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Abstract: In positioning systems in wireless sensor networks, the accuracy of localization is often
affected by signal distortion or attenuation caused by environmental factors, especially in indoor
environments. Although using a combination of K-Nearest Neighbor (KNN) algorithm and finger-
printing matching can reduce positioning errors due to poor signal quality, the improvement in
accuracy by increasing the number of reference points and K values is not significant. This paper
proposes a Differential Evolution-based KNN (DE-KNN) method to overcome the performance
limitations of the KNN algorithm and enhance indoor area positioning accuracy in WSNs. The
DE-KNN method aims to improve the accuracy and stability of indoor positioning in wireless sensor
networks. According to the simulation results, in a simple indoor environment with four reference
points, when the sensors are deployed in both fixed and random arrangements, the positioning
accuracy was improved by 29.09% and 30.20%, respectively, compared to using the KNN algorithm
alone. In a complex indoor environment with four reference points, the positioning accuracy was
increased by 32.24% and 33.72%, respectively. When the number of reference points increased to five,
in a simple environment, the accuracy improvement for both fixed and random deployment was
20.70% and 26.01%, respectively. In a complex environment, the accuracy improvement was 23.88%
and 27.99% for fixed and random deployment, respectively.

Keywords: indoor positioning system; wireless sensor network; K-Nearest neighbor algorithm;
differential evolution algorithm; DE-KNN

1. Introduction

The Global Positioning System (GPS) is currently the most common used method
in outdoor positioning systems and plays a crucial role in such systems. However, GPS
utilizes line-of-sight transmission and is hindered by obstacles in indoor environments,
rendering it ineffective for indoor applications [1–3]. In contrast to outdoor positioning
methods, indoor positioning systems achieve higher accuracy by leveraging the geographi-
cal information within buildings. Within indoor positioning systems, two main types can be
classified: area-based positioning and precise positioning. Area-based positioning divides
the indoor environment into multiple zones without the need for explicit boundary or
shape specification, computing the approximate position of the target within the designated
zone. Conversely, precise positioning places more emphasis on accurately determining the
target’s position, striving to minimize errors. The better the accurate error of the precise
positioning method approaches zero, the better its performance.

In recent years, the Internet of Things (IoT) has garnered extensive attention and
recognition from the industry due to advancements in science and technology [4–6]. The
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essential aspect of the Internet of Things (IoT) is to facilitate communication between
objects in order to create interconnected networks, surpassing traditional human-to-human
communication. It consists of an application layer, network layer, and perception layer,
where wireless sensor networks play a crucial role in the network and perception layers,
forming part of the IoT infrastructure. Wireless sensor networks construct a network by
connecting independent sensor nodes, finding broad applications in home monitoring,
military applications, smart cities, environmental monitoring, healthcare fields, and indoor
positioning, among other applications [7–13]. Nevertheless, in such applications, sensor
nodes are usually placed in fixed positions and lack mobility. However, when sensor
nodes are deployed on moving objects, ensuring precise location information of the target
becomes crucial. As a result, there is a significant focus on exploring and researching
effective positioning techniques for accurately obtaining target position information.

Various novel techniques have been proposed to address the localization issue in wire-
less sensor networks lately. These techniques include machine learning-based approaches
such as the DFL framework introduced by [14], which utilizes multiple convolutional
neural network (CNN) layers and a deep belief network (DBN) based on restricted Boltz-
mann machines (RBM) for feature recognition and extraction, forming a convolutional
deep belief network (CDBN). Even in scenarios with reduced data dimensions and low
signal-to-noise ratios (SNRs), this method achieves an accuracy of up to 98%. In addition,
pattern recognition-based localization methods have also been developed, such as the
fingerprint-based indoor 2D localization method that combines received signal strength
indicator (RSSI) and magnetometer measurements for locating mobile robots [15]. By
incorporating the measurement information of magnetic field strength between the mobile
unit and anchor nodes, the method achieves over 35% improvement when compared to
results obtained by utilizing only RSSI or magnetic sensor data, particularly in scenarios
with high magnetic field variance. Similarly, a cost-effective sensor architecture-based
efficient wireless sensor network fingerprint localization system has been established using
an indoor fingerprint dataset and four custom machine learning models [16]. Additionally,
one study [17] achieved a lower localization error under the same anchor node ratio and
wireless sensor network configuration by utilizing the DEEC-Gauss gradient distance
algorithm. The DEEC-Gauss gradient distance algorithm demonstrates lower positioning
error than five other algorithms including weighted centroid localization algorithm under
the same conditions, but its accuracy may be limited in scenarios of uneven node density.
Moreover, a pattern matching method based on Spline curves has been proposed to verify
the location of sensor nodes, offering low power consumption and processing time without
requiring any additional hardware. Multiple cubic Bezier curves are generated using the
received signal strength indicator (RSSI) values from four nodes at a time, enabling efficient
detection of changes in node position and the magnitude of such changes. The algorithm
is implemented in the Cooja simulator, achieving a location verification accuracy of up to
90%. A parameter called the RSSI Range Factor (RRF) is introduced to estimate the degree
of location change, with an accuracy of up to 99% [18].

