i:;l?é electronics

Article

Design and Implementation of a UMLRPAsec-Extension for
Robotic Process Automation

Anastasiya Kurylets and Nikolaj Goranin *

check for
updates

Citation: Kurylets, A.; Goranin, N.
Design and Implementation of a
UMLRPAsec-Extension for Robotic
Process Automation. Electronics 2024,
13,769. https://doi.org/10.3390/
electronics13040769

Academic Editors: George
Hatzivasilis, Sotiris Ioannidis,

Vasileios Mavroeidis and Vasilis Katos

Received: 12 January 2024
Revised: 8 February 2024
Accepted: 13 February 2024
Published: 15 February 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Vilnius Gediminas Technical University, Sauletekio al. 11, LT-10223 Vilnius, Lithuania;
anastasiya.kurylets@vilniustech.1t
* Correspondence: nikolaj.goranin@vilniustech.lt

Abstract: Ensuring RPA (robotic process automation) security is a critical aspect when developing
and operating automated software robots. One of the key steps for developing secure software
robots is the design stage: the identification and specification of the requirements for the security
of the system, the description of system precedents, the interaction between the classes involved in
the robot being created, etc. Designs using security-oriented formal modeling languages, such as
the UMLsec extension of UML, involve not only a visual representation of diagrams but also the
possibility to focus the attention on security issues. However, currently, in the scientific community,
there is no possibility of using stereotypes specialized for robots—a mechanism for expanding the
unified modeling language that would explicitly reflect a specific problem in the subject area. In this
article, we propose that the UMLRPAsec-extension for RPA can be used to model security in the
RPA context.

Keywords: RPA; UMLRPAsec-extensions; class diagram for RPA; RPA-stereotypes

1. Introduction

Robotic process automation (RPA) is a family of business process automation tech-
nologies based on the use of software robots and artificial intelligence. The software robot
reproduces human actions by interacting with the interfaces of information systems. The
script of its behavior is programmed by the developer based on observations of a real user
performing a task using computer technology [1]. The robotic process automation (RPA)
does not represent neither a physical nor mechanical robot, even if it brings to mind a
vision of some electromechanical machine [2].

The usage of robotic process automation (RPA) in organizations has rapidly increased
in recent years and is projected to grow in the foreseeable future by 20-30% per year or
USD 3.97 billion in 2025. RPA growth has also been predicted to occur at a rate of 32.8%
from 2021 and 2028. Organizations, such as Diogo da Silva Costa, Henrique Sao Mamede,
and Miguel Mira da Silva, are adopting RPA with the motivation to reduce costs and
improve efficiency, productivity, and service quality [3].

Fajet Kositere’s thesis “Robotic Process Automation (RPA) and Security” [4] states that
“...there are many potential security weaknesses in the implementation of this software,
and the implementation of RPA must also be accompanied by a proper and thorough risk
analysis that establishes policies and procedures that are consistent with RPA security best
practices. ..” which supports the need for more research into improving RPA security.

One of the critical steps for system security is the design and specification stages,
which are typically documented using unified modeling language (UML). Unfortunately,
this formal language lacks integrated mechanisms for security requirement specification.
This limitation has been overcome by the introduction of UMLsec extension [5,6], introduc-
ing new stereotypes, tags, and conditions. Stereotypes are used to define connections as

Electronics 2024, 13, 769. https:/ /doi.org/10.3390/ electronics13040769

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics13040769
https://doi.org/10.3390/electronics13040769
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2263-3947
https://doi.org/10.3390/electronics13040769
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13040769?type=check_update&version=1

Electronics 2024, 13, 769

2 of 20

encrypted (“encrypted”), link data with security requirements on the logical level (e.g., “se-
crecy” or “integrity”), and define information security guidelines for a system (e.g., “secure
links”). A complete description of the main UMLsec stereotypes and tags can be found in [6].

The main problem solved by the development of UMLsec extensions for RPA is the
insufficient level of the consideration of security aspects in the design of robotic processes
and systems. The developed UMLsec extensions allow developers to consider security
features and risks when designing and implementing robotic processes and to model and
analyze threats, vulnerabilities, and security measures. This offering improves the overall
security of RPA and reduces the likelihood of data security incidents. The innovation of
this article lies in proposing unique, previously unavailable UMLsec extensions in the RPA.
The proposed extensions can be used both for analyzing general security requirements in
the RPA domain and adapting them to a specific industry in which robotics technology
is used. The proposed work solves the complex problem of RPA systems design, as RPA
systems interact with various information systems, databases, web services, and other
components of the information infrastructure, which creates complex threat scenarios and
attack opportunities that also require a systematic approach to security.

However, like any other technology, RPA possesses some risks, especially in the area
of security. To ensure the security of automation processes, UML security extensions can be
used while developing RPA robots.

UML security extension (UMLsec) is a combination of design methodology and a set
of notation and tools for analyzing and designing secure systems.

The use of UMLsec when developing an RPA robots can provide the following benefits:

1. Security Modeling: UMLsec allows you to explicitly model security aspects as a part of
the RPA robot development process. This helps improve understanding and provide
transparency regarding security in an RPA system.

2. Threat Analysis: UMLsec provides specific diagrams and concepts for modeling
security threats, which allows you to identify and describe the main threats associated
with the RPA robot. Threat analysis in the early stages of development allows you to
take security measures in advance.

3. Defining the Security Policy: By using UMLsec, you can explicitly define the secu-
rity policy for the RPA robot. This includes defining access rights, encryption and
authentication policies, data integrity controls, and other security aspects.

4.  Interoperability with other models: UMLsec can be used in combination with other
models and methodologies to develop an RPA robot. For example, it can be inte-
grated with UML activity diagrams or UML sequence diagrams to specify the secure
interaction of the RPA robot with the surrounding system or other entities.

However, in order to apply UMLsec in a specific subject area, it is typically necessary
to create additional extensions. Extension mechanisms allow you to define new elements
based on existing ones in a unified way. Unfortunately, currently, there are no RPA-specific
UMSsec extensions.

There are three common extensibility mechanisms defined by the UML: stereotypes,
tagged values, and constraints.

In this article, we propose the UMLRPAsec extension for RPA with a set of unique
stereotypes. The use of the proposed UMLRPAsec extension for RPA allows us to improve
the RPA system security, identify risks, and take appropriate measures to reduce them.

This article is organized as follows: Section 1 gives a general overview of security
importance while designing RPA systems and motivates the need for the RPA-specific
UMLsec extension; Section 2 provides analysis of prior work in this area; in Section 3,
the proposed UMLRPAsec extension is presented, while in Section 4, the verification of
the extension provides several sample cases of code generation from the domain-specific
diagrams; finally, this article is finalized with our conclusions.



Electronics 2024, 13, 769

30f20

2. Prior and Related Work

The idea of using a classical life cycle model to represent the entire implementation
of an RPA development process is widely accepted in scientific literature. This life cycle
contains six to seven phases, depending on the literature, and is very well suited to
combining different concepts and implementation.

2.1. General RPA Development Process
According to [7], the following phases of the RPA life cycle can be distinguished:

1.  Analysis Phase. This phase consists of analyzing and determining the viability of
carrying out the automation of a certain process by means of a detailed analysis of
the effort involved in the self-motivation of such process considering the execution
characteristics of the process itself.

