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Abstract: We propose a Context-aware Feature Transformer Network (CaFTNet), a novel network
for human pose estimation. To address the issue of limited modeling of global dependencies in
convolutional neural networks, we design the Transformerneck to strengthen the expressive power
of features. Transformerneck directly substitutes 3 × 3 convolution in the bottleneck of HRNet with a
Contextual Transformer (CoT) block while reducing the complexity of the network. Specifically, the
CoT first produces keys with static contextual information through 3 × 3 convolution. Then, relying
on query and contextualization keys, dynamic contexts are generated through two concatenated
1 × 1 convolutions. Static and dynamic contexts are eventually fused as an output. Additionally,
for multi-scale networks, in order to further refine the features of the fusion output, we propose
an Attention Feature Aggregation Module (AFAM). Technically, given an intermediate input, the
AFAM successively deduces attention maps along the channel and spatial dimensions. Then, an
adaptive refinement module (ARM) is exploited to activate the obtained attention maps. Finally, the
input undergoes adaptive feature refinement through multiplication with the activated attention
maps. Through the above procedures, our lightweight network provides powerful clues for the
detection of keypoints. Experiments are performed on the COCO and MPII datasets. The model
achieves a 76.2 AP on the COCO val2017 dataset. Compared to other methods with a CNN as the
backbone, CaFTNet has a 72.9% reduced number of parameters. On the MPII dataset, our method
uses only 60.7% of the number of parameters, acquiring similar results to other methods with a CNN
as the backbone.

Keywords: human pose estimation; expressive power of features; feature refinement; global dependencies

1. Introduction

Human pose estimation aims to localize human anatomical keypoints in an image.
It has extensive applications in the field of computer vision, for instance, human action
recognition [1–4], human pose tracking [5–9], 3D human pose estimation [10–13], and
so on.

CNNs have obtained praiseworthy accomplishments in human pose estimation [14–18] in
recent times. However, the convolution receptive field is confined, which means that the CNNs
are unable to capture the dependence of remote interaction information. Recently, different
methods [19–23] have been presented to remedy the shortcomings of the convolution limitation
problem. A typical solution is to expand the receptive field to learn global dependency informa-
tion, for example, by increasing the network depth [24–26]. However, deepening the network
will lead to a sharp increase in the number of parameters. Recently, the Transformer [27] with
self-attention has become a novel choice for a variety of visual tasks [28–30] for its ability to
capture interactions between any pairwise positions. For human pose estimation, we aim
to leverage the global dependencies captured by self-attention to provide contextual clues
for occluded keypoints. Because the body keypoints themselves have certain connections,
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as shown in Figure 1, global dependencies are able to improve the ability to locate difficult
keypoints depending on easily detectable keypoints, thereby enhancing the performance
of the overall network. There have been some recent works on CNNs [31,32] that directly
model global dependencies with self-attention instead of convolution. Traditional self-
attention design effectively limits the number of parameters and the operation speed of
network models. The CoT [32] uses group convolution, which not only encodes context
information into self-attention modules, improving feature representation, but also replaces
3 × 3 convolution in ResNet [33] while retaining a favorable parameter.

Figure 1. Attention map for the position of each predicted keypoint. We can see that the motorcycle
covers the person’s left ankle. The left ankle is predicted by relying on contextual information around
the knee and the right leg joint.

In order to fully leverage the advantages of CNNs and self-attention mechanisms, some
researchers have combined [34,35] them to extract features. The model design of TRPose [36]
consists of sending the features extracted by a CNN with different resolutions into Encode for
encoding, carrying out feature fusion, and finally carrying out downsampling to output key
points. We believe that it would be better to fuse features of different resolutions before Encode
because there are still some drawbacks in multi-scale networks [37–39]. Each subnetwork of
multi-scale neural networks has a different resolution in order to exchange information
between multiple resolution representations during feature fusion. High-resolution features
with more detailed information can precisely locate the position information of keypoints.
Low-resolution features with a larger receptive field can capture global information about
the human pose. In feature fusion, the accuracy of keypoint detection will be enhanced
if the model can fully exploit the benefits of high and low resolution. However, some
existing methods [40,41] ignore the differences between features at different resolutions,
resulting in the undesired fusion of noise features. To bridge the differences between
features at different resolutions, an effective approach is to utilize the attention mechanism.
Because attention can make the network highlight or restrain information through learning,
the network can better grasp information we need to pay attention to. Recently, some
scholars have conducted relevant research [42–44]. For example, CBAM [45] considers the
channel and spatial dimensions and finally generates spatial attention maps. Therefore,
we also expect our model to have the ability to learn information in both the channel and
spatial dimensions.

