this, we propose an architecture, which we have
implemented on an FPGA, that reuses a fixed-precision adder and
stores residues in on-chip RAM. As such, we can use a single piece
of hardware to perform calculations to any precision, limited only
by the availability of on-chip RAM. For instance, we obtain an
8x speed-up, compared to the parallel-in-serial-out (PISO) fixed-
point method, when executing 100 iterations of Newton’s method
at a precision of 64 digits, while the product of circuit area and
latency stays comparable.

I. INTRODUCTION
Traditional fixed-point arithmetic operators, both parallel

and serial, require precision to be specified at design-time.
These operations fall into two categories; some, such as
addition and multiplication, proceed from the least significant
digit (LSD) to the most significant digit (MSD), while others,
such as division, compute from the MSD to the LSD. As a
result of this difference, fixed-point arithmetic is sometimes
forced to perform word-by-word computations: operators may
need to stall until all digits in a word have been calculated. For
example, if a 32-bit multiplication feeds a 32-bit division for
serial fixed-point arithmetic, the divider would only be able
to take the input once all 64 bits of the intermediate product
have been calculated by the multiplier.

Online arithmetic unifies all arithmetic operations in an
MSD-first fashion [2]. Existing implementations of parallel
and serial online arithmetic require precision to be confirmed
at design-time [3]. Nonetheless, as illustrated in Figure 1,
serial online arithmetic supports pipelining: an output digit
can be streamed into the next operator before all the digits in
that word have been generated.

In our work, we focus on serial online operators. Inher-
iting from classic online arithmetic, we employ the MSD-
first computation order to reduce the number of computation
clock cycles compared to serial fixed-point arithmetic [3]. On
top of this, our novel hardware design can provide results
with arbitrary precision at run-time. The algorithms of classic
online multiplication and division compute residue terms using
parallel online adders and produce a digit of product/quotient

MSD LSDn digits

Input x1 x2 x3 ... xn

o
1

o
2

o
3 ... onoperation 1

δ 1
o'1 o'2 o'3 ... o'n

...

...
δ 2

operation 2

...

y1 y2 y3 ...Output

...

MSD arbitrary digits

Time

...δ total δ 1 δ 2= + +

Fig. 1: Datapath of chained online operators; δ represents online
delay; input x is used to produce a product p, which is then used to
produce a quotient q; y is the final result.

based on these partial sums [13]. Classic architectures for
serial online operators, although producing results in a digit-
by-digit fashion, require precisions to be specified at design-
time because they use parallel online adders on these residue
terms. Our new design reuses a fixed-precision parallel adder
and stores residues in on-chip RAM. This hardware reuse
enables results to be produced with arbitrary precision but
consumes only a fixed amount of computational hardware.
For any given iterative algorithm with a known number of
iterations, we could connect online operators and generate
results to any precision at run-time with constant hardware
costs, and the maximum achievable precision is only limited
by the availability of on-chip RAM.

In Section III, we give an overview of online arithmetic, and
discuss our optimized hardware architecture. In Section V,
we summarize online arithmetic’s performance on Newton’s
method both empirically and analytically to demonstrate its
advantages on iterative operations with many iterations and
high precision requirements. At a low iteration count and a
precision of 64 digits, empirical results suggest our imple-
mentation of online arithmetic is 2.95x faster than parallel-in-
serial-out (PISO) arithmetic. On the other hand, we demon-
strate analytically that our design is also preferable if iteration
count is large: we obtain a 1.7x speed increase at an iteration
count of 100 but only 8 digits precision.

We make the following contributions in this paper:

• The first architecture of online arithmetic where the
compute resource utilization does not grow with precision
even for multiplication and division, opening the door to
run-time tuning of arithmetic precision.

• A quantitative analysis of the overhead of online arith-
metic on a modern FPGA device.

• A demonstration that for high precision or high iteration
counts, online arithmetic is superior to standard fixed-
point arithmetic.

Figure 1. The progressive accumulation of online delay (δ) in chained operations.

Electronics 2024, 13, 690 4 of 15

3. Proposed Framework

Hardware design space exploration can be conducted across various dimensions
such as architecture, memory hierarchy, data path and pipeline, communication interfaces,
arithmetic, and optimization metrics. The proposed framework aligns with the productivity
approach of diverse computer arithmetic systems, aiming to optimize the final product
regarding power and area goals. Moreover, it effectively utilizes available tools, from high-
level descriptions of FIS to hardware synthesis. Figure 2 depicts the overarching structure
of this framework, showcasing the processes involved and their corresponding outputs,
spanning from the high-level description of FIS to its hardware representation. Additionally,
a Scala library is developed in Chisel3 to establish a connection between these tools,
bridging the gap. It uses Flexible Internal Representation for Register Transfer Language
(FIRRTL) to generate Hardware Description Language (HDL) codes and facilitates design
space exploration encompassing both conventional arithmetic and MSDF computing. Also,
it comprises four primary modules to construct an FIS, namely the Fuzzifier, Optimizer,
Inferer, and Defuzzifier.