2. Design Phase. The process design phase begins for those processes that have passed
the previous feasibility analysis. The purpose of this phase is to detail the set of
actions, data flow, activities, etc., that must be implemented in the RPA process.

3. Construction Phase. This phase consists of implementing each of the automatable
parts of each process identified in the design phase.

4.  Deployment Phase. The robots obtained as a result of the construction phase need
an environment to be executed, just as a human operator needs an environment to
perform their work. This environment, in the context of RPA, usually corresponds to
a computer that has an installation of one or more information systems. Each robot
must be executed in its own execution environment since the replacement between
the human operator and software is direct.

5. Control and Monitoring Phase. Once the robots are deployed in their respective
execution environments, this phase oversees the controlling and monitoring perfor-
mances of each robot. In this phase, the execution of robots is launched, it stops in
case of serious errors, the execution status is monitored, etc., until they have finished
their tasks.

6.  Evaluation and Performance Phase. The last phase of the process consists of evaluating
robot performance.

2.2. Role and Perspectives of UML and UMLsec in RPA Development

The design stage is one of the most important stages in the life cycle of any product as
well the most important phase for defining security aspects [8]. UML (unified modeling
language) is a modeling language that is widely used for designing software systems,
including robotic process automation (RPA) solutions. Analyzing the experience of the
practical application of UML in various fields, which is demonstrated in the scientific work
of Ozkaya M [9], the following reasons for application in the field of RPA were identified:

1. Visualization and documentation: UML (unified modeling language) provides power-
ful tools for visualizing and documenting system architecture. Using UML makes it
easy for developers and stakeholders to understand the structure and functionality of
the RPA robot. This helps in creating clear and understandable documentation that
can be used to facilitate communication, train new developers, and provide further
support for the system.

2. Requirement-Based Design: The RPA robot development process should begin with
defining the requirements. Using UML allows you to formalize and structure re-
quirements to create models that reflect the relationships and interactions between
system components. This helps to significantly reduce the risk of misunderstanding
the requirements and provides a clearer understanding of the robot’s functionality.

3. Identify potential problems: UML provides the ability to design a system at a higher
level of abstraction, allowing developers to specify and test the logic and potential
problems associated with the RPA robot. Modeling at the UML level can reveal
problems such as code duplication, irrational data structure, or poor coupling between



Electronics 2024, 13, 769

4 0f 20

components. This allows you to make adjustments to the robot’s architecture at the
early stages of development and avoid problems in the future.

4.  Increased scalability and flexibility: UML allows you to develop models that support
system extensibility and flexibility. This is especially useful in the case of RPA robots,
which often work with different systems and processes. Using UML allows you to
create modular and reusable components, which makes it easier to make changes and
scale the system if necessary.

5. Improve quality and reduce risks: Designing an RPA robot based on UML allows
developers to analyze and evaluate the system in the early stages of development.
This helps identify potential problems and improve quality and reliability. Prelimi-
nary analysis and compliance testing help reduce risks and potential errors in robot
performance and security.

The strongest argument, from a security perspective, in favor of using UML design is
not only the ability to identify potential problems but also the possibility for the “visual
display” of options for correcting them.

Several basic types of UML diagrams [10] can be identified, which can be used when
designing an RPA robot.

Use Case diagrams: These are diagrams that help to identify the basic functionality
of the robot and its interaction with the environment. A Use Case diagram allows the
identification of actors (users or systems interacting with the robot) and their interactions
with the robot.

Activity diagrams: Activity diagrams are used to visualize the sequence of actions
that a robot performs. They can represent robot steps, decision conditions, and control
structures such as loops and branches.

Sequence diagrams: Sequence diagrams allow one to model the interaction between
various system components, including the interaction with external systems or the user.
Using a Sequence diagram, you can show the sequence of messages and method calls
between objects.

State Machine diagrams: State Machine diagrams help in modelling the various states
and transitions of a robot. They allow you to determine how the system reacts to external
events and how it changes its state.

Class diagrams: Class diagrams are used to model the structure of classes in a system.
This allows you to determine the main components of the robot, their properties and
methods, as well as their relationships.

Component diagrams: Component diagrams are used to model the structure of
components in a system. In the context of an RPA robot, this can be useful for identifying
individual components of the robot, such as automation modules, libraries, or external
systems with which the robot interacts.

Deployment diagrams: Deployment diagrams are used to model the physical place-
ment of system components and their relationships. In the case of an RPA robot, this may
include hosting the robot on a server or in the cloud, as well as communicating with other
systems or devices.

Package diagrams: Package diagrams are used to organize classes and other model
elements into logically related groups. This can be useful for separating the robot’s func-
tionality into separate modules or packages, making the system easier to understand
and maintain.

Communication diagrams: Communication diagrams allow for modeling the interac-
tions between objects in a system. In the context of an RPA robot, this can be used to show
the interactions between various components of the robot, as well as between the robot and
other systems or users.

Timing diagrams: Timing diagrams allow you to model the timing behavior of a
system, including delays, synchronization, and contention between different processes. In
the case of an RPA robot, timing diagrams can be used to model timing constraints and
synchronize the robot’s actions.



Electronics 2024, 13, 769

50f 20

However, in order to model security aspects, it is necessary to use the UML modeling
language extension UMLsec. Based on [5], the following advantages of applying UMLsec
can be identified:

Integrating security into system design: UMLsec allows security requirements to be
integrated into system modeling early in the project. This facilitates the early identification
of potential vulnerabilities and security issues, allowing remediation measures to be taken
early in development.

Automation of security analysis: UMLsec provides automated methods and tools
to assess whether the model is secure. This allows you to detect potential vulnerabilities
and security threats, such as attacks on models, information leaks, integrity violations,
and others.

Extensibility: UMLsec has a flexible architecture that allows you to expand and
complement its functionality according to the needs of a specific project. Models and
security specifications can be tailored to the specific requirements of a system.

UML compatibility: UMLsec is fully compatible with the UML modeling language,
allowing it to be used with existing development tools and techniques. This makes the
security integration process smoother and more convenient.

Support of security standards: UMLsec complies with security standards such as
Common Criteria and ISO/IEC 15408. This ensures high reliability and quality of system
security analysis.

Standardized approach to security modeling: UMLsec defines standard specifications
and modeling rules to address security aspects.

Risk Management: UMLsec helps to identify and analyze potential vulnerabilities
and security threats, thus allowing you to identify and assess risks, resulting in making
informed decisions about what security measures to take in order to reduce risks.

Documenting Security Requirements: UMLsec allows security requirements to be
explicitly specified in the form of models and documentation. This facilitates understanding
and communication between development team members and stakeholders regarding the
required level of system security.

Attack analysis support: UMLsec allows you to model and analyze various types of
attack on a system.

Possibility of integration with other security methods: UMLsec can be integrated with
other security analysis tools. This allows you to take an integrated approach and gain a
more complete picture of system security.

In general, using UMLsec helps to create more secure systems. It allows security
requirements to be considered at every stage of development, from modeling and require-
ments analysis to system development and testing. This helps to reduce risks and protect
against security threats.

2.3. Main Aspects of RPA Security

In the context of RPA, UMLsec can be used to analyze and assess the security of
automation processes. However, it is important to note that UMLsec was developed for the
security analysis of classical information systems and is not adapted for RPA. RPA differs
from traditional systems because it involves the use of robots and scripts to automate
business processes. It is appropriate to use the UMLsec methodology to analyze these
aspects of RPA security, but the methodology may need to be adapted to consider the
specifics of RPA systems. The main aspects of RPA security were identified in our previous
work in the form of ontology [1]. In Table 1, the main security aspects and the corresponding
requirements are provided.



