
Citation: Xie, X.; Zang, W.; Hu, Y.; Ji,

J.; Xiong, Z. Novel Method of

Edge-Removing Walk for Graph

Representation in User Identity

Linkage. Electronics 2024, 13, 715.

https://doi.org/10.3390/

electronics13040715

Academic Editors: Yongjun Ren

and Hu Xiong

Received: 1 January 2024

Revised: 2 February 2024

Accepted: 7 February 2024

Published: 9 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Novel Method of Edge-Removing Walk for Graph
Representation in User Identity Linkage
Xiaqing Xie 1 , Wenyu Zang 2, Yanlin Hu 3,*, Jiangyu Ji 1 and Zhihao Xiong 1

1 Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education,
Beijing 100876, China; xiexiaqing@bupt.edu.cn (X.X.); jijiangyu@bupt.cn (J.J.); xiongzhihao@bupt.cn (Z.X.)

2 Academy of Cyber, China Electronics Technology Group Corporation, Beijing 100085, China;
wenyuzang@sina.com

3 National Computer Network Emergency Response Technical Team, Coordination Center of China
(CNCERT/CC), Beijing 100029, China

* Correspondence: yanlinhu@cert.org.cn

Abstract: Random-walk-based graph representation methods have been widely applied in User
Identity Linkage (UIL) tasks, which links overlapping users between two different social networks.
It can help us to obtain more comprehensive portraits of criminals, which is helpful for improving
cyberspace governance. Yet, random walk generates a large number of repeating sequences, causing
unnecessary computation and storage overhead. This paper proposes a novel method called Edge-
Removing Walk (ERW) that can replace random walk in random-walk-based models. It removes
edges once they are walked in a walk round to capture the l − hop features without repetition, and
it walks the whole graph for several rounds to capture the different kinds of paths starting from a
specific node. Experiments proved that ERW can exponentially improve the efficiency for random-
walk-based UIL models, even maintaining better performance. We finally generalize ERW into a
general User Identity Linkage framework called ERW-UIL and verify its performance.

Keywords: network embedding; User Identity Linkage; user alignment

1. Introduction

Recent years have witnessed the rise and advancement of Online Social Networks
(OSNs). People are usually active across many platforms to obtain various pieces of
information or find friends with different interests. As a result, users across different social
networks greatly overlap. Cross-platform exploration may facilitate solving several issues
in social computing in both theory and application [1], and User Identity Linkage (UIL) is a
meaningful exploration. It is a network analysis technique that predicts overlapping users
between two different social networks. It is worth noting that it has played an important role
in cyberspace governance. It can help to de-anonymize social network users by correlating
them with known identities [2]. Also, it can help to characterize more comprehensive user
portraits to recognize criminals and identify fake or illegal accounts. In addition, it can
also be helpful in cross-platform recommendation systems [3], in constructing user credit
systems and risk assessment systems in the financial area, etc.

With the rise and development of graph representation learning technology, UIL mod-
els based on graph representation have become one of the mainstream approaches. And
Deepwalk [4] has been widely applied in embedding-based UIL models, like Deeplink [5].
However, random walk, which is an important part in Deepwalk, generates a large num-
ber of repeating sequences or subsequences, which causes unnecessary computation and
storage overhead.

This paper aims to significantly improve the efficiency of random walk so as to
improve random-walk-based UIL models, while maintaining maximum performance. Our
main contributions are as follows:
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Firstly, we propose a novel method to sample nodes and generate sequences for graph
representation. We call it Edge-Removing Walk (ERW). In this method, once we walk the
edges, we remove them. And we walk the whole graph for several rounds to obtain more
diverse sequences. Edges do not repeat in a walk round. The sequences can capture the
k-hop neighbors of the current node, and different walk rounds can capture the different
paths starting from the same node.

Secondly, we validate the effectiveness and efficiency of ERW on UIL tasks. We replace
random walk in Deeplink with ERW to show that ERW can significantly improve the
efficiency of the sequence generation process in random-walk-based UIL models, while
maintaining maximum performance.

Last but not least, we generalize ERW into a general UIL framework called ERW-UIL.
Experiments on real-world datasets show ERW-UIL performs better on dense graphs, so
we invite a graph pre-processing component to enhance the graph and update the model
as ERW-UIL+, which performs better than all the baselines with fewer sequences and
lower dimensions.