Chisel3
(Scala Library)

Intermediate
Representation

FIRRTL

 HDL Code

Design Compiler
(Synopsys)

ASIC Design

Vivado
 (Xilinx)

FPGA Design

High-Level
Language

 FIS Description

.fis.fis

.fir.fir

.v.v

.gdsII.gdsII.bit.bit

Fuzzifier

Inferer

Optimizer

Defuzzifier

Fuzzifier

Inferer

Optimizer

Defuzzifier

Figure 2. The proposed hardware realization framework for fuzzy inference systems.

3.1. Fuzzifier

The Fuzzifier module incorporates a collection of procedures designed to represent
membership functions within the structure of an FIS. Also, there are potential options for
implementing membership functions to facilitate support for MSDF computing and data
processing in a serial bit arrangement. These options include the utilization of Lookup Ta-
bles (LUTs) or adopting unconventional methods such as online arithmetic. The LUT-based
implementations on FPGAs provide a favorable equilibrium among flexibility, efficiency,
programmability, and speed, rendering them a highly recommended option for function
implementation on FPGA platforms [28,29].

As hardware platforms typically have finite precision arithmetic capabilities, the quan-
tization and scaling techniques are applied to represent the fuzzy values and intermediate

Electronics 2024, 13, 690 5 of 15

computations within the hardware constraints accurately. Here, the output value of mem-
bership functions can be scaled using an S factor. A higher value of S corresponds to
increased precision, necessitating more bits for the membership function output. Figure 3a
illustrates a trapezoidal membership function, while Figure 3b depicts the same function
scaled with a factor of S = 10, resulting in a precision of 0.1. Also, the value of µ̃(x) is
rounded to the nearest value indicated by the blue numbers on the vertical axis. Table 1
presents the corresponding truth table, which could be used to derive the equivalent Finite
State Machine (FSM) and calculate the online delay δ.

15 x14131211109876543210

10

μ(x)×10

15 x14131211109876543210

1

μ(x)

8

7

5

3

2

0

1

4

6

9

(a)

15 x14131211109876543210

10

μ'(x)

15 x14131211109876543210

1

μ(x)

8

7

5

3

2

0

1

4

6

9

(b)
Figure 3. A sample trapezoidal membership function and its discretized counterpart with a scale
factor of S = 10. (a) The original membership function. (b) The scaled membership function.

Table 1. The LUT corresponding to Figure 3b.

x µ̃(x)

X x1 x2 x3 x4 y1 y2 y3 y4 Y

0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 2
2 0 0 1 0 0 0 1 1 3
3 0 0 1 1 0 1 0 1 5
4 0 1 0 0 0 1 1 1 7
5 0 1 0 1 1 0 0 0 8
6 0 1 1 0 1 0 1 0 10
7 0 1 1 1 1 0 1 0 10
8 1 0 0 0 1 0 1 0 10
9 1 0 0 1 1 0 1 0 10

10 1 0 1 0 1 0 0 0 8
11 1 0 1 1 0 1 1 1 7
12 1 1 0 0 0 1 0 1 5
13 1 1 0 1 0 0 1 1 3
14 1 1 1 0 0 0 1 0 2
15 1 1 1 1 0 0 0 0 0

Figure 4 presents the Mealy FSM corresponding to the most significant digit of the
output. This pseudo-tree structure is the same for all outputs; only the output on the
edges related to the transition rules differs. Furthermore, the online delay δ is 4, indicating
that the determination of the output’s fourth bit from the left directly corresponds to the
determination of the value of y1.

Electronics 2024, 13, 690 6 of 15

1

32

6 7

12 13 14 15

 0 1

 0 0/1 0 0

 0 0/1

 0 1/0

 1 1

 1 1 1 1/0

4 5

8 9 10 11

 0 0 0/0 0

 0 0

 0/0 1

 1/1 1

 1 1/1 1 1

0

1

2 3

 0/0 0/1

 0 1

 1/0 1/1

0

Figure 4. The FSM corresponding to y1 (the MSD of µ̃(x)).

Also, if the number of input bits is n, the considered FSM has 2n states, where we
define the initial state as 1, and the state change formula is based on Equation (3).