Electronics 2024, 13, 769

6 of 20

Table 1. RPA security aspects.

Security Aspect

Requirements

Credential protection

The way credentials are transmitted and stored in the RPA system must be
reviewed to ensure their security.

Access control

It is necessary to evaluate what resources and functionality are available to each
robot and user of the RPA system. Use of access control concepts and mechanisms,
such as permissions or role models, to ensure adequate levels of access; integration
with IAM (identity and access management).

Malware protection

It is necessary to consider the use of malware detection mechanisms and antivirus
software to keep RPA robots secure. It is also necessary to restrict the access rights
of robots and users to prevent the introduction of malicious software.

Ensuring data integrity

It should be ensured that data integrity verification mechanisms are enabled to
prevent unauthorized or incorrect changes to data. Also, creating backup copies of
the robot script data and periodically restoring them to detect and correct

data corruption.

Implementation of a monitoring and logging system that will record in detail the

Monitoring and logging actions of robots, as well as any anomalies and suspicious activities. This will
enable detection and warning of possible security breaches.
Updates and patches Timely updates and installation of patches for the RPA platform, tools, and

components corrects security vulnerabilities and reduces the risk of exploitation.

User training and awareness

Providing training and guidance on user security related to the use of RPA.

Checking for confidential data leaks

Regularly checks for confidential data leaks. Using data leak detection and
Internet monitoring tools to find information.

Error and exception management

Development of an error and exception management strategy to ensure security
and reliability in the event of failures or unexpected behavior of robots. An
additional way to identify and correct the problem is through logging

and reporting.

Security testing

Conduct regular security tests of the RPA system, including penetration testing to
identify vulnerabilities and weaknesses.

Data backup and recovery

Regular backup of data used by robots and development of a disaster recovery
plan for quick recovery and minimal downtime for business processes continuity.

2.4. Process of UMLsec Extention for RPA Development

The development of a UML security extension for RPA will require a specific approach

and set of tools as follows:

1. Identify Security Requirements: Determine the specific security requirements associ-
ated with RPA [1].

2. Development of a UML RPA security metamodel.

3. Develop an extension to an existing UML tool.

4. Application of security extension in modeling. Using the new UML Security Extension
in RPA process modeling to incorporate security aspects and architectural decisions
early on an early stage.

5. Assessment of models.

During the design of an RPA robot using UMLsec, the following extension mechanisms
can be used:

e  Annotations: The annotation engine allows you to add additional semantic annotations
to UMLsec class diagram elements to indicate the security features of each element.
For example, you can annotate classes or attributes that indicate required access levels
or security requirements.

e  Specific stereotypes: UML stereotypes allow the creation of specific metamodels that

can be applied to UMLsec class diagram elements. It is possible to define your own



Electronics 2024, 13, 769

7 of 20

stereotypes that represent security concepts such as Threat, SecurityPolicy, Security-
Control, and others and to apply these stereotypes to the corresponding elements.

e Additional relations: Additional relations can be used to represent the correspond-
ing relationships between security elements. For example, it is possible to use the
“realize” relationship to link between a class representing Threat and a class repre-
senting SecurityControl to indicate which security controls are adopted to prevent a
given threat.

e Additional diagrams: In addition to the class diagram, other types of UML-sec dia-
grams can be used to model the security of the RPA robot.

The mentioned extension mechanisms make it possible to supplement the standard
UMLsec semantics and adapt it to the specific security requirements of RPA robots. They
allow for specifying additional security details and connections between elements so that
relevant security aspects can be considered when designing and developing an RPA robot.

2.5. Review of Existing UMLsec Extension in Different Domain Areas

The search performed on Web of Science and other resources did not show any RPA-
related UMLsec extensions or similar solutions. Queries “RPA” AND“UMLsec” AND“UML”,
“RPA”AND”“UMLsec”, “RPA” AND“UML”, “Robotic Process Automation uml”, “Robotic
Process Automation uml-sec”, and “Robotic Security Process Automation” in Web of Sci-
ence were performed and did not yield any results. Still, there are a number of recent
research papers presenting UMLsec extensions in other areas. Thus, in the paper “Modeling
data protection in fog computing systems using UMLsec and SysML-Sec”, the author Jan
Laufer suggests the application of the UMLsec extension for areas such as the Internet of
Things, cloud computing, and edge computing [8]. Given the contiguity of RPA technology
with the above technologies, one can speculate about the possibility of applying UMLsec
and RPA among others. There exist a number of UMLsec extensions in other research
areas that demonstrate the importance of the research direction. In the article “IoTsec:
UML extension for Internet of things system ssecurity modelling” by David Alejandro
Robles-Ramirez, UML extensions for modeling IoT (Internet of Things, IoT) applications
are proposed [11]. The article also introduces a UML extension which involves the security
issues encapsulated within a nomenclature, UML stereotypes to model common actors
and UML notation extensions. In “UML2Merge: a UML extension for model merging”
by Farias, K., de Oliveira Caval-cante, T., José Gongales, L., and Bischoff, V., the authors
propose the use of UML2Merge, which is a UML extension for expressing merging relation-
ships [12]. The results are encouraging and show the potential for using UML2Merge to
express the evolution of UML models through merge relationships.

It is necessary to mention that a lot of UML extensions for different modern tech-
nologies are presented not in scientific but technical literature. The following extension
can be found:

UML for Web Applications: UML extension designed for modeling web applications
adds elements and diagrams related to web development such as use case diagram, class
diagram and component diagram [13,14].

UML for Cloud Computing: UML extension specialized for cloud computing modeling
adds elements and diagrams related to describing the architecture of cloud applications,
such as component diagrams, deployment diagrams, and environment diagrams [15,16].

UML for Big Data Analytics: UML extension designed for modeling big data analytical
systems adds elements and diagrams that allow you to describe data, analytical algorithms,
and data processing flows, such as sequence diagrams, component diagrams, and activity
diagrams [17].

Each UML extension for a specific IT technology has its own characteristics and specific
elements and diagrams. These extensions facilitate the modeling process and are tailored
to relevant development and architecture areas. The lack of a UML extension for RPA
technology was the basis for starting research in this area.



Electronics 2024, 13, 769

8 of 20

3. Proposed UMLRPAsec Extension

In this research, the choice of diagrams for designing RPA systems with security
requirements was based on two main aspects: describing system components and defining
possible states when threats are detected. The class diagram and the activity diagram
were found to be the most appropriate. The class diagram is useful for defining system
components and their relationships, including security components like authentication and
authorization, while the activity diagram helps to represent the different states the system
can be in, including security-related states such as authorized and unauthorized access.
Other diagrams could be important in the design of RPA as well and cover other aspects
that are less related to information security and can be one of the stages of a future research.

Further research could focus on developing additional RPA-specific diagrams, which
could be a valuable step for future exploration in this field. The proposed UMLRPAsec
extension includes RPA and RPA security-related activity and class diagrams, specific
stereotypes, and a UML metamodel that are described below.