2. Related Works

User Identity Linkage (UIL) is also termed as anchor link prediction [6]. It is a
network analysis technique that predicts overlapping users between two different social
networks. It can link users across different social networks if they belong to the same
individual in reality. Early methods were to extract users’ features from their profiles,
such as usernames [7]. With the rise of machine learning and deep learning, Graph
Representation Learning (GRL) [8] has been introduced into UIL models. And approaches
based on it came to be the mainstream. These approaches can be mainly divided into three
categories according to the GRL methods used.

(1) Matrix factorization-based embedding approach. This approach represents the orig-
inal graph property in the form of a matrix and then finds a way to factorize this
matrix to obtain a node embedding. A specific matrix factorization technique has
exploited the alignment matrix between source and target information networks [9].
Two typical methods are FINAL [10] and Regal [11]. FINAL [10] is a family of algo-
rithms for solving the attributed network alignment problem. This family includes the
full alignment version and its on-query variation. REGAL [11] uses Cross-Network
Matrix Factorization (xNetMF). It employs a low-rank matrix approximation of an
alignment matrix. This reduces the computational effort.

(2) Neural network-based embedding approach. Being inspired by the success of RNNs
and CNNs, researchers attempt to generalize and apply them to graphs. Deeplink [5],
mentioned above, also uses neural networks to optimize its representation. And
more neural network-based embedding approaches, including Graph Convolutional
Networks, Graph Attention Networks, GraphSage, and so on, have been applied to
UIL models like in [12–14].

(3) Random-walk-based embedding approach. This approach uses random walk to
convert a graph into sequences of nodes. And then it builds a low-dimensional
representation for each node. Deeplink [5] is a typical approach based on Deepwalk.
Aiming to address the randomness problem caused by random walk, Xiong, H. [15]
proposes a branching tree-like random walk strategy called BTWalk. It is designed by
a synergetic combination of BFS (breadth-first search) and DFS (depth-first search).
This combination is modulated according to the weights of the considered proximity
orders. BRIGHT [16] constructed a space by random walk with restart (RWR). The
bases are one-hot encoding vectors of anchor nodes, followed by a shared linear layer.
Our previous work DSANE [17] combines LINE [18] and Deeplink [5] to improve
the disadvantages caused by the randomness of random walk. However, the highly
repeating sequences generated randomly still remain to be improved.

Matrix factorization-based methods are effective in many cases, but they have poor
scalability because they need significant computational resources when handling large-
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scale networks. Neural network-based embedding methods suffer from unexplainability.
Random-walk-based embedding methods are more scalable than matrix factorization-based
methods, and they are also more explainable than neural network-based
embedding methods.

However, they suffer from the randomness caused by random walk, which is still an
open issue to be settled. For example, when the longest path from a node in the graph is
short enough (say, three), the sequence will repeat the path it has already walked to achieve
a defined sequence length (say, the walk_length is 50), resulting in a lot of meaningless
repeats. It hardly contributes to the performance of the whole model, but it consumes a lot
of computation and storage overhead. Therefore, we propose a novel method to improve
the efficiency of the sequence generation process in random-walk-based UIL models.

3. Definitions

In this section, we introduce the basic terminology in our proposed approach. We also
present a few formal definitions specific to our method.

We consider a set of different social networks as G1, G2, . . . , Gs, each of which is defined
as a Social Network Graph (SNG).

Definition 1. Social Network Graph. Let G = (V, E) be a social network, where V represents
the set of nodes, each node vi ∈ V represents a user, E ⊆ V × V is the set of edges representing the
set of social relationships connecting users, and ei,j ∈ E indicates the social relationship between
nodes vi and vj. We represent each SNG with a unique latent user space by network embedding.
This method learns the probabilistic distributions of nodes and uses low-dimensional vectors to
represent them in a latent space.

Definition 2. Network Embedding Model. Given network G = (V, E), network embedding
aims to encode each node vi ∈ V into a low-dimensional latent space with a mapping function
f : vi → Rd, where d is the dimension of the latent space. Node embedding, or “node representation”,
also has the same meaning.

Definition 3. User Identity Linkage. Given two social networks Gs and Gt, the task of User
Identity Linkage is to find every pair of users vs

i ∈ Gs and vt
j ∈ Gs that belong to the same person.

We utilize an alignment matrix PN×M = pi,j and

pi,j =

{
1, if vs

i and vt
j belong to the same person

0, otherwise
(1)

in which M is the number of nodes in Gs and N is the number of nodes in Gt.

Definition 4. Walk length. We usually define l as the walk length, which refers to the length of
the sequences in random walk. And in random walk, all sequences are of length l. However, in our
proposed method, say ERW, the predefined walk length l is actually the maximum length of the
generated sequences.