Based on the above studies, in this article, we put forth a Lightweight [46] Context-
aware Feature Transformer Network (CaFTNet) based upon HRNet to improve the network
efficacy by enhancing the localization accuracy of occluded keypoints. Firstly, to strengthen
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the semantic features of contextual information [47,48], we design a Transformerneck
structure. Transformerneck directly replaces 3 × 3 convolution in the bottleneck with a
Contextual Transformer (CoT) block while reducing the complexity of the network. Then,
inspired by the CBAM, to further refine the features of the fusion output, we design an
Attention Feature Aggregation Module (AFAM). Due to the diversity of human poses,
CBAM is still insufficient for spatial processing as it only employs a 7 × 7 convolution filter
for feature fusion, while spatial attention is decided by the value of each pixel, not the
region of 7 × 7. So, we propose an ARM to activate the obtained features. Therefore, our
method further reinforces the feature fusion in multi-scale networks and ameliorates the
output features. On the COCO dataset [49], our model achieves better results than other
methods with a CNN as the backbone. Furthermore, notably, the model has a 72.9% reduced
number of parameters. On the MPII dataset [50], our method uses 60.7% of the number of
parameters, acquiring similar results to other methods with a CNN as the backbone. In
summary, our contributions are (1) We propose a lightweight network architecture that
can predict the keypoints of two-dimensional human posture from input images. (2) We
evaluate the impact of our method on human pose estimation data. (3) We demonstrate
that our method can achieve better pose estimation results compared to directly using CNN
output sequences for keypoint encoding.

2. Related Work
2.1. Human Pose Estimation

CNNs have achieved tremendous success in the field of human pose estimation [51].
Hourglass [36] belongs to the hourglass type of network structure, which can perceive
more global information. The CPN [52] has two stages, GlobalNet and RefineNet, which
can alleviate the keypoint detection problem. Simple baseline [24] adds some transpose
convolutional layers to restore the resolution. It highlights the importance of high-resolution
feature maps. HRNet [14] is a network with high-resolution representations through the
whole process, which repeats multi-scale fusion to improve the representation power of
feature maps. Accordingly, HRNet achieves impressive results on multiple benchmark
datasets. However, HRNet still falls within the category of CNNs, facing the issue of
limited receptive fields. Therefore, global information needs to be ameliorated.

2.2. Attention-Enhanced Convolution

Convolution is dependent on a fixed convolution kernel to gather information, which
leads to the inability of CNNs to establish global dependencies. Multiple existing ap-
proaches to image attention can compensate for the problem of restriction of the convolu-
tion receptive field. Therefore, many scholars have explored the application of attention to
improve the capability of CNNs. SENet [43] models the interactions between the channels
by using global mean pooling and two fully connected layers. On the basis of SENet,
ECANet [44] was proposed. A local cross-channel interaction strategy, without decreasing
the dimensions, was designed, which further improves the performance. CBAM [45] calcu-
lates attention maps in the channel and spatial directions to better learn useful information
in feature maps.

Recently, with the introduction of self-attention in Transformers, the interest of re-
searchers has been aroused due to its powerful global dependence modeling ability. Some
works [53,54] have shown that self-attention modules can be proposed as individual blocks
which can wholly substitute for the convolutions in HRNet. Self-attention can effectively
capture interactions between any paired position; however, pairwise query–key relation-
ships are learned individually from isolated query–key pairs without taking into account
the abundant contextual information between them during the learning process. This
seriously restricts the self-attention learning ability of two-dimensional feature maps for
visual representation learning. Most recently, ref. [31] replaced 3 × 3 convolutions with
self-attention in the final stage of the network. Ref. [32] replaced 3 × 3 convolution in each
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bottleneck by leveraging CoT blocks, which can take full advantage of the context of the
query–key pair to model global dependencies.