Furthermore, optimization-based localization learning algorithms are also introduced.
For instance, Fute, E.T. et al. [19] improves the performance of particle swarm optimization
(PSO) by utilizing an approach called FPSOTS, where each particle uses a tabu search form
to determine its best local neighbor and increase the convergence possibilities towards
better solutions. On the other hand, they introduced restrictions and performance checks,
allowing only better particles from the search space constructed by constraint analysis to
evolve around the initial solution obtained through trilateration. This approach achieved
fast convergence and better accuracy in locating unknown nodes in WSN compared to
recent techniques such as HPSOVNS, NS-IPSO, ECS-NL, and GTOA, but it also increased
computational complexity relative to PSO. Mehrabian, H. et al. [20] combined RSSI with
pedestrian dead reckoning (PDR) algorithms. They introduced a novel Weight-Based
Optimization (WBO) filter to optimize RSSI data, along with the measurement data from
accelerometer and compass sensors, and utilizes sensor fusion techniques to achieve a
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positioning accuracy of up to 68 cm. In addition, a localization scheme combining artificial
fish swarm algorithm (AFSA) with a region segmentation method (RSM), hybrid adaptive
visual pursuit (HAVP) method, and dynamic AF selection (DAFS) method is proposed
in [21], in which the total average positioning error was reduced by 96.1%, and the position-
ing time was shortened by 26.4% using the HAVP for the target positioning. Reference [22]
introduces an algorithm that ensures robustness against environmental irregularities for
localizing sensor nodes within regions delineated by anchor node networks, with the objec-
tive of achieving higher precision at the lower boundary, while also offering an analytical
framework for sensor localization. Shilpi and Kumar, A. proposed that the method im-
proves localization accuracy in a variety of isotropic, O-shaped anisotropic, and S-shaped
anisotropic wireless sensor networks, thereby reducing the influence of various anisotropy
factors by utilizing the nonparametric Jaya algorithm (JA) and range-aware reliable anchor
pairs (RAP) selection method, which provides better localization accuracy compared to
four existing node localization methods, including Distance Vector (DV)-maxHop [23]. An
iterative bounding box algorithm enhanced by a Kalman filter, which effectively reduces
localization error without the need for additional equipment or increased communication
costs, was presented in [24]. Agarwal, N. et al. proposed a node localization scheme based
on the Aquila optimization algorithm (IAOAB-NLS) simulates fish and bat behaviors. This
approach exhibits the ability to accurately determine the coordinates of nodes within a net-
work. Experimental results consistently confirm the effectiveness of the IAOAB-NLS model,
irrespective of fluctuations in network parameters [25]. Additionally, an optimization-based
localization learning algorithm (OLLA) is proposed by [26], which demonstrates good
performance in indoor and outdoor scenarios.

In the realm of wireless sensor network localization algorithms, other approaches have
also been proposed, for instance, the DV-Hop algorithm based on rotation group methods
and weighted normalization, also known as CMWN-DV-Hop. This algorithm exhibits
excellent performance in reducing localization errors, and because of its low sensitivity
to the number of nodes, the CMWN-DV-Hop (a = 10) algorithm can be applied to large-
scale wireless sensor networks [27]. Moreover, Fawad, M. et al. proposed an improved
DV-Hop algorithm, named the Hop-correction and energy-efficient DV-Hop (HCEDV-Hop)
algorithm, to achieve efficient and accurate localization while reducing energy consump-
tion [28]. To obtain accurate localization results, it is necessary to manage the topology
structure within the DV-Hop algorithm effectively. Topology management encompasses
strategies related to node deployment, connectivity, and route selection, which can influ-
ence the communication quality and transmission performance among nodes [29,30]. By
carefully designing the network topology, interference and hop count between nodes can
be minimized, thereby improving the stability and accuracy of data transmission, and
enhancing the localization accuracy of the DV-Hop algorithm. Additionally, for indoor
area position estimation problems, a method based on distributed GNSS sensors and area
azimuth sensors is proposed. By establishing a positional deviation (PD) vector compensa-
tion and sequential fusion (SF) framework, this method estimates the PD vector recursively
for accurate positioning derived from GNSS sensors and area azimuth sensors [31].

In sensor networks, various measurement techniques can be utilized to achieve the
localization of unidentified transmitters, including the angle of arrival (AOA), time of
arrival (TOA), time difference of arrival (TDOA), or RSSI [32–35]. Among these options,
RSSI has an advantage due to its cost-effectiveness and implementation simplicity, as it does
not require additional hardware expenses. However, RSSI is susceptible to environmental
variations and may result in positioning errors [36–39]. Compared to outdoor positioning,
indoor positioning systems require higher accuracy, making indoor localization more
challenging than outdoor localization.

Due to the need for increased accuracy in indoor positioning systems, there have
been investigations into incorporating artificial intelligence algorithms in order to enhance
the precision of indoor area-based positioning. Reference [40] proposed the INTRI indoor
positioning method, combining fingerprint matching and trilateration to enhance indoor
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positioning accuracy. References [41–45] utilized adjusted K-nearest neighbor (KNN)
parameters to improve indoor positioning precision. Xie, Y. et al. introduced an indoor
positioning method using KNN with Spearman distance [46]. References [47–50] utilized
Differential Evolution (DE) to enhance positioning algorithm performance.

The motivation behind this research is to address the challenges in indoor positioning
systems and improve the accuracy of area-based positioning within wireless sensor net-
works. Our contribution lies in examining the constraints and suggesting enhancements
for utilizing the combination of the KNN algorithm and the RSSI channel model to enhance
the precision of area-based positioning. Additionally, we propose the implementation of
the KNN algorithm in combination with Differential Evolution (DE) for indoor positioning
to further improve the accuracy of area-based positioning within wireless sensor networks.
The method proposed in this study is to enhance the accuracy of indoor area localization.
Similar to other indoor positioning techniques, it can be applied to various fields that
require indoor positioning technology, including indoor navigation, indoor mapping, emer-
gency management, smart buildings, logistics and warehousing, healthcare, and industrial
monitoring. In general, indoor positioning technology plays a significant role in modern
society, offering convenience and benefits to people’s daily lives and work.