3.1. UMLRPAsec Class Diagram

A class diagram allows for organizing the logic and structure of an RPA robot. Classes
represent various components and modules of a robot and define their properties and
methods. This helps to differentiate the functionality and control of different parts of the
robot, making the system easier to understand and maintain. A class diagram provides a
visual representation of the architecture and components of an RPA robot. This makes it
easier to understand the system and make the necessary changes.

From a security point of view, constructing a UMLsec class diagram when creating
an RPA robot allows you to describe the structure of the RPA robot and define the classes,
their properties and methods, as well as the relationships between them. This gives a clear
picture of how the different components of the robot interact with each other. Also, the
UMLsec class diagram allows you to take into account security aspects when designing
an RPA robot. It can help identify classes that require special security measures and
describe the appropriate security measures. This is important because RPA robots can
access sensitive data and perform mission-critical operations. The proposed class diagram
for RPA can be seen in Figure 1.

Role

+role +role
+ roleld : string
assigns * | + roleName : string 0.1
+ getRoleld()
+ getRoleName()
has
0.1
Security_manager User
= - userld : string
= uSlel'S St rng + user | - userName : string
- roles - stnng > - password : string
+ addUser() 1 manages '~" | - role : string
+ removelser() + 0.1
authenticate
+ addUserRole{) + setUserNam(tz.()
+ removeUserRole() + setPassword()
+ getUser() + setRole()

+ security_manager | 0.1

interacts

0.1

Robot_RPA

RPA_System

- robotld : string
- username : string
- password : string

- robots : string
- processes : string

Process

+ getRobotld(): string
+ setPassword()
+ authenticate()

+ authenticate()
+ authorize()

+ getAccessLevel()

+robot_RPA - Security_manager : string
+ addRobot() + process | ~ g;gggz:ﬁanigmgtrmg + access_level Access_level
& Robot - .
contains . ;’g’:ﬁctg 0 01 #| -accessLevel :string [0 1 has 7 Il
+ addProcess() executes I Processid() + getlevel()
+ removeProcess() + getProcessName()

Figure 1. UMLsec class diagram for RPA.

On this diagram, different classes and relationships between them related to RPA
robot security are presented.

Rpa_System: This class represents the RPA system as a whole. It contains a list of
robots, a list of processes, and a security_manager object, which is responsible for authen-



Electronics 2024, 13, 769

9 of 20

ticating and authorizing users in the system. The class offers methods for adding and
removing robots, adding and removing processes, authenticating users, and authorizing
their access to processes.

Robot_rpa: This class represents a robot in an RPA system. It has robot_ID, username,
and password attributes. The class provides methods for getting the robot’s ID, authenticat-
ing the robot, and setting its password.

Process: This class represents a process in an RPA system. It has process_Id, pro-
cess_name, and access_level attributes. The class provides methods to obtain the process ID,
name, and access level.

Security_manager: This class is responsible for managing users and roles in the RPA
system. It has users and roles attributes. The class offers methods for adding and removing
users and for adding and removing user roles.

User: This class represents a user in the RPA system. It has userID, username, and
password attributes. The class provides methods for obtaining the user ID and name and
setting the user’s password.

Role: This class represents a role in the RPA system. It has role_Id and role_name
attributes. The class provides methods to obtain the role ID and name.

Access_level: This class represents the access level of a process in the RPA system. It
contains the level attribute—the access level. The class provides a method to obtain the
access level.

The diagram uses the following element visibility parameters:

private (private, available only inside the class) - set by the “minus” symbol (-);

public (public, available to all) - specified by the “plus” (+) symbol.

The following relationships were defined:

The relationship between Security_manager and Role: “assigns”.

Relationship between Security_manager and User: “manages”.

Relationship between RPA_System and Security_manager: “interacts”.

Relationship between RPA_System and Robot_RPA: “contains”.

Relationship between RPA_ System and Process: “executes”.

Relationship between Process and Access_level: “has”.

Relationship between User and Role: “has”.

In addition, the association has multiplicity:

“1” to “*”- 1 to many.

“0..1” to “*”- 0 or 1 to many.

“0.1” to “1”-0or1to 1.

“0..1” to “*”- 0 or 1 to many.

“1” to “1..*”-1 to 1 or many.

“0.1”t0 “0..1”-0or 1 to 0 orl.

The provided list of classes and relations is not finite and can be extended depending
on the specific security and project requirements and project features. The diagram can be
extended and adapted to specific needs.

3.2. UMLRPAsec Activity Diagram

Activity diagrams show the workflow from a start point to the finish point detailing
the many decision paths that exist in the progression of events contained in the activity. For
a clear example of state transition, a fragment, presenting the beginning of work with the
robot, was chosen (Figure 2).



Electronics 2024, 13, 769

10 of 20

Authentication
Unsuccess
O %[Stahe :Unathorize d_accessj

Success

Detected <>

l Undetected

State: Incorrect_data

[ Execution_of_task/data_processing j

@
Figure 2. UMLsec activity diagram for RPA.

START: This is the initial state where the automated process begins.

Login: The robot performs an authentication process to gain access to the system or
application where the data used by the process are stored.

Authentication: In this state, the robot performs identification and authentication for
further authorization. Only properly authenticated robots can access data.

Data_access: After successful authentication, the robot gains access to the data neces-
sary to complete the task. It is important to ensure access control so that only authorized
robots have access to the desired data.

Incorrect_data: If errors or inconsistencies are detected in the data, the robot enters
this state to process and correct the problems.

State: Unauthorized_access: The robot enters this state if the robot has gained unau-
thorized access or a security violation is detected. This situation could be caused by, for
example, the unauthorized use of credentials or mismatched access rights.

Data_processing/Execution_of_task: The robot processes the received data, performs
tasks, and interacts with the system or application. The robot performs planned actions
and tasks using the processed data.

END: The robot enters this state once the task is completed. Actions to clear data, save
results, or other final operations can be performed here.

This RPA security activity diagram presents a general concept that can be tailored to the
specific needs and requirements of an RPA project. The context and internal security policies
of a specific organization must be taken into account when designing and implementing
secure automated RPA processes.

3.3. Stereotypes for RPA

The UMLsec was initially proposed in the article “UMLsec: A UML Profile for Secure
Systems Development” by Jan Jurjens [6]. It introduced the list of security stereotypes that
can be considered as fundamental ones for UMLsec, followed by a description of them:
“Internet, encrypted, LAN, wire, smart card, POS device, issuer node, secure links, secrecy,
integrity, high, secure, dependency, critical, no down-flow, no up-flow, data, security fair
exchange, provable, guarded, access guarded”. After reviewing this list, it was decided to
create our own stereotypes specific to the RPA domain. There was no overlapping between
original UMLsec stereotypes and the newly proposed.

To model the security of RPA robots using UMLsec, we must define specific stereotypes
that represent security concepts specific to that domain.



Electronics 2024, 13, 769

11 of 20

1. <<robot>>: This stereotype can be applied to a class representing an RPA robot. It
may have security-related properties such as access level, authentication rules, or valid
operations that the robot can handle.

2. <<securitycontrol>>: This stereotype can be applied to a class or element representing
security controls in an RPA robot. It can have properties that define types of controls, such
as encryption, authentication, or security auditing. This stereotype can also be used to
highlight relevant elements in class diagrams and sequence diagrams.

3. <<threat>>: This stereotype can be applied to a class representing potential security
threats that an RPA robot might encounter. It can be used to identify and model different
types of threat such as malware, infrastructure attacks, or privacy threats.