2.3. HRNet

HRNet [14] utilizes a stem to rapidly downsample the input features. As shown
in Figure 2, HRNet can be segmented into four stages. The first stage mainly consists
of a high-resolution subnetwork. Starting from the second stage, a low-resolution sub-
network is added to each stage. The resolution of the new subnetwork is half of the
lowest resolution of the previous stage. Each stage will interact with information through
multi-resolution blocks.

Conv.unitDown samp.Down samp.

Up samp.Feature mapsFeature maps

Conv.unitDown samp.

Up samp.Feature maps

Figure 2. The architecture of HRNet.

HRNet has achieved remarkable success as a feature extractor. The problem of the
limited receptive field that is inherent in the convolution operation needs to be solved.
HRNet is unable to establish long-term dependencies, resulting in incorrect estimation of
some human poses. For this reason, this paper proposes a Lightweight Context-aware
Feature Transformer Network (CaFTNet). CaFTNet firstly capitalizes on the CoT block
to enhance the expressiveness of features. Then, in feature fusion, CaFTNet exploits an
AFAM to enhance the representative power of the output feature maps. Our final results
are also better.

3. Methods

In this section, we put forward CaFTNet to better perform feature extraction. Figure 3
depicts the framework of our presented model. To begin with, we briefly review the
framework of our CaFTNet. Then, we introduce Transformerneck and the AFAM in detail.

H
e

ad

Transformer
 Encoder

H
e

ad

Transformer
 Encoder

Mid-HRNet

Keypoint Heatmaps

Input Image

Mid-HRNet

Transformerneck

AFAM

Transformerneck

AFAMMid-HRNet

Transformerneck

AFAM

Figure 3. Overview of CaFTNet. Firstly, Transformerneck is used to extract preliminary input features
with contextual information. Secondly, the input features continue to encode the feature information
through Mid-HRNet. Then, the AFAM further refines the contextual features. Next, a Transformer
Encoder Layer encodes the position representation of keypoints. Finally, a head predicts keypoint
heatmaps. Mid-HRNet refers to the second and third stages of the HRNet.
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3.1. Context-Aware Feature Transformer Network (CaFTNet)

The purpose of this paper is to enhance the representational ability of the feature
maps and decrease the network model size in pose estimation. The overall architecture of
CaFTNet is revealed in Figure 3 in order to show the whole process of our method more
clearly. The entire flow diagram of CaFTNet is shown in Figure 4. CaFTNet uses HRNet as
the backbone and enhances it with the presented Transformerneck and Attention Feature
Aggregation Module (AFAM).

Figure 4. The entire flow diagram of CaFTNet.

First, the proposed Transformerneck is used to extract preliminary input features
with contextual information. It is represented by the box with a blue dashed line. Trans-
formerneck replaces 3 × 3 convolution with a CoT while keeping the bottleneck framework
unchanged. Secondly, these input features continue to encode the feature information
through Mid-HRNet. Then, we place an AFAM on the head of the neural network to
further refine the enriched contextual features. The AFAM is represented by a box with
a green dashed line. The AFAM successively determines attention maps in the channel
and spatial dimensions. An adaptive refinement module (ARM) is exploited to activate
the obtained attention maps. The input undergoes adaptive feature refinement through
multiplication with the activated attention maps. Next, the output of the AFAM goes
through a Transformer Encoder Layer to encode the position representation of keypoints.
Finally, a head is attached to the Transformer Encoder output to predict keypoint heatmaps.

3.2. Transformerneck

For a middle input X ∈ RH×W×C, an output H is first obtained through a 1 × 1
convolution and a nonlinear activation layer. The output H is sent into the CoT (as shown
in the green rectangle enclosed in Figure 5). H is represented by:

H = ReLU(BN(Conv1×1(X))). (1)

H will then be defined by K, Q and V along three different paths. K first produces
contextualized K1 through 3 × 3 convolutions. The formula of K1 is described as follows:

K1 = Conv3×3(K). (2)

Then, K1 and Q are concatenated and the result of this operation generates an attention
map M by two series of 1 × 1 convolutions. The formula for M is:

M = Conv1×1(ReLU(Conv1×1(Concat(K1, Q)))). (3)

Next, V first passes through 1 × 1 convolution to obtain V1, and the feature map K2
can be computed as follows:

V1 = Conv1×1(V), (4)
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K2 = F(V1 ⊗ M), (5)

where F(⊗) denotes a matrix multiplication operation. The final output Z of the CoT is
thus calculated as the fusion of K1 and K2. Z continues to produce T through a nonlinear
activation layer and a 1 × 1 convolution layer. T and a shortcut connection are added
element-wise to produce Y with context relations. Finally, Y is sent to the next module via
the Relu activation function. See Algorithm 1 for the overall process.