Definition 5. Walk round. In ERW, we define a walk round as when all edges have been walked
once and only once. In addition, the number of walk rounds represents the number of times the
whole graph has been walked.

4. Proposed Method: Edge-Removing Walk (ERW)
4.1. Motivation

In random-walk-based embedding methods, they generate nodes’ sequences by ran-
dom walk. In the walking process, it will choose the next node for the current node
randomly among its neighbors whether the neighbor has been walked or not.

In particular, when the longest path of a node is much smaller than the predefined
walk_length, the random walk repeats among these few relevant nodes until the sequence
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length reaches walk_length. And when the longest path of a node is much bigger than the
predefined walk_length, some edges may be walked repeatedly and some may be lost, but
the longest sequence may be ignored.

In order to avoid the deviation in features caused by randomness, the traditional
approach is to increase the number of walks so that the features of the sequence are
statistically close to the frequency of nodes or edges. Therefore, they have to deal with a
large number of unnecessary repeated sequences.

Above all, we aim to significantly improve the efficiency of random walk so as to
improve random-walk-based UIL models, while maintaining maximum performance.

4.2. Proposed Method

ERW is proposed to improve the random walk used in the sequence generation process
in graph representation. ERW will remove edges once they are walked. When most of the
edges are removed, the length of the sequence may be less than the defined length. We
define l as the “maximum length” of a sequence instead of the “walk length” in random
walk as we mentioned in Definitions. When all the edges in the graph are traversed once
and only once, we call it "a walk round". ERW will try different possibilities to capture the
overall features of a node; therefore, it will traverse the graph for several rounds. Actually,
ERW can capture the l − hop features of the node.

For a given graph G = (V, E), l > 0, the overall traverse process of a walk round by
ERW is as follows:

• Step 1: Remove nodes with a degree of 0 from the set V. Randomly select a node vi
from V as the current node.

• Step 2: Randomly choose a neighbor node vj of the current node vi and add it to the
sequence W. Remove the corresponding edge ei,j from the set E.

• Step 3: If the degree of vj is non-zero and the sequence length is less than l, set vj as
the current node, and repeat steps (2) and (3).

• Step 4: If the degree of vj is 0 or the sequence length reaches l, end the current walk.
• Step 5: Repeat steps (1) to (4) until G is empty, i.e., V = ∅ and E = ∅.

As the graph may be traversed several rounds, we define the rounds with the parame-
ter R. For convenience in presentation, Nr is the number of sequences in the rth round, and
Nr

i is the number of nodes in the ith sequence of the rth round.

Nr = ∑
i

Nr
i vi ∈ V, i = (1, 2, . . . , NG) (2)

The total number of sequences in the R rounds is

NR = ∑
j

Nr = ∑
j

∑
i

Nr
i vi ∈ V, i = (1, 2, . . . , NG), j = (1, 2, . . . , R) (3)

The ith sequence of the rth round is represented as

Wr
i =

[
vr

i1, vr
i2, . . . , vr

iNr
i
)
]

(4)

Sequences in the rth round are represented as

Wr =
{

Wr
1 , Wr

2 , . . . , Wr
Nr

}
(5)

The generated sequences in one iteration of R rounds can be represented as

W =
{

W1, W2, . . . , WR
}

(6)
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Figure 1 is an example of a walk round, and the maximum length of a sequence is
5. Edges are removed once involved in the sequence. Nodes are removed if their degree
reaches zero. The walk round ends when all edges and nodes are removed.

Figure 1. A walk round of a graph. The leftmost graph G is the original graph, and the latter graph is
generated by removing edges and nodes from the former graph, with solid arrows pointing to the
generated sequence.

Similarly, Figure 2 shows several walk rounds of the given graph. Although the
process is repeated, the sequences generated are different randomly. As it removes edges
that are walked, the probabilities of subsequent edges are increased so that it can make
sure all the edges are walked.

Figure 2. Several walk rounds of a graph. Here we show sequences generated in three different
rounds for the given graph G.