4. <<securitypolicy>>: This stereotype can be applied to a class that represents a
security policy that defines the rules and restrictions that apply to RPA robots. It may
have properties related to security settings, such as access settings, security templates, or
authentication requirements.

5. <<securityrequirement>>: This stereotype can be applied to a class representing a
security requirement for an RPA robot. It may include properties such as a requirement
description, severity classification, or due date. This stereotype helps to establish clear
security requirements for RPA robot development.

6. <<securityaudit>>: This stereotype can be applied to a class representing a security
audit for an RPA robot. It may contain properties that define audit frequency, security check
methods, and reporting. This stereotype allows us to model the security audit process for
an RPA robot.

7. <<sensitivedata>>: This stereotype can be applied to a class or attribute representing
confidential or sensitive information that is processed by an RPA robot. It may include prop-
erties that define the level of confidentiality, encryption mechanisms, or access requirements
for these data.

8. <<accesscontrol>>: This stereotype can be applied to a class or element that represents
the access control mechanisms used in an RPA robot. It may include properties that define
access level, user roles and rights, or the grouping of access to certain robot functionality.

9. <<incident>>: This stereotype can be applied to a class representing a security inci-
dent that has occurred with an RPA robot. It may contain properties such as incident type,
description, date and time, and actions taken to respond to the incident. This stereotype
helps us to track and manage security incidents related to the RPA robot.

10. <<securityprotocol>>: This stereotype can be applied to a class representing the
security protocol used by an RPA robot. It may include properties that define the encryption
algorithms used, authentication mechanisms, and data integrity methods. This stereotype
allows for modeling and managing secure communication protocols for the RPA robot.

11. <<wulnerability>>: This stereotype can be applied to a class representing a security
vulnerability associated with an RPA robot. It may contain properties such as vulnerability
type, description, and recommended mitigation measures. This stereotype helps us to
identify and manage security vulnerabilities in RPA robots.

The use of these stereotypes in RPA robot security modeling is intended to create a
clear and structured security model that reflects the specific requirements and security
mechanisms of this specific domain.

3.4. RPA Metamodel

Another tool for defining the structure and connections between the various com-
ponents of an RPA robot can be a metamodel for RPA. It allows the expression of basic
concepts, abstractions, and classes that make up a robot, as well as their relationships and
interactions. This definition of structure and connections allows a better understanding of
the system and its components.

The UML security profile for RPA is an extension of the standard UML modeling
language designed to model security aspects in the context of developing and operating
RPA robots. This profile adds new elements, relationships, and stereotypes specific to RPA



Electronics 2024, 13, 769

12 of 20

security to provide a more complete view of security requirements, policies, vulnerabilities,

and procedures in the context of a robotic process.
The presented metamodel (Figure 3) is constructed using some of the previously

proposed stereotypes.

s L
F——— | stereotype |
| stereotype | <<robot>> s i ey RPA_Control
<<sensitivedata>> —_———— stereotype —— -
— i — | <<securitycontrol>> F———— Activity_isolation)
rRPA Platform ) | L Activity_monitoring()
Low-code_implementation_model() [
Multi-factor_authentication()
User No-code_implementation_model()
RPA_Agent RPA_Robot Using_the_Orchestrator()
Userﬁrole_() " -Administrator() -Data() F————n
Access_right() -Developer() -Captcha() stereotype
-Business_analyst() -Sender() | <<incident>> |
-Recipient() L—— — -
+Separation_of_roles() +Program_launch() mitigate
+Data_storage_secirity() +Enter_captcha()
+Data_export()
+Data_import() RPA_Violation
+Send_mail()
Type()
Degree_of_danger()
RPA_Orchestrator i
_ RPA_Studo modifies
-Logging() leadsTo
-Schedule() ‘gf“;()t o
-Report() -otart_as
-End_task() < arm RPA_Threats
-Document() S
+Robot_tracking() -Solution() Unencrypted_bot_data()
+Scheduled_launch() Malware() <
+Logging_robot_actions() +OpenDocument() Unathorize_access()
+Generating_a_report() +Compare_data() Data_leakage() o
+Sending_error_notifications() +Send_e-mail() r stereotype 0
+Conditions() |
. <<threat>>
+Main_task() affects —_——— 4
+Additional_task() \l/
+Confirmations()
+Creating_a_script() External_systems:
Database/external_resource/OS
r— "
RPA_Property stereotype J_I— Data()_ . . .
— <sensitivedatal> Orggplzatlon_conflguratlon()
Fr—————n Criticality() L — — — 4 Additional_App()
L stereotype )_r Sensitivity()
<securitypolicy>: Value() impro
L= Zero_trust_principle() onsid
RPA_Requirement
————— |
stereotype . o e Robot_Security
| <<securitypolicy, | Enfog:mg_PAM_Polmc() stereotype
[securityrequiremen>>| OLP( <<securityaudit, | Access_control)
Encryption_mechanisms()

| securityprotocol,

}—j— Electronic_security_certificates()

accesscontrol, 0 C
| securitycontrol>> | Security_provider()
L — — — — a1 J

baseOn

Figure 3. UML metamodel for RPA.

User: This class represents the user of the RPA system and contains information about
the user’s role, access rights, and other attributes.

Robot_Security: This class represents a security service provider that provides authenti-
cation, authorization, and encryption functions and can be integrated with the RPA robot
to ensure secure operation.

RPA_Control: This class represents the security controls that are applied to protect the
RPA robot. This may be an authentication mechanism, data encryption, integrity control,
and other security techniques.

RPA_Violation: This class represents security breaches that can occur in an RPA system
and contains information about the type of violation and danger level.

RPA_Requirement: This class represents the security requirements that must be consid-
ered when designing and developing RPA robot. This includes requirements for authenti-
cation, authorization, encryption, and other security aspects.

RPA_threats: This class represents possible security threats that an RPA robot might
encounter.

RPA_Property: This class represents the basic properties for building a secure robot.

External sources: This OS class represents possible third-party resources that can

interact with robot components.



Electronics 2024, 13, 769

13 of 20

The following four classes are included in box RPA-Platform:

RPA_Studio—the space dedicated to process design. It describes the actions that must
be performed to achieve the result, e.g., open a document, compare data for the past day,
and send a report to a specified email. The list of processes includes conditions, main and
auxiliary tasks, confirmations, and other elements.

RPA_Robot—a performer acting in accordance with the given algorithm. It launches
the program, enters captcha, exports data, etc.

RPA_Orchestrator—one of the most important components. It is an application for
administering virtual employees, which monitors the work of all robots, since RPA technol-
ogy is designed in such a way that one robot can perform several processes, but large-scale
automation in large enterprises requires hundreds and thousands of robots. Orchestrator
creates an effective simultaneous operation of all robots, clearly managing and monitoring
the work of each. Orchestrator is also used to distribute tasks among robots, track their
completion, and flexibly build business processes. Orchestrator is suitable for all employ-
ees, as it involves no-code development, where processes are organized in the form of
blocks. It is also able to review robot action logs, launch robots according to a schedule,
in turn, or on a trigger, generate reports, and send notifications about failures and other
emergency situations.

RPA_Agent is a link between the control application (Orchestrator or similar) and the robot.