Transformerneck

1×1

BN+ReLU

CoT

1×1

BN+ReLU

1×1

BN

ReLUReLU

V

1 × 1

Q K

3 × 3

Concat

1 × 11 × 1

Fusion

X

Y

H

Z

Figure 5. The overall structure of Transformerneck.

Algorithm 1: Transformerneck
Input: feature map
Output: feature map

1: X <- an intermediate feature map
2: X <- K
3: X <- Q
4: X <- V
5: K1 <- use Equation (1)
6: M <- use Equation (2)
7: V1 <- use Equation (3)
8: K2 <- use Equation (4)
9: Y <- K1 + K2

10: return Y
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3.3. Attention Feature Aggregation Module (AFAM)

To begin with, we consider feature map F ∈ RH×W×C as an input in Figure 6. F passes
through a CS module, generating the spatial attention map Fs that we require. This process
can be described in the two steps in Figure 7. The first step, Fc, can be described as:

Fc = Sigmoid(MLP(AvgPool(F)) + MLP(MaxPool(F)))⊗ F. (6)

CS

attention map

1×1

1×1

1×1



Sigmoid

ARM
1×1

1×1

Figure 6. The overall structure of the Attention Feature Aggregation Module. CS: Channel Attention
Module, Spatial Attention Module.

              

co
n

catMaxPool

AvgPool 7×7

   B     Saptial Attention   B     Saptial Attention

                   

MaxPool

AvgPool

 A     Channel Attention

MLP

Figure 7. The overall structure of the Convolution Block Attention Module.

In the second step, Fc is fed to the spatial attention model to obtain Fs. Fs is adopted as:

Fs = Sigmoid(Conv7×7([AvgPool(Fc); MaxPool(Fc)]))⊗ Fc. (7)

Next, Fs is reshaped to feature sequences Fq, Fk and Fv in order to model the spatial
context relations of the corresponding features. The detailed description of this process is
as follows:

(1) Fs obtains the spatial context feature Fv through a 1 × 1 convolution and a sigmoid
layer in the last row. Fv is represented as:

Fv = Sigmoid(Conv1×1(Fs)). (8)

(2) Fs rearranges the spatially related context features together, respectively, through two
1 × 1 convolutions and a non-linear activation layer to obtain Fq and Fk. Fq and Fk are
represented as:

Fq = Con1×1(ReLU(Conv1×1(Fs))), (9)

Fk = Con1×1(ReLU(Conv1×1(Fs))). (10)

(3) Fq and Fk are multiplied element-wise to obtain an attention map with contextual
relationships, which is subsequently applied to the features to recalibrate the output
features F1. F1 is represented as:

F1 = Fv ⊗ Sigmoid
(

Fq ⊗ Fk
)
. (11)

Finally, F1 and F are added element-wise to achieve F′. F′ is expressed as:

F′ = F1 ⊕ F. (12)
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See Algorithm 2 for the overall process.

Algorithm 2: AFAM
Input: feature map
Output: feature map

1: F <- an intermediate feature map
2: Mc <- use Equation (5)
3: Fc <- use Equation (6)
4: Ms <- use Equation (7)
5: Fs <- use Equation (8)
6: Fv <- use Equation (9)
7: Fq <- use Equation (10)
8: Fk <- use Equation (11)
9: F1 <- use Equation (12)

10: F
′

<- F1 + F
11: return F

′

4. Experiments
4.1. Model Variants

Based on HRNet, we present a Lightweight Context-aware Feature Transformer Net-
work. In our structure, there are two different depths of CNNs to extract the input features.
The detailed setup information is presented in Table 1. The network utilized by CaFTNet-R
is ResNet. The backbone network utilized by CaFTNet-H4 is HRNet-W48. From Table 2,
we can see that the model achieves the best result when the network employs CaFTNet-H4.