4.3. Sequence Quality Analysis Metrics

ERW is for converting a graph into sequences of nodes, like sequences of words in
natural language processing. Random-based graph representation is for embedding nodes
into vectors by handling these sequences. So, the quality of sequences is very important, so
that they can capture the original graph features the best. Clearly, the sequences should
be consistent with the original graph in feature distribution. In order to evaluate the
quality of sequences, we define two consistency metrics to evaluate sequence quality:
node consistency and edge consistency, according to the node degree feature and edge
weight feature.
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Node consistency. As we all know, degree centrality is the most direct metric to
describe the centrality of nodes in network analysis. The degree of the ith node can be
represented as follows:

degree_centri =
di

∑i di
(7)

where di is the degree of the ith node.
The larger the degree of a node is, the more important the node is in the network. So,

we leverage this feature to evaluate the node consistency of sequences. We can calculate
the frequency of nodes that appear in generated sequences. However, nodes in the head or
tail of sequences link to only one edge, while nodes in the middle link to two. It is more
convenient and accurate to count edges which pass the node instead of counting nodes.

Let ti be the number of edges through each node vi in sequences. We define the
appearance rate of node vi as follows:

node_appear_ratei =
ti

∑i ti
× 1

2
(8)

The reason for the constant 1/2 is that each edge is connected to two nodes and will
be counted twice, so it will be twice the total node degree.

The node consistency of vi can be defined as

Ci(Node) =
node_appear_ratei

degree_centri
(9)

For each node, when the graph is traversed infinitely, Ci(Node) is expected to be
close to the constant of 1. The occurrence of nodes in the sequence should conform to the
distribution of degree centrality.

Edge consistency. For an unweighted graph, all the edges should be traversed in
equal probability, so the frequency of an edge will approach a constant e:

e =
1
|E| (10)

|E| is the number of edges in graph G. Let ri devote the number of times edge ei
appears in sequences. The frequency of edges in sequences can be represented as

edge_appear_ratei =
ri

∑i ri
(11)

The edge consistency of ei can be defined as

Ci(Edge) =
edge_appear_ratei

e
(12)

For each edge, when the graph is traversed infinitely, Ci (edge) is expected to be
close to the constant of 1. The occurrence of edges in the sequence should conform to a
uniform distribution.

So, we can observe the variance of the two consistency metrics to evaluate the sequence
quality. The higher the variances are, the higher redundancy and randomness are; the
lower the variances are, the more stable and effective the sequence quality is.

4.4. Sequence Quality Evaluation

In order to validate the reasonability, effectiveness, and efficiency of ERW, we conduct
a series of experiments on the Douban Online and Offline dataset [19], which is always
used as a typical social network with 1118 nodes and 1511 edges, and random walk is
naturally chosen to be baseline. These data are published by COSNET [19].
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In random walk, we set l = 50, walknum = 50. In ERW, we set l = 50, R = 50. The other
key parameters are the same. But in ERW, walknum is the maximum length of sequences,
so the average length of sequences is less than 50. That means there are fewer sequences,
which will help save storage and computation overhead.

Figure 3 shows the node consistency comparison result of ERW and random walk
(RW). We can conclude that both methods can generate sequences of good node consistency
with the original graph, as the node consistencies are both close to 1. However, in one
iteration, ERW can rapidly converge to the expected constant of 1 evenly, but RW fluctuates
around [0, 3] while most of the values fall in [0.5, 1.5]. In ten iterations, the node consistency
of ERW is a smooth line but that of RW still shows a fluctuating region in [0, 3]. So, the
node consistency of ERW is greatly better than that of RW.

Figure 3. Node consistency comparison.

Figure 4 shows the edge consistency comparison result of ERW and RW. We can also
conclude that both methods can generate sequences of good edge consistency with the
original graph, as the node consistencies are both close to the expected constant of 0.0662%
(|E| = 1511, e = 0.00662). We can observe that, in one iteration, ERW can rapidly converge
to the expected constant, but RW fluctuates around [0, 0.2%], while most of the values fall
in [0.04%, 0.08%]. In the 10 iterations, the edge consistency of ERW is a smooth line, but
that of RW still shows a fluctuating region in [0, 3]. So, the edge consistency of ERW is
much better than that of RW.

Comparison experiments show that the sequence quality generated by ERW is of
better node consistency and edge consistency to the original graph than that of RW. And as
ERW removes edges that have been passed through, it can greatly reduce edge repeating in
a walk round and generate fewer sequences but cover the node and edge features, so we
can definitely conclude that it can save storage overhead and computation overhead.
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Figure 4. Edge consistency comparison.

5. Validation Experiments on ERW

We verify the effectiveness and efficiency of ERW in UIL models in this section. We
choose Deeplink [5] as the base model and replace random walk with ERW. We call it the
ERW-UIL.