The rest of this paper is outlined as follows. Section 2 provides an overview of the RSSI
channel model, the KNN algorithm, and the differential evolution (DE) algorithm. Section 3
explains the methodology employed in this paper, where the KNN algorithm is used for
target point area-based positioning, and the DE-KNN algorithm is incorporated to enhance
the localization precision. In Section 4, a comparative analysis of the area positioning
simulations using KNN and DE-KNN algorithms is presented. Finally, Section 5 concludes
the paper.

2. Related Technologies
2.1. RSSI Channel Model

The RSSI channel model, referred to as the propagation path loss model in the litera-
ture [51–53], can be categorized into two types: the free space propagation model and the
log-distance path loss model. These models differ in how they estimate the signal strength
received by the receiver in various scenarios. A free space propagation model, such as the
Friis free space model, is employed when there are no obstructions or line of sight (LOS)
between the transmitter and receiver. In this model, the received signal strength at the
receiver is inversely proportional to the square of the distance. On the other hand, the
logarithmic distance path loss model is used to estimate the average power of the received
signal in different environments. Through theoretical derivations and research studies, it
has been observed that the average power of the received signal undergoes exponential
attenuation as the distance increases.

The power loss induced by the propagation path is a stochastic variable when the
transmitter and receiver are at a constant distance from each other. This variability arises
due to changes in the interference encountered by the signal in natural environments.
Hence, in simulation analysis, we can only capture this phenomenon by employing a
logarithmic normal distribution. As a result, the received power can be expressed as

Pr(d)[dBm] = Pt[dBm]− PL(d)[dB], (1)

and the path loss can be represented as

PL(d)[dB] = PL(d0) + 10n·log10

(
d
d0

)
+ Xσ (2)

where Xσ is a zero-mean Gaussian random variable with the standard deviation σ. n
represents the Path Loss Exponent, which indicates the rate of path loss; d0 is the Close-in
Distance, representing the distance very close to the transmitting end; d represents the
distance between the transmitting end and the receiving end.
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In indoor environments, signals may propagate through multiple paths before reaching
the receiver. When signals from different paths arrive at the receiver with different time
delays and superimpose on each other, it can cause interference and signal distortion.
Additionally, indoor environments contain various objects such as walls, furniture, and
human bodies, which can partially or completely obstruct the propagation path of the
signal, resulting in signal attenuation. Moreover, surfaces like walls, ceilings, and floors
can reflect signals, altering the direction and path of signal propagation. Furthermore,
refraction between different media can lead to signal loss and changes in the propagation
path. In addition, signals in indoor environments encounter free space path loss, power
attenuation, molecular scattering, and other propagation effects, causing a decrease in
signal strength [54–56]. These are potential environmental factors that can cause signal
distortion or attenuation indoors. Signal distortion and attenuation directly affect RSSI in
indoor environments, thereby impacting positioning accuracy.

2.2. Fingerprint Matching

Fingerprint matching, also known as pattern matching [44], is divided into two stages:
the training phase and the template matching phase. The training phase involves collecting
a large amount of known sample data from the environment and recording it in a sample
database. The template matching phase involves comparing the unknown data with the
samples in the sample database, finding the most similar data, and displaying the result, as
shown in Figure 1.
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Figure 1. Fingerprint matching diagram.

2.3. K Nearest Neighbor Algorithm

The Nearest Neighbor in Signal Strength (NNSS) algorithm [5,40–43] is a classification
algorithm that searches for the most similar data in the sample database to an unknown
data point. It assigns a class label based on the closest match in the database. In general,
the NNSS algorithm uses Euclidean distance as the measure of similarity, as shown by

∥X − Y∥ =

√
(x1 − y1)

2 + (x2 − y2)
2 + . . . . . . + (xn − yn)

2 (3)

where X = (x1, x2, x3, . . ., xn) and Y = (y1, y2, y3, . . ., yn) represent two coordinate points in
n-dimension space.

The KNN algorithm is an algorithm where K is a constant. KNN utilizes the nearest
neighbor algorithm to find the K most similar data instances, and it determines the class
label of an unknown data instance based on majority voting. In Figure 2, for example,
when K = 4, the unknown data instance would be classified as belonging to Class A.
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2.4. Differential Evolution Algorithm

The Differential Evolution algorithm (DE), also known as Differential Evolution or
Differential Evolutionary Algorithm, was first proposed in 1995 by Storn and Price for
solving the problem of Chebyshev polynomial fitting. It was formally presented as a com-
monly used differential evolution algorithm at the first IEEE International Conference on
Evolutionary Computation in 1996 [47–50]. DE is based on the diversity among individuals
in a population, introducing the differences between individuals to others and observing
whether this difference can bring positive effects in order to obtain evolutionary advantages.

DE algorithm, Particle Swarm Optimization (PSO) [57,58], Genetic Algorithm (GA) [59],
and other bio-inspired evolutionary algorithms share the same challenge of easily getting
trapped in local optima. The reason behind this lies in the fact that most bio-inspired
evolutionary algorithms are similar as brute force search algorithms, conducting limited
iterations within a population to find the optimal solution. As the number of iterations
increases, these algorithms tend to converge globally. Therefore, both individual diversity
and the number of iterations can impact the ability of the algorithm to search for the
global optimum.

2.4.1. Initialization

In the DE algorithm, the population is initialized randomly. It involves generating NP
sets of variable dimension d vectors based on the user-defined population size (NP) and
dimension (D), as shown by

xi = [xi1, xi2, . . . , xiD], i = 1, 2, 3, . . . , NP (4)

and
xij = aj + rand ×

(
bj − aj

)
i = 1, 2, . . . , NP, j = 1, 2, . . . , D (5)

respectively, where aj and bj are the upper and lower bounds of xij, and rand ranges from 0
to 1.