St+1 =

{
2St + xi 0 < St < 2n

0 o.w.
. (3)

3.2. Optimizer

In this research, we have devised an approximate computing approach to system-
atically manipulate specific bits within the LUTs. This technique effectively reduces the
online delay δ associated with serial processing in MSDF computing. For example, if the
controller is tolerant enough so that we can increase the value of the membership function
µ̃ for X = 4 and X = 11 by 0.1, it results in the content of Table 2. Therefore, δ of producing
MSD is reduced to 2, as shown in Figure 5.

Table 2. The y1-optimized LUT corresponding to Table 1.

x µ̃(x)

X x1 x2 x3 x4 y′
1 y′

2 y′
3 y′

4 Y′

0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 2
2 0 0 1 0 0 0 1 1 3
3 0 0 1 1 0 1 0 1 5
4 0 1 0 0 1 0 0 0 8
5 0 1 0 1 1 0 0 0 8
6 0 1 1 0 1 0 1 0 10
7 0 1 1 1 1 0 1 0 10
8 1 0 0 0 1 0 1 0 10
9 1 0 0 1 1 0 1 0 10

10 1 0 1 0 1 0 0 0 8
11 1 0 1 1 1 0 0 0 8
12 1 1 0 0 0 1 0 1 5
13 1 1 0 1 0 0 1 1 3
14 1 1 1 0 0 0 1 0 2
15 1 1 1 1 0 0 0 0 0

Figure 5 presents the Mealy FSM corresponding to y′1, which is the MSD of the output
for the optimized LUT.

Electronics 2024, 13, 690 7 of 15

1

32

6 7

12 13 14 15

 0 1

 0 0/1 0 0

 0 0/1

 0 1/0

 1 1

 1 1 1 1/0

4 5

8 9 10 11

 0 0 0/0 0

 0 0

 0/0 1

 1/1 1

 1 1/1 1 1

0

1

2 3

 0/0 0/1

 0 1

 1/0 1/1

0

Figure 5. The optimized FSM corresponds to y′1.

3.3. Inferer

The Inferer module encompasses the implementation of specific reductions necessary
for min-max operations associated with FIS rules. Additionally, it handles the aggregation
of rules that possess output with the same linguistic value.

3.4. Defuzzifier

In this research, we focus on evaluating the efficiency of MSDF computing using con-
ventional number representation. Therefore, we implemented the Maximum Membership
defuzzification method, identifying the fuzzy set with the highest membership degree.
This fuzzy set represents the strongest influence on the output. The crisp output value
is then determined based on the selected fuzzy set’s representative value, considering
its membership function’s shape and characteristics. This crisp output value, obtained
through defuzzification, provides a definitive and usable value for further processing,
decision-making, or control actions.

4. Evaluation Methodology
4.1. Case Study

Path planning of mobile robots in unknown environments is one of the most common
problems for robot navigation. The extent of the desired environment is assumed to be
a rectangle, where several obstacles are located inside it. The problem is that a robot has
to move from a starting point to a target point by avoiding obstacles. The fact that the
environment is unknown to the robot means that it is unfamiliar with its surroundings;
it can solely detect obstacles within its visual range. Figure 6 illustrates an environment
including a robot, an obstacle, and two gates to move the robot to the target point. Here,
the robot confronts an obstacle that obstructs its direct path toward the destination. Conse-
quently, it is presented with two alternatives; either passing through gate a or gate b. In
this situation, the FIS calculates a rank value r for each gate, and the gate with the lowest
r value is selected to pass. Since the space behind the obstacle is unknown to the robot,
the robot assumes that there is no obstacle behind it and considers the promising distance
values da = dra + dat and db = drb + dbt for gates a and b, respectively. Then, it sends the
values of (da, θa) and (db, θb) to the FIS to calculate the rank of the corresponding gates.

Robot r

Gate b

Target

t

drb
dbt

Gate a

θb

θa
dra

dat

Figure 6. A simple problem with one obstacle.

Electronics 2024, 13, 690 8 of 15

4.2. Experimental Design

In this section, the experimental design of an FIS is described in two steps. The
first step demonstrates the desired robot navigation algorithm and the components of the
corresponding FIS. The second step presents the hardware realization of the proposed FIS
that supports MSDF computing.

4.2.1. Step 1 (Software Implementation)

A simple FIS-based algorithm is developed for robot navigation in an unknown
environment. We implemented it in MATLAB, where the input contains information about
the robots’ start points and target points, as well as the specification of the environment
and obstacles inside it. Algorithm 1 presents the navigation subroutine for a robot. The
main loop is repeated until the robot reaches the target point. In each iteration, the robot
scans all the visible gates and calculates their ranks. In this stage, an FIS calculates the rank
of each gate. Then, the gate with the best (least) rank is selected for passing.