5.1. Experimental Environment and Common Parameter Settings

The experimental environment of this paper is Ubuntu 18.04.3 × 64 server with Intel(R)
Xeon(R) Silver 4214 CPU @ 2.20 GHz, with 48 cores and 125 G memory. The GPU is Nvidia’s
RTX 2080Ti, with 4 pieces and 11 G memory size. The code used in the experiments is
Python, version 3.5.6; the deep learning framework used is pytorch, version 1.3.0; the cuda
toolkit version is 10.1.243, the cudnn version is 7.6.4, and the networkx version is 1.11.

As for the common parameters, for both methods, in the network embedding part, we
set window_size = 10, and they both use Hierarchical Softmax; for the mapping process, the
activate function is RELU and the learning rate is 0.0001, and batch_size is 32.

For the training process of the experiments in this section, we set the training set to
0.4 and the dimension to 128, and the parameters of dropout, learning rate, and training
rounds are all the same.

5.2. Datasets and Metrics

To compare the performance of the two methods, we use the Douban online–offline [19]
dataset as the ground truth social network collection. A target network containing 1118
users is extracted from the offline network, and then a subnetwork containing these users
is extracted from the online network as the source network, which has 3906 user nodes.

For the performance metrics of UIL, we choose precision@k, MAP, AUC, and
Hit-Precision as our evaluation indicators like most UIL tasks have used.

precision@k can be calculated as follows:
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p@k =
n

∑
i

li{correct@k}/n (13)

where li{correct@k} indicates whether there is a correct match in the top-k list and n is the
number of anchor nodes tested.

MAP, AUC, and Hit-Precision are used for evaluating the ranking performance of
the algorithms [10], defined as:

MAP = (
n

∑
1
ra
)/n

AUC = (
n

∑
m + 1 − ra

m
)/n

Hit-Precision = (
n

∑
m + 2 − ra

m + 1
)/n

(14)

where m is the number of negative user identities and ra is the rank of the positive match-
ing identity.

For the efficiency metrics, we use“running time” for computation overhead and "total
number of sequences generated" for storage overhead, both of which can be calculated
automatically by the program.

“Running time” refers to the running time of the whole model, and “the total number
of sequences generated” includes the sequences generated in the overall process.

5.3. Effectiveness Validation of ERW in UIL

As for the important parameters, in the network embedding part of both methods, we
set window_size = 10, and they both use Hierarchical Softmax; for the mapping process,
the activate function is RELU and the learning rate is 0.0001, and batch_size is 32. And
for the training process, we set the trainingset to 40% and the dimension to 128, and the
parameters of dropout, learning rate, and training rounds are all the same.

For parameters, in random walk, we empirically set l = 50, walknum = 50. In ERW, we
set l = 50, R = 50 to be consistent.

Table 1 shows the performance comparison with the trainingset as 40% and the
dimension as 128 for Deeplink and ERW-UIL. The only difference between the two models
is the process of sequence generation, where Deeplink utilizes random walk and ERW-UIL
utilizes ERW. All the indicators of ERW-UIL are higher than those of Deeplink, and the
p@30 of ERW-UIL is 10 percent higher than that of Deeplink. So, we can conclude that the
ERW is effective in UIL models.

Table 1. Experimental results of Douban online–offline.

Methods Accuracy MAP AUC Hit-
Precision P@5 P@10 P@20 P@30

Deeplink 0.1028 0.1565 0.9327 0.9328 0.2638 0.4262 0.5663 0.6423

ERW-UIL 0.1356 0.2283 0.9468 0.9468 0.4039 0.5931 0.696 0.7481

In addition, Figures 5 and 6 show the p@30 of Deeplink and ERW-UIL with different
dimensions and train ratios. Results show that ERW-UIL outperforms Deeplink under
various conditions. So, we can conclude ERW is effective in UIL tasks, and we can invite it
into the general UIL framework.
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Figure 5. p@30 with different dimensions between Deeplink and ERW-UIL.

Figure 6. p@30 with different train ratios between Deeplink and ERW-UIL.

5.4. Efficiency Validation of ERW

In order to validate whether ERW can save computation and storage overhead, we
compare the computation and storage overhead between ERW-UIL and Deeplink using the
Douban online–offline Dataset.

We choose three metrics for both methods, including p@30 for model performance,
“running time” for computation overhead, and “total number of sequences generated” for
storage overhead.

In the experiments, we first set walknum = 50 for random walk in Deeplink, and we set
R = 50 for ERW in ERW-UIL. We observe the three metrics of both methods as l changes.
The results are shown in Figure 7.
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Figure 7. Efficiency comparison between Deeplink and ERW-UIL with different walk lengths.

Then, we set l = 50 for both methods, and we still observe three metrics for both
methods as walknum or R changes. The results are shown in Figure 8.