Table 1. Parameter configuration information for the different CaFTNet models.

Model Backbone Layers Heads Flops Params

CaFTNet-R ResNet 4 8 5.29 G 5.55 M
CaFTNet-H3 HRNet-W32 4 1 8.46 G 17.03 M
CaFTNet-H4 HRNet-W48 4 1 8.73 G 17.30 M

Table 2. Ablation study with different backbones.

Model Backbone AP AR Flops Params

CaFTNet-R ResNet 73.7 79.0 5.29 G 5.55 M
CaFTNet-H3 HRNet-W32 75.6 80.9 8.46 G 17.03 M
CaFTNet-H4 HRNet-W48 76.2 81.2 8.73 G 17.30 M

4.2. Technical Details

Our model takes advantage of a top-down [55–57] approach. The experimental en-
vironment configuration is as follows: Two RTX 2080s are used. The Python Version is
3.7. The framework is PyTorch 1.10.0. The network model was optimized utilizing the
Adam [58] optimizer during training, with an initial learning rate of 0.001 and 0.00001 at
220 rounds. The network was trained for 230 rounds with a batch size of 16 for each GPU.
Because the sizes of the pictures in the dataset are different, the pictures were modified by
image pre-processing. Here, images were cropped to 256 × 192 in the COCO dataset and
256 × 256 in the MPII dataset.

4.3. Results on the COCO Dataset
4.3.1. Dataset and Evaluation Metrics

The COCO dataset [49] has more than 200,000 images and 250,000 instances, each
containing up to 17 human keypoints. The network model was trained on the train2017
dataset, and the network model was verified and tested on val2017 (including 5000 images)
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and test-dev2017 (including 20,000 images) datasets. Our model was evaluated using the
Object Keypoint Similarity (OKS ) on the COCO dataset. OKS defines the similarity between
different human keypoints, AP50 indicates the accuracy of the keypoints at OKS = 0.5 and
AP75 is the accuracy of the keypoints at OKS = 0.75. mAP is defined as the mean accuracy
value of the predicted keypoints at 10 thresholds of OKS = 0.50, 0.55 . . . 0.90, 0.95. APM

is utilized to describe the accuracy of the detection of medium-sized keypoints, and APL

represents the accuracy of large-sized keypoint detection. The formula for the OKS is:

OKS =
∑i exp

(
−d2

i /2s2k2
i
)
δ(vi > 0)

∑i δ(vi > 0)
, (13)

where di is the Euclidean distance between the i-th predicted keypoint coordinate and the
corresponding groundtruth, vi is the visibility flag of the keypoint, s is the object scale, and
ki is a keypoint-specific constant.

4.3.2. Quantitative Results

The models were compared for their performance on the COCO val2017 dataset, and
the results are shown in Table 3. The numbers of parameters and GFLOPs were calculated
from the human pose estimation network model. The experimental results show that in
terms of the number of parameters and GFLOPs, the CaFTNet model achieves a better
performance with a fewer number of parameters and GFLOPs, at 17.3 M and 8.73 G,
respectively. CaFTNet-H4 acquires an AP score of 76.2 with an input size of 256 × 192,
better than other models with the same input size. In contrast to TransPose-R-A4 [59],
CaFTNet-R has an 8.3% lower number of parameters, but the AP score is increased by
1.1. In contrast to ResNet-152 [33], our CaFTNet-R model exhibits a better performance,
utilizing only 7.2% of the model parameters. Comparing the complex network model
of HRNet-W48 [14], CaFTNet acquires a good AP score with a much lower complexity.
Table 4 exhibits the results of our approach and other approaches on the COCO test-dev2017
dataset. Our CaFTNet-H4 achieves an AP of 75.5. Due to effective perceptual context and
semantic information, CaFTNet achieves a good balance between accuracy and complexity.

Table 3. Comparison results with different other methods on the COCO val2017 dataset. CaFTNet-R
and CaFTNet-H achieve good results in terms of parameter numbers and calculation speeds.