Algorithm 1: The navigation subroutine for a robot r.
Data: Robot Position (xr, yr), Target Point (xt, yt)
Result: Robot Navigation Path
while (xr, yr) ̸= (xt, yt) do

G ← visible_gates() // Scanning all visible gates
for g ∈ G do

rankg ← FIS(dg, θg) // Ranking scanned gates
end
b← best_rank_gate() // Selecting the best gate
(xr, yr)← (xb, yb) // Passing through the gate

end

The FIS ranked each gate according to two input parameters; the promising distance
d in meters, and the deviation angle θ in degrees. The distance parameter d indicates the
(promising) distance of the robot to the target point by passing through the desired gate.
Since the most promising distance in the defined environment is related to moving from
one corner to the opposite corner from the path close to the sides, this parameter can be in
the range [0, 1023] for a 700× 700 rectangular environment. Also, five linguistic values of
So Near (SN) , Near (N), Medium (M), Far (F), and So Far (SF) are defined for the fuzzification
of this parameter. Figure 7 shows the trapezoidal membership functions of these linguistic
values.

0

0.2

0.4

0.6

0.8

1

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

m
em

b
er

sh
ip

 d
eg

re
e

distance d

SN N M F SF

Figure 7. The fuzzy membership functions for distance d.

The angle parameter θ indicates the robot’s deviation (to the right or left) from the
straight path to the target point. This deviation can be in the [0, 180] degrees range. Also,
five linguistic values of Very Small (VS), Small (S), Medium (M), Large (L), and Very Large (VL)
are defined for the fuzzification of the angle parameter. Figure 8 displays the trapezoidal
membership functions of these linguistic values.

Electronics 2024, 13, 690 9 of 15

0

0.2

0.4

0.6

0.8

1

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

m
em

b
er

sh
ip

 d
eg

re
e

angle θ

VS S M VLL

Figure 8. The fuzzy membership functions for angle θ.

The FIS inference component maps the fuzzified input values to fuzzy rank values
according to predefined IF-THEN rules. Table 3 presents the set of 25 defined inference
rules. Here, each column indicates the set of rules on an angle linguistic value, and each
column indicates the set of rules on a distance linguistic value, where the output is a rank
value r ∈ {0, 1, 2, 3, 4} pointed in the junction. For example, the rule (IF angle IS Very-Large
AND distance IS So-Far THEN rank IS 4) is presented by the cell placed in the junction of
the last column and last row. It should be stated that the order of ranks from best to worst
is 0, 1, 2, 3, and 4. Therefore, when the angle is Very Small, and the distance is Medium
or less, and when the angle is Small, and the distance is So Near, the rank is 0 (the best
possible rank). Also, inference rules with similar output are aggregated together using the
max operator.

Also, the smallest value for which the output fuzzy set is Maximum (SOM) is used
for the defuzzification. In other words, the output rank value is the best rank with the
maximum degree of membership.

4.2.2. Step 2 (Hardware Realization)

Figure 9 illustrates the structure of the fuzzy inference system described in the previous
section. In the fuzzification component, membership functions are implemented as lookup
tables and map the two inputs d and θ to values in the integer interval [0, 100].

Table 3. The FIS inference rules.

Angle θ

VS S M L VL

Distance d

SN 0 0 1 2 3
N 0 1 2 3 3
M 0 1 2 3 4
F 1 1 3 4 4

SF 1 2 3 4 4

Electronics 2024, 13, 690 10 of 15

SF(d)
LUT

F(d)
LUT

M(d)
LUT

N(d)
LUT

 max
 index
 tree

max
tree

max
tree

max
tree

min

SN(d)
LUT

min

min

min

min

min

min

min

min

min

min

min

min

min

min

min

min

min

min

min

min

min

min

min

min

max
tree

0

1

2

3

4

r

d

θ

max
treeVB(θ)

LUT

B(θ)
LUT

M(θ)
LUT

S(θ)
LUT

VS(θ)
LUT

in
te

rc
o

n
n

ec
ti

o
n

0

1

2

3

4

5

6

7

8

9

0
5

0
6

0
7

0
8

0
9

1
5

1
6

1
7

1
8

1
9

2
5

2
6

2
7

2
8

2
9

3
5

3
6

3
7

3
8

3
9

4
5

4
6

4
7

4
8

4
9

 Fuzzification Defuzzification Inference & Aggregation

Figure 9. Architecture of the fuzzy inference system.

5. Experimental Results

In this section, we elaborate on the experimental results of hardware design using the
proposed framework (conventional arithmetic and MSDF computing) with MATLAB’s
HDL coder (conventional arithmetic).