Figure 8. Efficiency comparison between Deeplink and ERW−UIL with different walk num or round
values.

From the above two figures, we can draw the following conclusions:

(1) The parameter l has a slight impact on the performance of ERW-UIL, while R has a
larger impact. Actually, l captures the l − hop features of the graph and R captures the
different paths’ features. As the l − hop neighbors have little impact on current nodes,
as l is larger than 10 in our experiments, it almost has no impact on the performance.
But for R, the more kinds of paths started for a specific node can be captured as R
increases. For example, there are two sequences starting from A, A-B-C-D and A-B-E-F.
In a specific walk round, it cannot generate the two sequences at the same time, as
A-B will be removed the first time it is walked. So, we have to walk for more rounds
to make capturing both sequences possible.
From the figures, we can also find that until R reaches 50, the performance improve-
ment is no longer significant.

(2) The performance of Deeplink is not positively correlated with either sequence length
or number of walks, which can illustrate that random walk has little impact on the
performance of the model.

(3) ”Running time” reflects the computing overhead of the methods. In Figure 7, the
running time of Deeplink is at least twice that of ERW-UIL when l is 10 and walknum
is 50, and as l or walknum increases, the time cost of Deeplink can be 1000 times that of
ERW-UIL. In Figure 8, as walknum and R increase, time cost of Deeplink is 5 to 32 times
that of ERW-UIL.

(4) “The total number of sequences generated” reflects the storage overhead. In Figure 7,
the storage cost of Deeplink is at least twenty-one times that of ERW-UIL when l is 10
and walknum is 50, and as l reaches 300, the storage cost of Deeplink can be 715 times
that of ERW-UIL. In Figure 8, as l equals 50, the storage cost of Deeplink is around
119 times that of ERW-UIL with walknum or R changing.

Indeed, since l is the maximum length of sequences in ERW rather the length of each
sequence, the actual difference in storage overhead is larger than the difference shown in
the above figures.
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Therefore, we can conclude that ERW can significantly reduce the time cost and storage
cost caused by random walk while preserving a better performance.

6. ERW-UIL: A Generalized UIL Framework Based on ERW

As has been proven, ERW is effective in UIL models, and it can significantly reduce the
time cost and storage cost caused by random walk while preserving a better performance,
so we extend it into a general UIL framework that replaces random walk with ERW in
random-based UIL models. We still name it ERW-UIL.

The ERW-UIL framework is shown in Figure 9, including three parts, Edge-Removing
Walk (ERW) for each ego-network, network embedding, and the mapping process. The
ERW part is to generate nodes’ sequences with the ERW method mentioned above. The
network embedding part and mapping process can be the same as those of Deeplink [6].
The network embedding process embeds each graph independently with SKIP-Gram, and
the mapping process utilizes Multi-Layer Perceptrons (MLPs) to learn the node alignment
across networks based on pairs of aligned anchor nodes using a policy gradient-based
method in a supervised manner (with known alignments).

Figure 9. A general ERW−UIL framework.

Actually, the embedding process can be replaced by other random-walk-based em-
bedding approaches, and the mapping process can also be replaced by other aligning
methods.

For a given network, the user sequences can be represented as u1, u2, ..., um ∈ G.
Embedding maximizes the log probability by the following formula:

1
m

m

∑
t=1

w

∑
j=−w

log p(ut+j|ut), j ̸= 0 (15)

where w is the size of the sliding window. In the formula, the conditional probability
p(ut+j|ut) represents the probability of the co-occurrence of user ut and its j − hop neigh-
bor ut+j:

p(ut+j|ut) =
exp(vT

ut+j
)v′ut

∑m
i=1 exp(vT

ui
v′ut)

(16)

where m represents the number of users in the network. In this module, we define the
probability of an edge between two nodes ui,uj as

p(ui, uj) = σ(vT
i · vj) =

1
1 + exp(−vT

i · vj)
(17)

where σ represents the sigmoid function.
And negative sampling is used to maximize the target function to improve the train-

ing effect:
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logσ(vT
i · vj) +

K

∑
k=1

Euk∈Pn(u)[log(1 − σ(vT
i · vj))] (18)

where the first item is the existing edge modeling and the second item is the negative sam-
pling modeling. K is the number of negative edges sampled, and the sampling probability
of each node is Pn(u) d3/4

u , where du is the degree of the node.
In the training process, we use stochastic gradient descent to update the node rep-

resentation and concatenate the results of the two modules as the final representation of
the network.