On the RPA platform, to differentiate rights to perform various actions, users are divided
into groups. There are three default roles: administrator, business analyst, and developer.

The agent contains data storage and provides access to it in a certain sequence. It also
contains schedule templates for setting up software bot launches.

The list of processes contains conditions, auxiliary and main tasks, confirmations,
and other elements. A special block ensures sending http requests to obtain data from
the information base (archive). Monitoring occurs by performing an audit, which allows
recording all log actions in the Orchestrator.

The rationale behind the metamodel is presented in Table 2:

Table 2. Metamodel’s properties.

Property Class Dependent Class
Use User RPA Platform
Improve Robot_Security RPA Platform
Harms RPA_Threats RPA Platform
Mitigate RPA_Control RPA_Violation
Modifes RPA_Control RPA_Threats
External_systems:
Affects RPA_Threats Database/ external}:resources /OS
LeadsTo RPA_Violation RPA_Threats
BaseOn Robot_Security RPA_Requirement
Consider Robot_Security Robot_Property

The metamodel uses the following element visibility parameters:
private (private, available only inside the class) - set by the "minus" symbol (-);
public (public, available to all) - specified by the "plus" (+) symbol.

4. Results and Discussion

The experimental evaluation of the proposed extension contained three main steps:
model verification using an automatic tool for identifying inconsistencies between model
elements, violations of the general rules of modeling UML, inconsistencies between types
of attributes and operations, inadmissible dependencies between model elements, incorrect
use of stereotypes and attributes of UML element; automatic code generation; and expert
evaluation in order to ensure practical applicability.



Electronics 2024, 13, 769

14 of 20

4.1. UMLsec Model Verification

UMLsec model verification is the process of verifying models created using UMLsec,
a formal metamodel for modeling system security. Its main purpose is to confirm the
correctness and consistency of the model. It helps to ensure the quality and correctness
of system modeling and prevents problems and errors in the further process of system
development and operation.

Verification helps to identify errors, inconsistencies, and contradictions in the model,
such as insufficient or redundant connections between model elements, incorrect arrange-
ment of element. The process may include removing redundant elements, merging, or
redistributing elements to improve the efficiency and simplicity of the model.

Several tools for automatic verification have been considered, the main purpose of
which is to find only the main specific diagramming errors, without guaranteeing the
absence of others. There are several widely used tools for the verification or validation of
UML models:

1. UMLetis a free tool for creating and verifying UML diagrams. It provides the ability to
check the syntax and semantics of diagrams, as well as automatic error detection [18].

2. Sparx Systems Enterprise Architect is a commercial modeling and development tool
that supports the verification and model checking of UML models. It provides the
ability to check the syntax, semantics, and integrity of models, as well as the possibility
to automatically generate documentation and code from models [19].

3. Modelio is an integrated development and modeling environment that provides
verification and model checking capabilities for UML models. It supports various
verification techniques, such as static code analysis and model analysis [20].

Taking into account the scope functionality, the Modelio 5.3 tool was chosen as the
verification tool. The automatic verification of UML models in Modelio 5.3 is performed
for a number of purposes, including the following:

1. Checking the syntactic correctness of the model: Automatic auditing helps to detect
and correct errors in the modeling, such as the incorrect use of UML elements, incorrect
communication between elements, and incorrect inheritance.

2. Detection of model deficiencies: Automated auditing can help in finding flaws in
the modeling, such as missing or incorrect extraction of entities, incompleteness, or
inconsistency in the description of interactions between elements.

3. Support modeling standards compliance: Automated auditing can verify that models
comply with a specific modeling standard or set of rules, such as a UML standard or
organizational standards.

4.  Increased modeling quality: Automatic auditing helps to detect and eliminate flaws
and errors in modeling, which leads to improved model quality.

The inspection using the tool has shown three errors and one warning related to the
RPA_System class and connections between classes. The types of errors are presented in Table 3.

Table 3. Identified error types at verification stage.

Error Description

R1980 The Attributes and AssociationEnds of a Classifier represent variables that can be
identified by their names, so they must have a unique name in that classifier.
A composition is a strong association that implies that a model element (the

R1450 composite) is responsible for the life cycle of another model element (the part).
Therefore, an instance of the part element cannot be linked to more than one
instance of the composite element.
The Attributes and AssociationEnds of a Classifier must have a unique name in that

R1990 Classifier. Furthermore, since when inheriting from a Classifier, some of its properties

are inherited as well, the name must be unique in the classifier but also in all
its parents.




Electronics 2024, 13, 769

15 of 20

The diagram before its verification is shown in Figure 4.

4

NENC

= Class model <«

rpa Class diagram X | State Machine State Machine diagram |

Role

+ roleld : string
+ rolefame : string

eaqa

— 1+ getRolsld()
)] E a: + getRoleNamel)
+ role.
o S = 1.
Security_manger
o— — users - sring T er
- roles : string User
Mo p + addUser() 1% - userd: sting
+ removeliser() - userName : string
= + adclserRale() - password : stiing
B + removelserRols() - role : string
= + getUser() + authenticate()
= = = + setUserName()
1 + setPassword()
@ | + selRole()
(= Component m... + secutty_manager | g 1
(= Instance m.. —- RPA_System
Robot_RPA 1
. . - robots - string
B - robotid - string. - processes - sting Process
- fusermms 2 s:l_lrg + robots - security_manager : string
= = AT S < + addRobot() +processes - processid: string Access_level
+ getRobotld): string + removeRobot() - processName : string B
5 + setPassword() + getRabot() 01 1= -accessLevel - skring - level: string
+ autherticate() + addProcess() + getProcessid) + getLevel()
+ removeProcess() + getProcessName()
. + autherticate() + gelccessLevel()
(= Imports links + authorize()

= Information Fl...

= Common

(= Free drawing <
E Dutline“:i Pmpenies‘ Diagrams‘ C.’ Links Edimr“g Audit Ig Script|

Severity Rule  Description

w o Error (3)
@ RPA_System R1980 The Classifier ‘RPA_System’ has at least two Attributes or two AssociationEnds with the same name: robots’.
#— +processes: R1450 An AssociationEnd owned by "Process’ is a composition but its opposite ends maximum multiplicity is not 1.
#— +user Secur R1450 An AssociationEnd owned by "User' is a composition but its opposite ends maximum multiplicity is not 1.

~ Warning (1)
E RPA_System R1990 The Classifier ‘RPA_System' has a duplicated name from its inherited Attributes and Roles : robots

© Advice

Figure 4. RPA class diagram before verification.

Further, the identified violations were eliminated. The results of the verification of the
Class diagram and Activity diagram are shown in Figures 5 and 6, respectively.

- @ + role [ ':r: +role
= + 1 s
& Class model « assigns *| + roleName : string 0.1
] a + getRokeld)
+ getRoleName()
00 25 0.1 has
Security_manager issrd
< *> < userld : string
- users : string + user | - userName : !
PN I - roles - string > - password - string
+ addUser() 1 manages " | - role : string ;
T 2 axd + removeUser() Faenice 0
¥ addUserR ole() + semsem:vg()
T ] + removeUserRole() + setPassword()
: 1 = Sl adnll) + setRole()
S + security_manager 0.1
interacts
0.1
Robot_RPA REAS St
- robots : string
- robotd : string processes - string =
:“m :m + robot_RPA - security_manager : string
[=Ye m.. pes: < + addRobot() + process | = Processkd : string + access_level | Access_level
> :Wé BR800 contains k t0 B avel i) - level : string
= Instance model setPassword() + getRobot() 0.1 access| sting  [0.1 nes 1
" + authenticate() + addProcess() exeCUes [ SetProcessid() + getLevel)
& Imports links + removeProcess() + getProcessName()
+ getAcces
& Information Fl... + authorize() . : et
& Common

= Free drawing <

%, Outline 1 Properties Diagrams C? Links Editor IQ Audit X Script

Severity

€ Error (0)

Warning (0)
© Advice (0)

Rule Description

Figure 5. RPA class diagram after verification.