5.1. Experiment and Evaluation Method

Since for the design of FIS hardware we have discretized it and adopted the lookup
table approach, at first, we compared it with the continuous implementation approach to
show the equivalence of the outputs. Therefore, we applied the Monte Carlo approach
for validation.

The experiments were conducted on a standard Avnet ZedBoard 7020 baseboard for
hardware evaluation with a Zynq-7000 All Programmable SoC XC7Z020-CLG484-1. We
evaluated our design using the Xilinx Vivado design suite and downloaded the synthesized

Electronics 2024, 13, 690 11 of 15

bitstream to the target board. Furthermore, we undertook a comprehensive evaluation by
focusing on the assessment of Maximum Clock Frequency, resource utilization, and power
consumption across identical benchmarks.

It is imperative to emphasize that WNS holds paramount significance as the maximum
allowable delay by which a signal can be extended without infringing upon the circuit’s
specified clock period. Ensuring that WNS remains within predefined tolerances serves as
a pivotal safeguard against potential timing violations, the ramifications of which could
manifest as critical inaccuracies in circuit operation.

5.2. Availability

The source code of the proposed Fuzzy inference system (FIS) along with generated
verilog codes (Chisel) and files for each of the phases (Fuzzification, Inference, Defuzzifi-
cation) for both conventional and MSDF-based computing systems as well as MATLAB
Simulink models for HDL code generation and Monte Carlo simulation are available at:
https://github.com/cslab-chosun/online-fuzzy-chisel (accessed on 7 February 2024).

5.3. Validation

We initiated a Monte Carlo simulation involving the generation of 100,000 random
inputs to validate the functionality of the FIS model with discretized membership functions.
This allowed us to perform a comparative analysis between the outputs of the hardware
model, where the membership functions are implemented using LUTs, and the original FIS
implementation, characterized by continuous membership functions. Remarkably, through-
out this experiment, the outputs of both models remained identical for all input scenarios.
Figure 10 illustrates the output graphs of both models using a subset of 200 randomly
selected input samples. In this context, both graphs are identical, demonstrating consistent
FIS output across two implementations, the first of which utilizes continuous function
membership functions, and the other which employs their discrete counterparts.

Figure 10. Monte Carlo simulation results for comparing the original and LUT-based FIS.

We also performed another Monte Carlo simulation involving 100,000 random inputs
to validate the functionality of the FIS model with optimized LUTs. This is a comparative
analysis between the outputs of the MSDF-based hardware model, where the membership
functions are implemented using optimized LUTs, and the original FIS software implemen-
tation, characterized by continuous membership functions. In this experiment, the outputs
of both models remained identical for all input scenarios. Figure 11 illustrates the output
graphs of both models using a subset of 200 randomly selected input samples, where both
graphs are identical.

https://github.com/cslab-chosun/online-fuzzy-chisel

Electronics 2024, 13, 690 12 of 15

Figure 11. Monte Carlo simulation results for comparing the original and optimized LUT-based FIS.

5.4. Discussion

In this section, our initial focus is on the discrete examination of the outcomes of the
primary subsystems within the fuzzy inference system. Table 4 presents the distinct results
associated with the Fuzzification, Inference, and Defuzzification subsystems.

Table 4. Comparing hardware components designed by MATLAB versus the proposed framework.

MATLAB
Proposed Framework

Conventional MSDF

Fu
zz

if
y

BRAM (RAMB18) 2.5 1 0

Max Clock (MHz) 157 164 225

Resource
FF 35 273 328

LUT 63 218 274

In
fe

re
nc

e Max Clock (MHz) 208 175 441

Resource
FF 56 420 253

LUT 564 378 320

D
ef

uz
zi

fy Max Clock (MHz) 236 241 331

Resource
FF 64 28 27

LUT 41 33 16

In the Fuzzification subsystem, the WNS in the proposed framework’s conventional
and MSDF-based designs demonstrates substantial improvements. Specifically, the WNS
values in these configurations are 7% and 52% superior, respectively, compared to the
MATLAB design. Moreover, the maximum clock frequencies in conventional and MSDF-
based designs within the proposed framework exhibit notable advancements. Specifically,
these clock frequencies demonstrate improvements of 4% and 43%, respectively, in contrast
to the MATLAB design. Regarding resource consumption, the designs within the proposed
framework make efficient use of Flip Flops and LUTs, resulting in a net gain in performance
compared to the corresponding MATLAB design, which consumes 2.5 blocks of RAM.
Furthermore, in the MSDF-based design mode, the proposed framework excels in inferring
LUTs and Flip-Flops, outperforming the conventional design mode, which necessitates the
inclusion of an entire Block RAM (RAMB18) for LUT formation. As a result, the collective
utilization of LUTs and Flip Flops in the MSDF-based design remains lower than that in the
conventional design, all while preserving the advantageous reduction in block RAM usage.
This optimized resource allocation highlights the effectiveness of the proposed framework
in achieving enhanced efficiency and performance in the Fuzzification subsystem.