Model Input Size AP AR Flops Params

ResNet-50 [33] 256 × 192 70.4 76.3 8.9 G 34.0 M
ResNet-101 [33] 256 × 192 71.4 76.3 12.4 G 53.0 M
ResNet-152 [33] 256 × 192 72 77.8 35.3 G 68.6 M

TransPose-R-A3 [59] 256 × 192 71.7 77.1 8.0 G 5.2 M
TransPose-R-A4 [59] 256 × 192 72.6 78.0 8.9 G 6.0 M

CaFTNet-R 256 × 192 73.7 79.0 5.29 G 5.55 M

HRNet-W32 [14] 256 × 192 74.7 79.8 7.2 G 28.5 M
HRNet-W48 [14] 256 × 192 75.1 80.4 14.6 G 63.6 M

TransPose-H-A4 [59] 256 × 192 75.3 80.3 17.5 G 17.3 M
TransPose-H-A6 [59] 256 × 192 75.8 80.8 21.8 G 17.5 M

TokenPose-L/D6 [60] 256 × 192 75.4 80.4 9.1 G 20.8 M
TokenPose-L/D24 [60] 256 × 192 75.8 80.9 11.0 G 27.5 M

CaFTNet-H3 256 × 192 75.6 80.9 8.46 G 17.03 M
CaFTNet-H4 256 × 192 76.2 81.2 8.73 G 17.30 M
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Table 4. Comparison results with different other methods on the COCO test-dev2017 dataset.
CaFTNet-R and CaFTNet-H achieve good results in terms of parameter numbers and calcula-
tion speeds.

Model Input Size AP AP50 AP75 APm APl Params

G-RMI [18] 357 × 257 64.9 85.5 71.3 62.3 70.0 42.6 M
Integral [61] 256 × 256 67.8 88.2 74.8 63.9 74.0 45.0 M

CPN [52] 384 × 288 72.1 91.4 80.0 68.7 77.2 58.8 M
RMPE [16] 320 × 256 72.3 89.2 79.1 68.0 78.6 28.1 M

SimpleBaseline [24] 384 × 288 73.7 91.9 81.8 70.3 80.0 68.6 M
HRNet-W32 [14] 384 × 288 74.9 92.5 82.8 71.3 80.9 28.5 M
HRNet-W48 [14] 256 × 192 74.2 92.4 82.4 70.9 79.7 63.6 M

TransPose-H-A4 [59] 256 × 192 74.7 91.6 82.2 71.4 80.7 17.3 M
TransPose-H-A6 [59] 256 × 192 75.0 92.2 82.3 71.3 81.1 17.5 M
TokenPose-L/D6 [60] 256 × 192 74.9 90.0 81.8 71.8 82.4 20.8 M

TokenPose-L/D24 [60] 256 × 192 75.1 90.3 82.5 72.3 82.7 27.5 M

CaFTNet-H3 256 × 192 75.0 90.0 82.0 71.5 82.5 17.03 M
CaFTNet-H4 256 × 192 75.5 90.4 82.8 72.5 83.3 17.30 M

4.3.3. Qualitative Comparisons

Different keypoints rely on different regions. The attention mechanism mimics
human cognitive awareness of a particular piece of information, zooming in on key details
to pay more attention to essential aspects of the data. Self-attention encodes high-level
interaction and context information by extracting relationships between input sequence
markers. It mainly calculates the similarity between two graphs (K, Q) of the same input.
Traditional self-attention measures the attention matrix using only isolated query key pairs,
but rich context information is left between the keys. For our proposed Transformerneck,
first, the keys represent the upper and lower cultures via performing a 3 × 3 convolution
on all adjacent keys in a 3 × 3 grid. This reflects the static context between local neighbors.
After that, we input the connections between the key features of the context into two
continuous convolutions to produce an attention matrix. The relationship between each
query and all keywords is then used as a guide to predict the final output. We find that for
the keypoints of the head like the nose, eyes, etc., the positioning depends mainly on the
interdependencies between them, and it is worth noting that the prediction of the wrist
or knees depends on favorable cues around them. For instance, the prediction of the right
knee depends on the left knee and the right lower limb. A closer look shows that our
network has the ability to derive useful information from its relevant parts for keypoints to
predict targets. In this way, we can understand why the model can predict the occluded
keypoints (e.g., the occluded right knee in Figure 8a).