Electronics 2024, 13, 769

16 of 20

~
=
e O

& States and t.

Login \
® X SRR
R | [ Authentication J
L X S| fesuenes N
1 Sme:Unalhorlzed_.\ccessJ
\
® |\ Sucess
& Common \( Data_access |
Y {<} N
« )
, @ L4 ) Detected
& Drawings State: Incorrect_data } <
A B B \ T / 1 Undetected
] ® > [
[ Execution_of_tasiidata_processing
Outline _<| Properties | [%] Diagrams C? Links Editor .eAudwt X Script
Severity Rule Description
Q Error (0)

Warning (0)
€9 Advice (0)

Figure 6. RPA activity diagram after verification.

The automatic verification of UML models increased the efficiency and quality of
the modeling process but does not guarantee the consistency and accuracy of the models.
Therefore, additional verification is needed in order to ensure that model does not contain
logical mistakes.

Additional expert evaluation of the model was performed. The questionnaire was
given to seven experts that have practical experience in the field of information security
(security architects (2), developers (2), and academic staff (3)). All interviewed experts have
higher technical education with a specialization related to information technology. Four
out of seven interviewed experts have certificates from information security centers. The
average experience of the experts is 5-6 years. Three out of seven experts have practical or
academic experience with RPA systems. As with all expert evaluation, it can be considered
subjective. Still, answers have shown that five out of seven interviewees considered the
UMLsec extension of RPA as appropriate. The evaluation methodology was the following;:
At first, the familiarization of experts with UMLsec extension of RPA with the provided
extensions was performed. After that, experts had to provide evaluation according to the
following criteria:

1.  Functionality: The evaluation of how well the extensions meet the RPA needs and
what additional functionality they provide.

2. Security: An assessment of the level of security provided by the extensions and their
ability to protect RPA data and processes.

3.  Integration: An assessment of how well the extensions integrate with existing RPA
systems and other tools.

4.  Extensibility: An assessment of whether the proposed extensions can be modified
based on the need of a particular project.

5. Performance: The evaluation of the impact of extensions on RPA process performance
and efficiency.

6.  Support and documentation: The evaluation of the quality of support and documen-
tation provided by extension developers.

A summary table with the results of the peer review is presented in Table 4. The
number of points varied from 1 to 5, where 1 is the minimal, and 5 is the maximal value.

The results in Table 4 clearly demonstrate the acceptance of the extension by the
majority of experts that took part in evaluation.



Electronics 2024, 13, 769 17 of 20
Table 4. Results of expert evaluation.
Evaluation Criteria Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 A\‘;:lrl:alge

Functionality 4 5 5 4 5 3 3 4.1

Security 4 4 5 5 5 3 4 4.2

Integration 4 5 5 5 5 4 4 4.5

Expandability 5 5 5 5 5 5 4 4.8

Performance 5 4 4 4 4 3 3 3.8

Support and 4 4 3 4 4 3 3 35
documentation

4.2. Code Generation

Verification has proved the correctness of the model proposed. But in order to ensure
not just formal but also practical verification, it was decided to perform automatic code
generation to demonstrate that the model can be used to generate valid code.

Generating code for UML models is necessary for automatic program source code
generation on the basis of a graphical representation of the model [21]. This helps to speed
up the development process and reduce the likelihood of errors since the code generated
based on clear and unambiguous specifications defined in the UML model.

Umbrello UML Modeller [22] was chosen as a tool for automatic class code generation.
However, existing tools require the creation of a “frame” or the main structure of the project,
including classes, interfaces, connections between them, and methods. This allows for
developing a project with an already defined architecture and basic components.

According to the class diagram (Figure 1), six classes were generated: RPASystem, Seciru-
tyManager, Role, User, Proccess, and Access_level. Also, in order to demonstrate the relationships
between them, two more classes were written: Security_check and main,cs. A sample of code
fragment of the RPASystem class, where a list of robots and a list of processes is created, is
presented on Figure 7. It demonstrates the method for adding a robot.

The SecurityManager class code fragment demonstrates creating a store for users and
their passwords (Figure 8).

Figure 9 demonstrates a manually created SecurityCheck class, which has the ability to add
personal RPA code, according to a given project. It is possible to implement additional logic.

Figure 10 shows the mail class with the ability to add logic for obtaining the process
name, its ID, and the process access level.

The code generation experiment has demonstrated that a specialized tool can generate
the valid code from the diagrams created with the help of the extension proposed. No
generation issues were detected. Of course, the generated code may require further tuning
and manual logic addition, but the total development process is speed, and quality is
increased. A full description of the classes, as well as the code generated, is provided on
Github [23].

public class RpaSystem
{

private List<Robot> robots;
private List<Process> processes;

public RpaSystem()

robots = new List<Robot>();
processes = new List<Process>();

L
public void AddRobot(Robot robot)
{
robots.Add(robot);
b

Figure 7. Class RPASystem.



Electronics 2024, 13, 769 18 of 20

public class SecurityManager

{

private Dictionary<string, List<string>> users; // Storage of users and their roles

public SecurityManager()
{

b

// Method for adding a user
public void add_user(string username)

users = new Dictionary<string, List<string>>();

{
if (lusers.ContainsKey(username))
{
users.Add(username, new List<string>());
Console.WriteLine("User '{@}' add.", username);
}
else
Console.WriteLine("User '{@}' is exists.", username);
}
h

Figure 8. Class SecurityManager.

class SecurityCheck

{
static void Main(string[] args)
{
// Your RPA Code
//
// Malicious activity check
if (CheckForMaliciousActions())
Console.Writeline("Maliciocus activity detected! The program will be stopped.");
// You can implement additional logic here, such as sending a security alert.
return;
}
// If the program has passed the security check, the RPA action can be performed
Console.WritelLine("The RPA action is executed...");
//
Console.WritelLine("The RPA action succeeded!");
Console.Readline();
¥

Figure 9. Class SecurityCheck.

using System;

// The Process class represents the execution of processes
public class Process

{
public void CheckProcess()
public void CheckProcessID()
{
//The logic for obtaining the process ID can be implemented here
public void CheckProcessName()
{
//The logic for getting the process name can be implemented here
}
public void CheckAccesslLevel()
{
//The logic for getting the process access level can be implemented here
}
}
b

Figure 10. Class Main.cs.



Electronics 2024, 13, 769 19 of 20

5. Conclusions

The scientific and technical literature analysis has shown that the increasing popularity
of RPA technology creates the demand for formalized RPA system modeling methods,
which would include domain-specific security requirements on all life cycle stages. The
most suitable modeling tool would be the UMLsec extension of the UML language, which
allows for the creation of domain-specific extensions. Unfortunately, at the moment, there
are no RPA-specific UMLsec extensions.