Electronics 2024, 13, 690 13 of 15

Within the Inference subsystem, the WNS in the conventional design configuration
lags by 17%, while the MSDF-based design excels by 48% compared to the MATLAB
design. Also, the maximum clock frequencies in the conventional design exhibit a 16%
decrement in performance, whereas the MSDF-based design showcases a noteworthy 112%
improvement compared to the MATLAB design. Regarding the allocation of essential
resources, it is noteworthy that there is an increased count of inferred Flip-Flops in the
proposed framework designs. At the same time, the quantity of LUTs is reduced compared
to the MATLAB design. Additionally, the count of both FFs and LUTs in the MSDF-based
design is notably diminished in contrast to the conventional design. These outcomes
unequivocally demonstrate the superior performance of the MSDF-based design.

In the defuzzification subsystem, a comprehensive evaluation across all compared
criteria affirms that our conventional design surpasses the hardware generated by MATLAB,
and notably, the MSDF-based design excels over both of these alternatives.

Table 5 provides a comprehensive overview of the comparative assessment between
the fuzzy inference system hardware designed by MATLAB and the framework proposed
in this study. It demonstrates a higher clock speed, lower WNS path, and reduced re-
source and block RAM consumption for the proposed framework. It is worth noting that
cohesively integrating all three FIS subsystems holds the potential for enhanced results.
This integration offers more excellent optimization opportunities and ensures the accurate
interpretation of interconnections within the subsystems categorized as I/O, leading to
improved outcomes. Furthermore, compared to MATLAB HDL Coder, our conventional
and MSDF approaches exhibit a substantial reduction in power consumption, with figures
of 44% and 67%, respectively. These results underscore the remarkable advancements in
power efficiency achieved through our design methodology.

Table 5. The overall comparison of FIS hardware designed by MATLAB versus the proposed
framework.

MATLAB
Proposed Framework

Conventional MSDF

BRAM (RAMB18) 2.5 1 0
Max Clock (MHz) 157 164 225

Resource FF 155 721 608
LUT 668 629 610

Power (W) 0.018 0.010 0.006

6. Conclusions and Future Work

The proposed method exhibited exceptional compatibility with MSDF-based sensors,
facilitating the execution of fuzzification, inference, and defuzzification processes on serially
arriving data bits. Leveraging the MSDF approach enabled early decision-making for Max
and Min operations, leading to improved performance and decreased power consumption
by eliminating unnecessary computations at an early stage. Additionally, the adoption of
serial computation resulted in reduced area requirements and a diminished memory foot-
print, further enhancing the overall efficiency of the approach. An FIS was implemented
for autonomous mobile robot navigation in unknown environments to assess the proposed
framework’s efficacy. The synthesis results provided compelling evidence of the superior
design performance suggested by our framework with 67% improvement in power con-
sumption, compared with the hardware generated by MATLAB HDL coder. Also, this
research showcased the potential of leveraging MSDF computing for achieving low-power
FIS hardware in embedded systems. Future work could explore further optimizations and
applications of the proposed approach in different domains and scenarios.

Author Contributions: Methodology, S.M.; Software, M.S.K.; Investigation, M.S.K., S.M. and M.K.F.;
Writing—review & editing, S.G. and M.K.F.; Supervision, J.-A.L.; Project administration, S.G. and
J.-A.L. All authors have read and agreed to the published version of the manuscript.

Electronics 2024, 13, 690 14 of 15

Funding: This study was supported by a research fund from Chosun University, K949856045.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gholamizadeh, K.; Zarei, E.; Omidvar, M.; Yazdi, M. Fuzzy sets theory and human reliability: Review, applications, and

contributions. In Linguistic Methods under Fuzzy Information in System Safety and Reliability Analysis; Springer: Cham, Switzerland,
2022; pp. 91–137.