Visualization. The results are compared and visualized for the COCO dataset in
Figure 9. The source image is displayed at the top of the picture, the middle row displays
the HRNet results, and our results are displayed in the bottom row. The objects (enclosed
in red circles) were not detected by HRNet in the first and second columns of images
likely due to occlusion by other objects. HRNet may have treated the undetected objects
as background during the detection process. In comparison, the proposed AFAM in this
paper can weight the features during information fusion, allowing for a better prediction
of occluded objects. The final result shows the advantages of our method for occluded
objects. Everything else on the subject is comparable, but for occluded objects, our model
demonstrates its advantage. As shown in images in the third column, our approach can
accurately detect occluded keypoints. This is because our model introduces a CoT, which
allows for better capturing of contextual information, providing beneficial cues for detecting
occluded keypoints. As a result, our approach achieves superior results.
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(a)

(b)

Figure 8. Visualization of heatmaps predicting keypoint locations and their dependent regions for dif-
ferent input pictures according to the CaFTNet-R model. (a) Visualization of image 1. (b) Visualization
of image 2.

CaFTNet

HRNet

Source Images

Figure 9. Qualitative comparisons using the COCO dataset.
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4.4. Results on the MPII Dataset
4.4.1. Dataset and Evaluation Metrics

The MPII dataset [49] is a single-person pose estimation dataset that captures the
whole-body pose of people in real scenes, and includes 28,821 training images and 11,701
test images; it is a benchmark dataset for single-person pose estimation. The training and
validation sets contain 22,246 and 2958 images, respectively. The standard evaluation index
of the MPII dataset is PCKh (head-normalized percentage of correct keypoints), using the
head segment length as the normalization reference. PCKh is expressed as:

PCKhi =
∑p δ

(
dpi

Lhead
p

≤ 0.5
)

∑p1
, (14)

PCKhmean =
∑p ∑i δ

(
dpi

Lhead
p

≤ 0.5
)

∑p ∑i1
, (15)

where i represents the i-th keypoint, p represents the p-th pedestrian, dpi is the Euclidean
distance between the p-th individual’s i-th predicted keypoint coordinate and the corresponding
groundtruth, δ(·) represents the indicator function, and Lhead

p indicates the p-th head segment
length. We report the PCKh@0.5(α = 0.5) score for a fair comparison with other methods.

4.4.2. Quantitative Results

Table 5 presents the results of the different approaches on the MPII dataset. In terms
of the mean, we can see that the result of our method is 90.4, and the other terms are also
comparable. In more detail, we can see from Table 5 that our final results are only higher by
0.1 compared to the baseline method. In particular, for ankle detection, our method is 0.3
higher than TokenPose-L/D24. Additionally, each test result of our method outperforms
the baseline method and thus proves that our method achieves a better performance on
this dataset. More importantly, our method uses only 61 percent of the total number of
baseline method parameters. Our results are better compared to SimpleBaseline-Res152,
and our number of parameters is decreased by 74.8%.

Table 5. Results on the MPII dataset validation set (PCKh@0.5).

Model Hea Sho Elb Wri Hip Kne Ank Mean Params

SimpleBaseline-Res50 [24] 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5 34.0 M
SimpleBaseline-Res101 [24] 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1 53.0 M
SimpleBaseline-Res152 [24] 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6 68.6 M

HRNet-W32 [14] 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 28.5 M
TokenPose-L/D24 [60] 97.1 95.9 90.4 86.0 89.3 87.1 82.5 90.2 28.1 M

CaFTNet-H4 97.2 96.1 90.5 86.5 89.3 86.9 82.8 90.4 17.3 M

4.4.3. Qualitative Comparisons

We reveal some contrasting results on the MPII dataset in Figure 10. The source image
is displayed at the top of the picture, the middle row displays the HRNet results, and our
results are displayed in the last row. As shown by the visualization results of the third line,
our method can correctly detect the occluded keypoints not detected by HRNet. We found
above from the results in Table 5 that our method has an advantage in the detection of ankle
joints, at 0.3 higher than the baseline method, mainly because our model can better capture
the contextual information and provide favorable clues for blocked keypoints. Thus, our
approach achieves better results.
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Figure 10. Qualitative comparisons on the MPII dataset.