2.4.2. Fitness

Fitness is a crucial parameter in the Differential Evolution algorithm, and its calculation
method varies depending on the specific system design. In this paper, the fitness value is
calculated using the Euclidean distance measure.
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2.4.3. Mutation

There are six common mutation methods in the Differential Evolution algorithm [60].
The concept of mutation involves randomly selecting several variable vectors from the
population (NP) and using a mutation weighting factor (F) to perform operations on these
vectors. This results in the generation of a composite vector (Donor Vector) Vi,g, also known
as the mutation vector. In the literature [60], it is mentioned that there are six ways to
perform DE mutation operations, as shown in Equations (6)–(11).

• DE/rand/1:

Vi,g = Xr1,g + F·
(
Xr2,g − Xr3,g

)
(6)

• DE/best/1:

Vi,g = Xbest,g + F·
(
Xr1,g − Xr2,g

)
(7)

• DE/rand-to-best/1:

Vi,g = Xi,g + F·
(

Xbest,g − Xi,g

)
+ F·

(
Xr1,g − Xr2,g

)
(8)

• DE/best/2:

Vi,g = Xbest,g + F·
(
Xr1,g − Xr2,g

)
+ F·

(
Xr3,g − Xr4,g

)
(9)

• DE/rand/2:

Vi,g = Xr1,g + F·
(
Xr2,g − Xr3,g

)
+ F·

(
Xr4,g − Xr5,g

)
(10)

• DE/rand-to-best/2:

Vi,g = Xi,g + F·
(
Xbest,g − Xi,g

)
+ F·

(
Xr1,g − Xr2,g

)
+ F·

(
Xr3,g − Xr4,g

)
(11)

In Equations (5)–(10), (r1 ̸= r2 ̸= r3 ̸= r4 ̸= r5 ̸= i) ∈ range [1, NP], where r1 to r5 are
randomly determined and unique values, and NP represents the population size. Xbest,g
represents the variable vector with the best fitness value in the population during the g-th
iteration, where g denotes the g-th iteration. In this paper, Equation (5) is used to calculate
the mutation vector.

2.4.4. Crossover

In the DE algorithm, crossover can be divided into two types: binomial crossover and
exponential crossover [60], which generate the trial vector ui,g. Before introducing these
two crossover methods, it is necessary to define the crossover rate (CR), which ranges from
0 to 1. The crossover rate determines the probability of each component in the trial vector
being inherited from either the target vector or the trial vector.

Binomial crossover is the most common used crossover method in the algorithm. In
the g-th iteration, the j-th component of the trial vector ui,g is selected from either the target
vector xj,i,g or the donor vector vj,i,g, as shown by

ui,g = uj,i,g =

{
vj,i,g if (randj(0, 1) ≤ Cr)

xj,i,g otherwise
(12)

Exponential crossover: in the case of exponential crossover, two integers N and L are
chosen randomly within the range [1, NP]. N represents the starting point of crossover
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for the target vector xj,i,g and donor vector vj,i,g, whereas L indicates the stopping point of
crossover for the components, as shown by

ui,g = uj,i,g =

{
vj,i,g if j = ∥N∥, ∥N + 1∥, . . . , ∥N + L − 1∥
xj,i,g otherwise j ∈ [1, D]

(13)

where ∥·∥ represents the distance between N and D.

2.4.5. Selection

Selection is a concept based on the survival of the fittest, which primarily uses the
fitness function as a criterion. It calculates the fitness value of the trial vector ui,g or the
target vector xi,g, compares the fitness values of the trial vector and the target vector, and
keeps the one with the better fitness value as the target vector for the next iteration, denoted
as xi,g+1, as shown by

xi,g+1 =

{
ui,g if f (ui,g) ≥ f (xi,g)

xi,g otherwise
(14)

2.4.6. Termination

In evolutionary algorithms, the most common used termination condition is the maxi-
mum number of iterations, denoted as G. When the iteration reaches this maximum value,
the algorithm stops evolving. Additionally, there are two other termination conditions:
fitness threshold and improvement rate threshold. The fitness threshold specifies that the
algorithm stops evolving when the fitness value of the obtained solution reaches a certain
threshold. The improvement rate threshold checks whether the fitness value improves
significantly in each iteration, and when the fitness value converges, the algorithm stops
evolving.

2.5. The Process of the Differential Evolution Algorithm

According to the introduction of the Differential Evolution algorithm mentioned above,
the algorithm steps are shown as follows. Finally, according to the sequence of initializing
the population, evaluating the fitness, mutation, mating, selection, and termination criteria,
we can obtain the flowchart of the Differential Evolution algorithm, as shown in Figure 3.

Step 1. Randomly initialize the population.
Step 2. Evaluate the fitness values.
Step 3. Mutation operation: Generate trial vectors by performing mutation on the target

vectors.
Step 4. Crossover operation: Mate the trial vectors with the target vectors to produce

offspring vectors.
Step 5. Evaluate the fitness values of both target and trial vectors, and select the ones with

better fitness values as the target vectors for the next iteration.
Step 6. Repeat Steps 3 to 5 until the termination condition is met. Output the best solution

when the termination condition is satisfied.
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Figure 3. Flowchart of differential evolution algorithm.

3. Area Positioning Methods

In this section, the methods of target positioning in wireless sensor networks based
on the DE algorithm and KNN are described in detail. The RSSI channel model described
in Section 2 is used to estimate the distance between the target point and the algorithm
individual, and the highest point of the food source (RSSI value) is taken as the estimate
point by the individual moving several times. In addition, this paper also discusses the
impact of the number of sensors and sensors deployment on the system.