2. Ma, Z.M.; Yan, L. A Literature Overview of Fuzzy Conceptual Data Modeling. J. Inf. Sci. Eng. 2010, 26, 427–441.
3. Zhang, Y.; Wang, G.; Zhou, T.; Huang, X.; Lam, S.; Sheng, J.; Choi, K.S.; Cai, J.; Ding, W. Takagi-Sugeno-Kang fuzzy system fusion:

A survey at hierarchical, wide and stacked levels. Inf. Fusion 2024, 101, 101977. [CrossRef]
4. Ejegwa, P.A.; Ahemen, S. Enhanced intuitionistic fuzzy similarity operators with applications in emergency management and

pattern recognition. Granul. Comput. 2023, 8, 361–372. [CrossRef]
5. Sharma, R.P.; Dharavath, R.; Edla, D.R. IoFT-FIS: Internet of farm things based prediction for crop pest infestation using optimized

fuzzy inference system. Internet Things 2023, 21, 100658. [CrossRef]
6. Özkan, B.; Dengiz, O.; Turan, İ.D. Site suitability analysis for potential agricultural land with spatial fuzzy multi-criteria decision

analysis in regional scale under semi-arid terrestrial ecosystem. Sci. Rep. 2020, 10, 22074. [CrossRef] [PubMed]
7. Ragab, M.; Ashary, E.B.; Aljedaibi, W.H.; Alzahrani, I.R.; Kumar, A.; Gupta, D.; Mansour, R.F. A novel metaheuristics with

adaptive neuro-fuzzy inference system for decision making on autonomous unmanned aerial vehicle systems. ISA Trans. 2023,
132, 16–23. [CrossRef] [PubMed]

8. Karatop, B.; Taşkan, B.; Adar, E.; Kubat, C. Decision analysis related to the renewable energy investments in Turkey based on a
Fuzzy AHP-EDAS-Fuzzy FMEA approach. Comput. Ind. Eng. 2021, 151, 106958. [CrossRef]

9. Liu, S.; Huang, S.; Xu, X.; Lloret, J.; Muhammad, K. Efficient Visual Tracking Based on Fuzzy Inference for Intelligent Transporta-
tion Systems. IEEE Trans. Intell. Transp. Syst. 2023, 24, 15795–15806. [CrossRef]

10. Teferra, D.M.; Ngoo, L.M.; Nyakoe, G.N. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling
using particle swarm optimization. Heliyon 2023, 9, e12802. [CrossRef]

11. Guzman-Urbina, A.; Ouchi, K.; Ohno, H.; Fukushima, Y. FIEMA, a system of fuzzy inference and emission analytics for
sustainability-oriented chemical process design. Appl. Soft Comput. 2022, 126, 109295. [CrossRef]

12. Rodriguez, R.; Trovão, J.P.F.; Solano, J. Fuzzy logic-model predictive control energy management strategy for a dual-mode
locomotive. Energy Convers. Manag. 2022, 253, 115111. [CrossRef]

13. Moghari, S.; Ghorani, M. A symbiosis between cellular automata and dynamic weighted multigraph with application on virus
spread modeling. Chaos Solitons Fractals 2022, 155, 111660. [CrossRef]

14. Yolcu, O.C.; Yolcu, U. A novel intuitionistic fuzzy time series prediction model with cascaded structure for financial time series.
Expert Syst. Appl. 2023, 215, 119336. [CrossRef]

15. Awasthi, K.; Awasthi, S. Green Computing: A Sustainable and Eco-friendly Approach for Conservation of Energy (A Contribution
to Save Environment). In Sustainable Computing: Transforming Industry 4.0 to Society 5.0; Springer: Berlin/Heidelberg, Germany,
2023; pp. 319–333.

16. Selvachandran, G.; Quek, S.G.; Lan, L.T.H.; Son, L.H.; Giang, N.L.; Ding, W.; Abdel-Basset, M.; De Albuquerque, V.H.C. A new
design of mamdani complex fuzzy inference system for multiattribute decision making problems. IEEE Trans. Fuzzy Syst. 2019,
29, 716–730. [CrossRef]

17. eddine Lachouri, C.; Mansouri, K.; Belmeguenai, A.; mourad Lafifi, M. FPGA Implementation of adaptive neuro-fuzzy inference
systems controller for greenhouse climate. Int. J. Adv. Comput. Sci. Appl. 2016, 7 . [CrossRef]

18. Indira, P.B.; Krishna, R.D. Optimized adaptive neuro fuzzy inference system (OANFIS) based EEG signal analysis for seizure
recognition on FPGA. Biomed. Signal Process. Control. 2021, 66, 102484. [CrossRef]

19. Mirhosseini, M.; Fazlali, M.; Fallah, M.K.; Lee, J.A. A fast MILP solver for high-level synthesis based on heuristic model reduction
and enhanced branch and bound algorithm. J. Supercomput. 2023, 79, 12042–12073. [CrossRef]

20. Zacharopoulos, G.; Ejjeh, A.; Jing, Y.; Yang, E.Y.; Jia, T.; Brumar, I.; Intan, J.; Huzaifa, M.; Adve, S.; Adve, V.; et al. Trireme:
Exploration of Hierarchical Multi-Level Parallelism for Hardware Acceleration. ACM Trans. Embed. Comput. Syst. 2023, 22, 1–23.
[CrossRef]

21. Givaki, K.; Khonsari, A.; Gholamrezaei, M.; Gorgin, S.; Najafi, M.H. A generalized residue number system design approach for
ultra-low power arithmetic circuits based on deterministic bit-streams. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2023,
42, 3787–3800. [CrossRef]

22. Leitersdorf, O.; Leitersdorf, D.; Gal, J.; Dahan, M.; Ronen, R.; Kvatinsky, S. AritPIM: High-throughput in-memory arithmetic.
arXiv 2023, arXiv:2206.04218.