After obtaining the network representation, we learn a mapping function F in a
supervised way. Let each observed anchor node pair (us, ut) and their vector representation
(vs, vt) move through the Multi-Layer Perceptron to minimize the cosine similarity between
them as a loss function:

L(vs, vt) = min(1 − cos(F(vs, vt))) (19)

where the loss L ranges from 0 for the same to 2 for exactly the opposite.

7. Experiments and Results

In order to evaluate the performance of ERW-UIL on general UIL tasks, we conduct
comparative experiments with more baseline methods on the Douban online–offline dataset
and Facebook–Twitter dataset.

7.1. Datasets

We use the following ground truth social network collections in our experiments
(Table 2 describes the corresponding graphs). These social networks are well known,
and these datasets have been widely used in UIL tasks and have been verified by many
existing works.

Douban online–offline: The data are published by COSNET [19]. First, a target
network containing 1118 users is extracted from the offline network, and then a subnetwork
containing these users is extracted from the online network as the source network, which
has 3906 user nodes. There are 1818 anchor users between the two networks.

Facebook–Twitter: The data are published by FINAL [10] and were collected from
two completely different social networks, including 1792 Facebook users and 3493 Twitter
users, including 1515 anchor users, whose subscription relationships in the two social
networks were quite different.

Table 2. Statistics of datasets.

Dataset V E Anchor Nodes

Douban—online 3906 8164 1118
Douban—offline 1118 1511

Facebook 1792 2105 1515
Twitter 3493 6347

7.2. Baselines and Metrics

We select three typical UIL models that are often used as contrast models as baselines.
PALE [6]: A classical embedding-based UIL model including the embedding process

and mapping process just like ERW-UIL. It employs deepwalk in the embedding process
and it MLP in the mapping process.

IONE [20]: A classical embedding-based model based on the followership/followee-
ship between users. It is always taken as a baseline in UIL tasks.

Deeplink [5]: A typical UIL method based on Deepwalk that is the basis of our
method, but the mapping process is different from PALE.
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ERW-UIL: Our proposed framework that replaces random walk in Deeplink.
ERW-UIL+: Our UIL framework including ERW, and it has been optimized with

a graph pre-processing component. This component removes unnecessary nodes like
leaf nodes and performs “cross-network extension” as PALE [6] has done. If two nodes
are not linked in one network, but their counterparts are linked in the other network,
“cross-network extension” will add an edge between them in the present network.

We still choose precision@k, MAP, AUC, and Hit-Precision as our evaluation indica-
tors as mentioned before.

7.3. Experimental Settings

The environment of this experiment is the same as that of the previous experiments.
For the parameters of Deeplink, ERW-UIL, and ERW-UIL+ in this section, in the net-

work embedding part, window_size = 10, and we use Hierarchical Softmax; for the mapping
process, the activate function is RELU and the learning rate is 0.0001, and batch_size is 32.

In terms of parameter consistency, for all the models, the parameters of dropout,
learning rate, and training rounds are the same.

7.4. Performance Comparison in UIL

Table 3 shows the experimental results with the trainingset as 0.4 and the dimension
as 128 for all the methods.

Table 3. Experimental results of Douban online–offline.

Methods Accuracy MAP AUC Hit-
Precision P@5 P@10 P@20 P@30

PALE 0.2042 0.1909 0.8381 0.8382 0.3398 0.4098 0.4680 0.5067

IONE 0.0253 0.2607 0.9488 0.9488 0.3636 0.4888 0.6155 0.6826

Deeplink 0.1028 0.1565 0.9327 0.9328 0.2638 0.4262 0.5663 0.6423

ERW-UIL 0.1356 0.2283 0.9468 0.9468 0.4039 0.5931 0.6960 0.7481

ERW-UIL+ 0.4850 0.5070 0.9947 0.9947 0.8167 0.9180 0.9508 0.9613

In Table 3, ERW-UIL+ outperforms all the other baselines on all the metrics, and ERW-
UIL+ shows an especially significant improvement over ERW-UIL. The only difference
between ERW and ERW-UIL+ is the graph pre-processing component, which erases the
graph sparsity. So, we can conclude that ERW-UIL can perform better in dense graphs.

ERW-UIL outperforms all the models on p@k metrics, but it is slightly inferior to some
of the baselines on other metrics. Although it focuses on the improvement of the efficiency
of random walk, its performance needs to be improved. For ERW-UIL+, its accuracy is
2.4 times that of PALE, its MAP is 1.95 times that of IONE, and its p@30 can be 1.4 times that
of IONE. This improvement is significant, and we can conclude that ERW-UIL+ eliminates
the impact of sparsity on ERW-UIL.