The UMLRPAsec extension, which includes RPA and RPA security related activity and
class diagrams, specific stereotypes, and UML metamodel, was proposed, which is based
on information from OntoSecRPA ontology.

The creation of a UML metamodel for RPA made it possible to standardize and im-
prove the processes of the development and analysis of robots from a security point of view,
which can contribute to a more efficient and high-quality use of RPA. Stereotypes allowed
us to describe domain-specific security requirements, both on technical and organizational
levels. The RPA class UMLsec diagram made it possible to visualize the main components
and the relationships between them, while activity diagram can be useful to analyze how
the system reacts to external events and how it changes its state.

The proposed extension UMLRPAsec verification included automatic formal verifi-
cation with the help of the Modelio tool and automatic code generation from the sample
extension class diagrams with Umbrello UML Modeller. Formal verification helped in
identifying and correcting several non-critical mistakes, while code generation allowed the
creation of class framework without any noticeable issues. Verification has demonstrated
the proposed model correctness both on formal and practical levels. UMLRPAsec can
be seen as an effective tool for automating and securing RPA solutions on several life
cycle stages.

Author Contributions: Conceptualization, N.G.; methodology, N.G.; validation, A.K.; formal analysis,
N.G,; investigation, A.K.; writing—original draft preparation, A.K.; writing—review and editing,
N.G,; visualization, A K.; supervision, N.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available and can be
found here: Available online: https:/ /github.com/oleferovich/UML-sec-class-diagram (accessed on
20 November 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kurylets, A.; Goranin, N. Security Ontology OntoSecRPA for Robotic Process Automation Domain. Appl. Sci. 2023, 13, 5568.
[CrossRef]

2. Jovanovi¢, S.Z.; Purig, ].S,; éibalija, T.V. Robotic process automation: Overview and opportunities. Int. J. Adv. Qual. 2018, 46.

3. Costa, S.A.S.; Mamede, H.S.; Silva, M.M. Robotic Process Automation (RPA) adoption: A systematic literature review. Eng.
Manag. Prod. Serv. 2022, 14, 1-12. [CrossRef]

4. Kosi, F. Robotic Process Automation (RPA) and Security. Master’s Thesis, Mercy College, New York, NY, USA, 2019.

5. Jirjens, J. UMLsec: Extending UML for secure systems development. In Proceedings of the 5th International Conference on the
Unified Modeling Language, Dresden, Germany, 30 September—4 October 2002; Volume 2460, pp. 412-425.

6.  Jirjens, J. Secure Systems Development with UML; Springer: Berlin/Heidelberg, Germany, 2005.

7. Enriquez, ].G.; Jiménez-Ramirez, A.; Dominguez-Mayo, FJ.; Garcia-Garcia, J.A. Robotic Process Automation: A Scientific and
Industrial Systematic Mapping Study. IEEE Access 2020, 8, 39113-39129. [CrossRef]

8. Laufer, J.; Mann, Z.A.; Metzger, A. Modelling Data Protection in Fog Computing Systems using UMLsec and SysML-Sec. In
Proceedings of the 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C), Fukuoka, Japan, 10-15 October 2021.

9. Ozkaya, M.; Erata, F. A survey on the practical use of UML for different software architecture viewpoints. Inf. Softw. Technol. 2020,

121, 106275. [CrossRef]


https://github.com/oleferovich/UML-sec-class-diagram
https://doi.org/10.3390/app13095568
https://doi.org/10.2478/emj-2022-0012
https://doi.org/10.1109/ACCESS.2020.2974934
https://doi.org/10.1016/j.infsof.2020.106275

Electronics 2024, 13, 769 20 of 20

10.

11.

12.

13.
14.

15.

16.
17.

18.
19.
20.

21.
22.
23.

Intuitive Visual Modeling for All UML Diagrams. Available online: https://www.altova.com/umodel#rev_engineer/ (accessed
on 20 September 2023).

Robles-Ramirez, D.A.; Escamilla-Ambrosio, PJ.; Tryfonas, T. IoTsc: UML Extension for Internet of Things Systems Security
Modelling. In Proceedings of the 2017 International Conference on Mechatronics, Electronics and Automotive Engineering
(ICMEAE), Cuernavaca, Mexico, 21-24 November 2017; pp. 151-156.

Farias, K.; de Oliveira Cavalcante, T.; Gongales, L.J.; Bischoff, V. UML2Merge: A UML extension for model merging. IET Softw.
2019, 13, 575-586. [CrossRef]

Kothamasu, D.; Jiang, Z. Web Application Development Using UML; West Chester University: West Chester, PA, USA, 2017.
Hennicker, R.; Koch, N. Systematic Design of Web Applications with UML. In Unified Modeling Language: Systems Analysis, Design
and Development Issues; IGI Global: Hershey, PA, USA, 2001.

Bergmayr, A.; Troya Castilla, J.; Neubauer, P.; Wimmer, M.; Kappel, G. UML-based Cloud Application Modeling with Libraries,
Profiles, and Templates. In Proceedings of the CloudMDE 2014: 2nd International Workshop on Model-Driven Engineering on
and for the Cloud Co-Located with the 17th International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2014), Valencia, Spain, 30 September 2014.

Kim, D.K. Development of Mobile Cloud Applications using UML. Int. J. Electr. Comput. Eng. 2018, 8, 596-604. [CrossRef]
Ordonez, C.; Al-Amin, S.T.; Bellatreche, L. An ER-Flow Diagram for Big Data. In Proceedings of the 2020 IEEE International
Conference on Big Data (Big Data), Atlanta, GA, USA, 10-13 December 2020.

Free UML Tool for Fast UML Diagrams. Available online: https://www.umlet.com/ (accessed on 11 November 2023).

Sparx Systems Enterprise Architect. Available online: https://sparxsystems.com/products/ea/ (accessed on 11 November 2023).
Modelio Open Source—UML and BPMN Free Modeling Tool. Available online: https://www.modelio.org/index.htm/ (accessed
on 15 November 2023).

Mukhtar, M.I,; Galadanci, B.S. Automatic code generation from UML diagrams: The state-of-the-art. Sci. World ]. 2018, 13, 47-60.
Umbrello UML Modeller. Available online: https:/ /sourceforge.net/projects/uml/ (accessed on 20 November 2023).

Github. Available online: https://github.com/oleferovich/UML-sec-class-diagram (accessed on 15 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://www.altova.com/umodel#rev_engineer/
https://doi.org/10.1049/iet-sen.2018.5104
https://doi.org/10.11591/ijece.v8i1.pp596-604
https://www.umlet.com/
https://sparxsystems.com/products/ea/
https://www.modelio.org/index.htm/
https://sourceforge.net/projects/uml/
https://github.com/oleferovich/UML-sec-class-diagram

	Introduction 
	Prior and Related Work 
	General RPA Development Process 
	Role and Perspectives of UML and UMLsec in RPA Development 
	Main Aspects of RPA Security 
	Process of UMLsec Extention for RPA Development 
	Review of Existing UMLsec Extension in Different Domain Areas 

	Proposed UMLRPAsec Extension 
	UMLRPAsec Class Diagram 
	UMLRPAsec Activity Diagram 
	Stereotypes for RPA 
	RPA Metamodel 

	Results and Discussion 
	UMLsec Model Verification 
	Code Generation 

	Conclusions 
	References