4.5. Ablation Experiments

Ablation experiments were performed for training validation on the COCO dataset,
considering the role of Transformerneck and the AFAM in the network model.

4.5.1. Transformerneck

In this paper, two sets of ablation experiments are devised to verify the effect of
employing a bottleneck or a Transformerneck separately based on our different network
models. When implementing our network model with CaFTNet-H, we replaced the
bottleneck structure with our proposed Transformerneck while keeping the other structures
unchanged. The structures using a Transformerneck achieved an AP of 75.7, see Table 6. We
also report the results of replacing the bottleneck with Transformerneck when employing
CaFTNet-R. The results with the Transformerneck yield a value that is 0.6 higher than the
results employing a bottleneck. The results highlight the utility of exploiting contextual
information for decoding subsequent features.

Table 6. The effects of the CoT for different models on the COCO dataset.

Model Bottleneck Transformerneck AP

CaFTNet-R ✓ 72.6
CaFTNet-R ✓ 73.2
CaFTNet-H ✓ 75.3
CaFTNet-H ✓ 75.7

4.5.2. Attention Feature Aggregation Module (AFAM)

We investigated the effects of different attention mechanisms on the experimental
results, for example, (i) SENet; (ii) ECANet; (iii) CBAM; (iv) AFAM. Due to their different
use of the feature map, their influence on the results of the experiment is also different.
SENet [43] models the interactions between the channels by using global mean pooling
and two fully connected layers. On the basis of SENet, ref. [44] proposed ECANet. A
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local cross-channel interaction strategy, without decreasing the dimensions, was designed,
which further improves the performance. Ref. [45] proposed CBAM to focus more on
spatial attention maps. The AFAM compensates for the lack of spatial processing in CBAM,
and it keeps the network focused on more desirable features. Table 7 presents the results
from our different experiments. Although the difference between them is small, we are
conscious that our proposed AFAM results in a 0.5 higher than SE. The results expose that
more spatial information is needed when solving feature fusion problems.

Table 7. Contrasting results for the COCO dataset under different attention mechanisms.

Model Baseline SE ECA CBAM AFAM AP

CaFTNet-R ✓ 72.6
CaFTNet-R ✓ ✓ 72.7
CaFTNet-R ✓ ✓ 72.8
CaFTNet-R ✓ ✓ 73.0
CaFTNet-R ✓ ✓ 73.2

4.5.3. Complexity Analysis

We used the number of model parameters to evaluate the spatial complexity. The
maximum number of parameters in our network is 17.3M. As can be seen from Table 3, the
final AP result of our method is 76.2, which is 0.4 higher than that of currently popular
methods. In terms of time complexity, the time consumption of our model is mainly
reflected in self-attention in the Transformer, that is, the quadratic complexity. However,
our method mainly focuses on the modification of a CNN, so we only analyzed GFLOPs in
terms of the time complexity above. Because our model uses a top-down mode to scale all
cropped images to a fixed size, we mainly trained our model with a size of 256 × 192. For
input resolution, the sequence length of the Transformer in the CaFTNet-R and CaFTNet-H
models is 768 and 3072, respectively. For our current model, a higher input resolution (e.g.,
384 × 288) not only results in high computational costs in the self-focusing layer due to the
quadratic complexity, but also decreases the scalability and efficiency. In order to perform a
fair comparison with other methods, we only conducted experiments with an input image
resolution of 256 × 192.

5. Conclusions

In this article, we put forth a Lightweight Context-aware Feature Transformer Network
(CaFTNet) for enhancing the efficacy of human pose estimation models. Since CNNs cannot
capture long-range dependencies between global regions, we devise the Transformerneck.
Furthermore, to bolster the representation power of the fusion output feature maps, we
design an Attention Feature Aggregation Module (AFAM). Extensive experiments carried
out on the COCO and MPII datasets corroborate the applicability of the proposed approach.

However, our method has some limitations in terms of accuracy. Due to some design
defects of the model, our method has the problem of inaccurate positioning when dealing
with complex data, which means that the model is unable to obtain the best attitude
estimation results at present. Therefore, in future work, we aim to further optimize our
human pose estimation model and design a lightweight pose estimator that is more suitable
for the current task in order to improve the accuracy of pose estimation.
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