3.1. KNN Area Positioning Method

Based on the fingerprint matching method described in Section 2, each training point
is represented by a feature vector in the localization model, as shown by

Ei =
〈

ei
1, ei

2, ei
3 . . . , ei

j

〉
(15)

where ei
j represents the RSSI value received at training point i from reference point j,

similarly, a feature vector is created for the localization target point T, as shown by

T =
〈
t1, t2, t3 . . . , tj

〉
(16)

where tj represents the RSSI value received from reference point j. Then, by calculating the
geometric distance expressed by

∥T, Ei∥ =

√
∑n

j=1 (tj − ei
j)

2 (17)
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with the feature vectors from Equations (15) and (16), the K-Nearest Neighbor average
algorithm is applied to estimate the position of the target point. The K-Nearest Neighbor
average algorithm uses a constant value for K. When K is set to 4, it means that the
positioning is based on the nearest 4 training point positions. After representing these four
training point positions in coordinates, the x and y coordinates are averaged, as shown in
Equation (18). The estimated position is then determined based on the average result. As
depicted in Figure 4, the target point is potentially located in the L5 region, expressed by

(x, y) =


K
∑

n=1
xn

K
,

K
∑

n=1
yn

K

 (18)

where xn and yn represent the coordinate values of n-th point.
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3.2. Target Positioning

To enhance the realism of this research, target point localization is divided into two cat-
egories: random-target-point deployment and fixed-target-point deployment. Random
deployment refers to the random placement of target points to be positioned within a single
area. In this approach, 100 target points are generated randomly within the designated area
for a total of 100 positioning trials. On the other hand, fixed deployment involves the fixed
placement of target points within the same area. This method utilizes four predetermined
points, with each point being positioned 25 times to yield a total of 100 positioning trials,
illustrated in Figure 5a,b, respectively. Random-target-point localization entails randomly
distributing the target points within a given area to examine their localization accuracy.
Conversely, fixed-target-point localization involves positioning four fixed points, each
subjected to 25 localization attempts, resulting in a cumulative total of 100 localization in-
stances. These categories are employed to ascertain the efficacy of the localization algorithm
under varying deployment scenarios.
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3.3. DE-KNN Area Positioning Method

This section presents our proposed approach for target localization combining KNN
with DE. Based on the DE flowchart, as shown in Figure 3, the flowchart of the target
positioning method combining KNN and DE (DE-KNN) is shown in Figure 6.
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The processes begin with the initialization of the population. A total of NP variable
vectors is generated according to either fixed or random deployment, with the size deter-
mined by the number of reference points. After the generation process, KNN is used to
find N nearest neighbors with accurately located RSSI values in the population, and their
averages of RSSI values are taken as the best target vector for calculating the fitness value.

The fitness value is calculation involves computing the geometric distance between
the best target vector found in the initialized population and each target point. The fitness
value’s magnitude is used to assess the similarity between the target point and the best
target point; a smaller value indicates higher similarity, whereas a larger value indicates
lower similarity.

In the crossover step, we employ binomial crossover with a preset crossover rate (CR)
of 0.9. In both the target vector and the mutant vector, each element is compared with a
random number between 0 and 1. If the random number is less than the crossover rate
(CR), the corresponding element from the mutant vector is selected; otherwise, the element
from the target vector is chosen. This process generates a trial vector, whose fitness value
is then computed. If the fitness value of the trial vector is lower than that of the original
target vector, it replaces the original target vector as the target vector for the next iteration.
Otherwise, the original target vector remains unchanged. The algorithm terminates after
100 iterations, at which point the results are outputted.

After obtaining the results from DE, we perform another round of local positioning
using KNN and analyze the simulated experimental results.

4. Simulation Results and Discussion
4.1. Simulation Environment and Settings

This study focuses on evaluating and comparing the performance of the KNN and
DE-KNN algorithms in indoor area positioning methods using a wireless sensor network.
The network covers a 2D area measuring 6 m × 6 m, which is divided into 25 small regions.
Each of these regions undergoes 100 simulated positioning instances, and the resulting
data is analyzed statistically for evaluation purposes. Two configurations are used in the
simulation: one with 4 reference points and another with 5. In the former configuration,
the 4 reference points are positioned at the centers of the small regions located in the
four corners of the 6 m × 6 m square, as shown in Figure 7. In the latter configuration,
an additional reference point is added to the central small area, resulting in a total of
5 reference points, as shown in Figure 8.

Electronics 2024, 13, x FOR PEER REVIEW  12  of  21 
 

 

The processes begin with the initialization of the population. A total of NP variable 

vectors is generated according to either fixed or random deployment, with the size deter-

mined by the number of reference points. After the generation process, KNN is used to 

find N nearest neighbors with accurately located RSSI values in the population, and their 

averages of RSSI values are taken as the best target vector for calculating the fitness value. 

The fitness value is calculation involves computing the geometric distance between 

the best target vector found in the initialized population and each target point. The fitness 

value’s magnitude is used to assess the similarity between the target point and the best 

target point; a smaller value indicates higher similarity, whereas a larger value indicates 

lower similarity. 

In the crossover step, we employ binomial crossover with a preset crossover rate (CR) 

of 0.9. In both the target vector and the mutant vector, each element is compared with a 

random number between 0 and 1. If the random number is less than the crossover rate 

(CR), the corresponding element from the mutant vector  is selected; otherwise, the ele-

ment from the target vector is chosen. This process generates a trial vector, whose fitness 

value  is  then computed.  If  the fitness value of  the  trial vector  is  lower  than  that of  the 

original target vector, it replaces the original target vector as the target vector for the next 

iteration. Otherwise, the original target vector remains unchanged. The algorithm termi-

nates after 100 iterations, at which point the results are outputted. 