23. Mohamed, N.A.; Cavallaro, J.R. A Unified Parallel CORDIC-based Hardware Architecture for LSTM Network Acceleration. IEEE
Trans. Comput. 2023, 72, 2752–2766. [CrossRef]

http://doi.org/10.1016/j.inffus.2023.101977
http://dx.doi.org/10.1007/s41066-022-00334-1
http://dx.doi.org/10.1016/j.iot.2022.100658
http://dx.doi.org/10.1038/s41598-020-79105-4
http://www.ncbi.nlm.nih.gov/pubmed/33328573
http://dx.doi.org/10.1016/j.isatra.2022.04.006
http://www.ncbi.nlm.nih.gov/pubmed/35523604
http://dx.doi.org/10.1016/j.cie.2020.106958
http://dx.doi.org/10.1109/TITS.2022.3232242
http://dx.doi.org/10.1016/j.heliyon.2023.e12802
http://dx.doi.org/10.1016/j.asoc.2022.109295
http://dx.doi.org/10.1016/j.enconman.2021.115111
http://dx.doi.org/10.1016/j.chaos.2021.111660
http://dx.doi.org/10.1016/j.eswa.2022.119336
http://dx.doi.org/10.1109/TFUZZ.2019.2961350
http://dx.doi.org/10.14569/IJACSA.2016.070136
http://dx.doi.org/10.1016/j.bspc.2021.102484
http://dx.doi.org/10.1007/s11227-023-05109-2
http://dx.doi.org/10.1145/3580394
http://dx.doi.org/10.1109/TCAD.2023.3250603
http://dx.doi.org/10.1109/TC.2023.3268400

Electronics 2024, 13, 690 15 of 15

24. Gorgin, S.; Gholamrezaei, M.; Javaheri, D.; Lee, J.A. kNN-MSDF: A Hardware Accelerator for k-Nearest Neighbors Using Most
Significant Digit First Computation. In Proceedings of the 2022 IEEE 35th International System-on-Chip Conference (SOCC),
Belfast, UK, 5–8 September 2022; pp. 1–6.

25. Valls, J.; Kuhlmann, M.; Parhi, K.K. Evaluation of CORDIC algorithms for FPGA design. J. Vlsi Signal Process. Syst. Signal Image
Video Technol. 2002, 32, 207–222. [CrossRef]

26. Arifeen, T.; Gorgin, S.; Gholamrezaei, M.H.; Hassan, A.S.; Ercegovac, M.D.; Lee, J.A. Low Latency and High Throughput
Pipelined Online Adder for Streaming Inner Product. J. Signal Process. Syst. 2023, 95, 815–829. [CrossRef]

27. Wang, Z.; Xiao, F.; Cao, Z. Uncertainty measurements for Pythagorean fuzzy set and their applications in multiple-criteria
decision making. Soft Comput. 2022, 26, 9937–9952. [CrossRef]

28. Abideen, Z.U.; Perez, T.D.; Martins, M.; Pagliarini, S. A Security-aware and LUT-based CAD Flow for the Physical Synthesis of
hASICs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2023, 42, 3157–3170. [CrossRef]

29. Nikolić, S.; Zgheib, G.; Ienne, P. Detailed Placement for Dedicated LUT-Level FPGA Interconnect. ACM Trans. Reconfigurable
Technol. Syst. 2022, 15, 1–33. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/A:1020205217934
http://dx.doi.org/10.1007/s11265-023-01866-8
http://dx.doi.org/10.1007/s00500-022-07361-9
http://dx.doi.org/10.1109/TCAD.2023.3244879
http://dx.doi.org/10.1145/3501802

	Introduction
	Background and Preliminaries
	Fuzzy Set Theory
	Fuzzy Inference System (FIS)
	MSDF Computing

	Proposed Framework
	Fuzzifier
	Optimizer
	Inferer
	Defuzzifier

	Evaluation Methodology
	Case Study
	Experimental Design
	Step 1 (Software Implementation)
	Step 2 (Hardware Realization)

	Experimental Results
	Experiment and Evaluation Method
	Availability
	Validation
	Discussion

	Conclusions and Future Work
	References