In order to research how the vector dimension and train ratios influence the perfor-
mance, we conduct several experiments on the Douban online–offline dataset with different
dimensions and train ratios. The results are shown in Figures 10 and 11.

Figure 10 shows the p@30 with different train ratios. For a specific train ratio, p@30
increases as dimension increases, and PALE is relatively more influenced by vector dimen-
sion. ERW-UIL+ is better than almost all the baselines, and especially when the train ratio
is less than 0.3, ERW-UIL and ERW-UIL+ are all much better than the other methods. As
the train ratio reaches 80%, the advantage is not so obvious. So, the ERW-UIL framework
has an advantage in smaller train ratios; it is less dependent on labeled data.
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Figure 10. p@30 with different train ratios.

Figure 11. p@30 with different dimensions.

Figure 11 shows the p@30 with different dimensions. For a specific dimension, p@30
increases as train ratio increases. Generally, ERW-UIL+ is better than almost all the baselines;
when the dimension is 30, the gap between our method and other methods is the biggest.
Therefore, the ERW-UIL framework has an advantage with lower dimensions.

Combining Figures 10 and 11, we can conclude that ERW-UIL+ has more advantages,
as the dimension is lower and the train ratio is smaller. That is, ERW-UIL+ is less dependent
on the labeled data.

At last, we also conduct experiments on the Facebook–Twitter dataset, and the results
are shown in Table 4. This time, we set the training set to 80% and the dimension to 128,
and the parameters of dropout, learning rate, and training rounds are still the same.

Table 4. Experimental results of Facebook–Twitter dataset.

Methods Accuracy MAP AUC Hit-
Precision P@5 P@10 P@20 P@30

PALE 0.1155 0.0979 0.7258 0.7259 0.1452 0.1980 0.2673 0.3201

IONE 0.0330 0.2735 0.9516 0.9516 0.3762 0.4653 0.5578 0.5974

Deeplink 0.0396 0.1121 0.7757 0.7758 0.1980 0.2739 0.3399 0.3894

ERW-UIL 0.0363 0.0769 0.7642 0.7644 0.1056 0.1881 0.2541 0.3201

ERW-UIL+ 0.4653 0.4427 0.9682 0.9682 0.6535 0.7822 0.8713 0.8911
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ERW-UIL+ outperforms all the baselines on all the metrics, but ERW-UIL performs not
so well. We infer that this is due to the greater graph sparsity of this dataset, while ERW is
more suitable for dense graphs. Therefore, when the graph pre-processing component is
added into ERW-UIL as ERW-UIL+, the performance becomes the best.

As a result, we can conclude that the ERW-UIL framework has been proven effective on
two real-world datasets,and ERW-UIL+ can get better performance with a pre-processing
component.

8. Discussion

As the experimental results show, parameter variations in random walk have little
effect on the performance of Graph Representation Learning models, which may be caused
by the randomness. However, random walk brings considerable computational and storage
overhead. As the sequence generation process is the basis of the subsequent process, the
improvement of the random walk algorithm is worthy of study.

ERW has been proven to outperform random walk in graph representation. This brings
new opportunities for all the random-walk-based graph representation methods. However,
why it can improve the efficiency while maintaining a better performance requires a more
detailed theoretical proof. We also plan to try to apply ERW in other random-walk-based
models to validate its effect. Moreover, we have to consider how to apply it to large-scale
networks where the edges may be infinite.

As for the ERW-UIL framework, it performs not so well on sparse graphs, so before
the ERW process, we need to rationally enhance the graph to eliminate the sparsity of
the graph. And inspired by [21–23], we will try to integrate the structural feature with
users’ behavior features or sentiment features to enrich the users’ features and improve the
model’s performance.

9. Conclusions

This paper proposes a novel method called Edge-Removing Walk (ERW). It is used
to sample nodes to generate sequences for graph representation. Unlike random walk, it
removes edges once they are walked in a walk round. And this process repeats for several
rounds in ERW. Experiments show that it can significantly save storage and computation
overhead for random-walk-based UIL models, maintaining even better performance. So, we
generalize it into a general User Identity Linkage framework called ERW-UIL. Experiments
on real-world datasets show that this framework is effective, but we need to add a graph
pre-processing component before ERW to reduce the sparsity of the graph as in ERW-UIL+.
Experiments show ERW-UIL+ greatly outperforms existing methods with less labeled data
and lower-dimensional vectors.
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