After obtaining the results from DE, we perform another round of local positioning 

using KNN and analyze the simulated experimental results. 

4. Simulation Results and Discussion 

4.1. Simulation Environment and Settings 

This study focuses on evaluating and comparing the performance of the KNN and 

DE-KNN algorithms in indoor area positioning methods using a wireless sensor network. 

The network covers a 2D area measuring 6 m × 6 m, which is divided into 25 small regions. 

Each of these regions undergoes 100 simulated positioning  instances, and the resulting 

data is analyzed statistically for evaluation purposes. Two configurations are used in the 

simulation: one with 4 reference points and another with 5. In the former configuration, 

the 4 reference points are positioned at the centers of the small regions located in the four 

corners of the 6 m × 6 m square, as shown in Figure 7. In the latter configuration, an addi-

tional reference point is added to the central small area, resulting in a total of 5 reference 

points, as shown in Figure 8. 

 

Figure 7. Illustration of 4 reference points. Figure 7. Illustration of 4 reference points.



Electronics 2024, 13, 705 13 of 21Electronics 2024, 13, x FOR PEER REVIEW  13  of  21 
 

 

 

Figure 8. Illustration of 5 reference points. 

In order to establish a sample database, 66 training points are gathered by utilizing 

channel model parameters that focus on the received signal strength indicator (RSSI) from 

the reference points. The target point, which is to be located, also receives RSSI readings 

from the reference points and compares them with the sample database to  identify the 

positions of the K most similar training points. The location of the target point is estimated 

through a majority decision based on these identified training points. The simulation pa-

rameters for the RSSI channel model can be found  in Table 1, where σ = 2 represents a 

simple environment and 10 represents a more complex environment. The DE algorithm 

parameters are listed in Table 2. The simulation tool employed in this study is MATLAB 

2015B edition. Through extensive simulations and statistical analyses based on these pa-

rameters, this study aims to evaluate and compare the effectiveness and accuracy of the 

proposed DE-KNN algorithm in indoor positioning. The findings from these simulations 

provide valuable insights into the optimization and advancement of indoor positioning 

technologies, contributing to the overall improvement of indoor positioning systems un-

der various scenarios. 

Table 1. RSSI channel model parameters. 

Parameters  Value 

Transmission Power  2 mW 

Carrier Frequency  2.4 GHz 

Path Loss Exponent  4.5 

Reference Distance  0.2 m 

Antenna gains Gt, Gr  1 

Standard Deviation of Shadowing Fading  2 dBm, 10 dBm 

Table 2. DE algorithm parameters. 

Parameters  Value 

Number of Population NP  100 

Mutation Weight Factor F  0.5 

Crossover Rate CR  0.9 

Figure 8. Illustration of 5 reference points.

In order to establish a sample database, 66 training points are gathered by utilizing
channel model parameters that focus on the received signal strength indicator (RSSI) from
the reference points. The target point, which is to be located, also receives RSSI readings
from the reference points and compares them with the sample database to identify the
positions of the K most similar training points. The location of the target point is estimated
through a majority decision based on these identified training points. The simulation
parameters for the RSSI channel model can be found in Table 1, where σ = 2 represents a
simple environment and 10 represents a more complex environment. The DE algorithm
parameters are listed in Table 2. The simulation tool employed in this study is MATLAB
2015B edition. Through extensive simulations and statistical analyses based on these
parameters, this study aims to evaluate and compare the effectiveness and accuracy of the
proposed DE-KNN algorithm in indoor positioning. The findings from these simulations
provide valuable insights into the optimization and advancement of indoor positioning
technologies, contributing to the overall improvement of indoor positioning systems under
various scenarios.

Table 1. RSSI channel model parameters.

Parameters Value

Transmission Power 2 mW
Carrier Frequency 2.4 GHz

Path Loss Exponent 4.5
Reference Distance 0.2 m

Antenna gains Gt, Gr 1
Standard Deviation of Shadowing Fading 2 dBm, 10 dBm

Table 2. DE algorithm parameters.

Parameters Value

Number of Population NP 100
Mutation Weight Factor F 0.5

Crossover Rate CR 0.9

In the simulation of KNN and DE-KNN area positioning method, random deployment
and fixed deployment topologies were considered in this paper. The K values used in KNN
algorithm for simulation are 3, 4, 5 and 6.
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4.2. Simulation Results of KNN Area Positioning Method

In this study, our objective was to evaluate the average accuracy of localization through
simulations by manipulating the K value of the KNN algorithm and the number of reference
points. We utilized both fixed and random deployment methodologies for the sensors
in order to analyze their effect on localization accuracy in a simple environment with a
standard deviation of 2 (σ = 2) and a complex environment with a standard deviation of 10
(σ = 10). Our focus was specifically on assessing the influence of KNN-related parameters
on the accuracy of area positioning.

In consideration of the study conducted in indoor environments with four refer-
ence points, the average accuracy of localization for various K values is presented in
Tables 3 and 4. The deployment of sensors is considered in both fixed and random arrange-
ments. Furthermore, in the case of indoor environments with five reference points, the
average localization accuracy for different K values is shown in Tables 5 and 6. These
findings shed light on how the positioning of sensors and the choice of K value affect the
effectiveness of indoor localization.

Table 3. Average accuracy of random and fixed deployments with 4 RPs in a simple environment
σ = 2 for KNN.

K Value Fixed Deployment Random Deployment

3 67.24% 65.84%
4 69.08% 68.96%
5 75.2% 73.44%
6 71.88% 69.16%

Table 4. Average accuracy of random and fixed deployments with 4 RPs in a complex environment
σ = 10 for KNN.

K Value Fixed Deployment Random Deployment

3 62.96% 64.32%
4 66.96% 65.4%
5 72.64% 70.28%
6 68.24% 64.6%

Table 5. Average accuracy of random and fixed deployments with 5 RPs in a simple environment
σ = 2 for KNN.

K Value Fixed Deployment Random Deployment

3 78.08% 70.88%
4 84.28% 74.8%
5 78.6% 75.08%
6 72.72% 69.4%

Table 6. Average accuracy of random and fixed deployments with 5 RPs in a complex environment
σ = 10 for KNN.

K Value Fixed Deployment Random Deployment

3 74.92% 70.52%
4 79.24% 72.68%
5 78% 74.92%
6 69.24% 67.88%

According to Tables 3 and 4, it can be observed that for the KNN algorithm-based
localization system with four reference points, the optimal average positioning accuracy
is achieved with a K value of 5, regardless of whether the deployment is fixed or random.
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However, the highest accuracy achieved is 75.2%, which is attained only when using the
fixed deployment method in a simple environment.

Referring to Tables 5 and 6, when there are five reference points, for the fixed deploy-
ment method, the best average positioning accuracy is obtained with a K value of 4, both
in simple and complex environments. On the other hand, for the random deployment
method, the optimal average positioning accuracy is achieved with a K value of 5 in both
environments. The highest accuracy recorded is 84.2%, which is achieved when using the
fixed deployment method with a K value of 4 in a simple environment.

Based on comprehensive simulation results, it can be concluded that using five refer-
ence points improves the performance of the KNN localization method compared to four
reference points. This improvement holds true in both simple and complex environments,
regardless of fixed or random deployment. However, the performance improvement is
more significant in fixed deployment compared to random deployment.

Moreover, the choice of K value impacts the efficiency of KNN, with larger K values
leading to increased computational complexity but not necessarily improved performance.
For example, simulation results demonstrate that with four reference points, regardless
of the environment complexity, K = 5 yields optimal localization accuracy for both fixed
and random deployments. With five reference points, in simple environments, K = 4
provides the best localization accuracy for fixed deployment, while K = 5 achieves the
highest accuracy for random deployment.

Additionally, it is observed that even with optimization adjustments considering
different environments and relevant parameters, the KNN algorithm localization still
exhibits an error rate exceeding 10%.

4.3. Simulation Results of DE-KNN Area Positioning Method

Similarly, to the assessment of KNN localization method performance as described in
Section 4.2, the evaluation of the DE-KNN positioning method’s performance is conducted
by adjusting the K value and reference point quantity of the DE-KNN algorithm in both a
simple environment (σ = 2) and a complex environment (σ = 10) using fixed and random
sensor deployment. This analysis aims to assess the impact of relevant parameters on the
performance of DE-KNN localization method for regional positioning.

Tables 7 and 8 present the average localization accuracy of the DE-KNN area position-
ing method for different K values in a simple and complex indoor environment with four
reference points, considering both fixed and random sensor deployment.

Table 7. Average accuracy of random and fixed deployments with 4 RPs in a simple environment
σ = 2 for DE-KNN.

K Value Fixed Deployment Random Deployment

3 99.76% 98.24%
4 100% 100%
5 100% 100%
6 100% 99.96%

Table 8. Average accuracy of random and fixed deployments with 4 RPs in a complex environment
σ = 10 for DE-KNN.

K Value Fixed Deployment Random Deployment

3 99.76% 99.92%
4 100% 100%
5 100% 100%
6 100% 99.56%
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In a simple and complex indoor environment with five reference points, Tables 9 and 10
display the average localization accuracy of the DE-KNN area positioning method for
different K values.

Table 9. Average accuracy of random and fixed deployments with 5 RPs in a simple environment
σ = 2 for DE-KNN.

K Value Fixed Deployment Random Deployment

3 96.48% 94.52%
4 100% 100%
5 100% 99.72%
6 100% 99.96%

Table 10. Average accuracy of random and fixed deployments with 5 RPs in a complex environment
σ = 10 for DE-KNN.

K Value Fixed Deployment Random Deployment

3 97.08% 98%
4 99.92% 100%
5 100% 99.96%
6 99.92% 100%

The simulation results from Tables 7–10 reveal that the DE-KNN positioning method
has the potential to greatly enhance the accuracy of localization, ideally achieving a 100%
accuracy rate.

4.4. Comparison of Simulation Results for KNN and DE-KNN Area Positioning Methods

The comparative results of the localization accuracy performance for KNN and DE-
KNN positioning methods, utilizing a system with four reference points, under simple
and complex environments and different sensor deployment approaches are presented in
Tables 11 and 12. Similarly, the comparison of the localization performance for a system
with five reference points in different environments is presented in Tables 13 and 14.

Table 11. Comparison of average accuracy for KNN and DE-KNN methods under fixed and random
deployment in a simple environment σ = 2 with 4 reference points.

K Value
Fixed Deployment Random Deployment

KNN DE-KNN Difference KNN DE-KNN Difference

3 67.24% 99.76% 32.52% 65.84% 98.24% 32.40%
4 69.08% 100% 30.92% 68.96% 100% 31.04%
5 75.2% 100% 24.80% 73.44% 100% 26.56%
6 71.88% 100% 28.12% 69.16% 99.96% 30.80%

Average 70.85% 99.94% 29.09% 69.35% 99.55% 30.20%

Table 12. Comparison of average accuracy for KNN and DE-KNN methods under fixed and random
deployment in a complex environment σ = 10 with 4 reference points.

K Value
Fixed Deployment Random Deployment

KNN DE-KNN Difference KNN DE-KNN Difference

3 62.96% 99.76% 36.80% 64.32% 99.92% 35.60%
4 66.96% 100% 33.04% 65.4% 100% 34.60%
5 72.64% 100% 27.36% 70.28% 100% 29.72%
6 68.24% 100% 31.76% 64.6% 99.56% 34.96%

Average 67.70% 99.94% 32.24% 66.15% 99.87% 33.72%
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Table 13. Comparison of average accuracy for KNN and DE-KNN methods under fixed and random
deployment in a simple environment σ = 2 with 5 reference points.

K Value
Fixed Deployment Random Deployment

KNN DE-KNN Difference KNN DE-KNN Difference

3 78.08% 96.48% 18.40% 70.88% 94.52% 23.64%
4 84.28% 100% 15.72% 74.8% 100% 25.20%
5 78.6% 100% 21.40% 75.08% 99.72% 24.64%
6 72.72% 100% 27.28% 69.4% 99.96% 30.56%

Average 78.42% 99.12% 20.70% 72.54% 98.55% 26.01%

Table 14. Comparison of average accuracy for KNN and DE-KNN methods under fixed and random
deployment in a complex environment σ = 10 with 5 reference points.

K Value
Fixed Deployment Random Deployment

KNN DE-KNN Difference KNN DE-KNN Difference

3 74.92% 97.08% 22.16% 70.52% 98% 27.48%
4 79.24% 99.92% 20.68% 72.68% 100% 27.32%
5 78% 100% 22.00% 74.92% 99.96% 25.04%
6 69.24% 99.92% 30.68% 67.88% 100% 32.12%

Average 75.35% 99.23% 23.88% 71.50% 99.49% 27.99%

Based on the comparative results from Tables 11–14, it can be observed that in a simple
indoor environment with four reference points, the positioning accuracy was improved
by 29.09% and 30.20%, respectively, when the sensors were deployed in fixed and ran-
dom arrangements, compared to using the KNN algorithm alone. In a complex indoor
environment with four reference points, the positioning accuracy was increased by 32.24%
and 33.72%, respectively. When the number of reference points increased to five, in a
simple environment, the accuracy improvement for both fixed and random deployment
was 20.70% and 26.01%, respectively. In a complex environment, the accuracy improvement
was 23.88% and 27.99% for fixed and random deployment, respectively.

Furthermore, when utilizing the KNN positioning method alone, it resulted in an error
rate greater than 10% for the best localization performance. However, by incorporating
the proposed DE-KNN area positioning method, the localization performance can be
significantly enhanced, achieving a 100% accuracy rate.

4.5. Further Discussion on the DE-KNN Method

The proposed DE-KNN method combines the KNN algorithm with the DE algorithm
to enhance localization accuracy. For the KNN algorithm, integrating it with other classifiers
allows for obtaining more accurate and robust classification results [61,62]. Similarly, by
incorporating the DE algorithm with other optimization algorithms, hybrid strategies can
be formed to leverage their individual strengths and improve the performance of the DE
algorithm for specific problems [63,64]. Therefore, combining the DE-KNN method with
additional optimization algorithms or machine learning techniques holds the potential for
further improving localization accuracy.

The computational complexity of the DE algorithm is O(NP × D × G), where NP
is the population size, D is the dimensionality of the problem, and G is the number of
generations [65]. On the other hand, the computational complexity of the KNN algorithm
is O(N × D), where N is the number of data samples and D is the dimensionality of
each sample’s features [66]. Therefore, the computational complexity of the DE-KNN
algorithm is O(NP × D × G). Furthermore, as the number of sensor nodes increases, the
complexity of communication and coordination between nodes also increases. Applying
the DE algorithm to large-scale wireless sensor networks while maintaining performance
may pose challenges. Similarly, the KNN algorithm exhibits poor scalability as the number
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of training data points increases. Processing time and memory requirements increase
linearly with the size of the dataset, limiting its applicability in large-scale sensor network
scenarios. Therefore, for the DE-KNN method, its scalability has limitations.

In real-world wireless sensor networks, the DE-KNN algorithm faces numerous limita-
tions and challenges. These include the necessity to plan the deployment of reference points
and training points, and to collect the Received Signal Strength Indicator (RSSI) values
from reference points to establish a sample database of locations where training points are
located. When the positions of reference points change, the data in the sample database
must be updated in real-time. Additionally, factors such as computational complexity,
scalability, energy consumption and dynamic environments are all issues and challenges to
consider during implementation.

5. Conclusions

This study aims to investigate the performance of utilizing the DE algorithm for indoor
area positioning in Wireless Sensor Networks. The simulation results demonstrate that the
proposed DE-KNN positioning method significantly improves the localization accuracy
compared to using the KNN algorithm alone. In a simple indoor environment with four
reference points, the deployment of sensors in fixed and random arrangements increases
the positioning accuracy by 29.09% and 30.20%, respectively. Similarly, in a complex indoor
environment, the positioning accuracy is enhanced by 32.24% and 33.72%, respectively.
When the number of reference points increases to 5, in the simple environment, the accuracy
improvement for fixed and random deployment is 20.70% and 26.01%, respectively. In the
complex environment, the accuracy improvement for fixed and random deployment is
23.88% and 27.99%, respectively.

In addition, the utilization of the KNN positioning method alone yields a localization
performance with an error rate greater than 10% even under optimal conditions. Conversely,
by adopting the proposed DE-KNN positioning method introduced in this study, the
localization performance can be greatly enhanced, achieving a remarkable positioning
accuracy rate of 100%.

In the future, we will further compare the DE-KNN method with other existing local-
ization algorithms to validate its advantages. Additionally, we will investigate the effects of
different parameters in the DE-KNN method, such as population size and mutation rate, as
well as the number and arrangement strategy of reference points, on localization accuracy.
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