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2 iSowa.io Piotr Sowa, ul. Kościuszki 36d/15, 32-020 Wieliczka, Poland; piotr@isowa.io
3 Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology,

ul. Akademicka 16, 44-100 Gliwice, Poland; mr306081@student.polsl.pl
* Correspondence: marcin.kucharczyk@polsl.pl

Abstract: A physical model of a wireless transmission channel in the time domain usually consists of
the main propagation path and only a few reflections. The reasonable assumptions made about the
channel model can improve its parameters’ estimation by a greedy OFDM (Orthogonal Frequency
Division Multiplexing) equalizer. The equalizer works flawlessly if delays between propagation paths
are in the sampling grid. Otherwise, the channel impulse response loses its compressible characteristic
and the number of coefficients to find increases. It is possible to get back to the simple channel model
by data oversampling. The paper describes how the above idea helps the OMP (Orthogonal Matching
Pursuit) algorithm estimate channel coefficients. The authors analyze the oversampling algorithm
on the one hand to assess the influence of filtering function and signal resolution on the quality of
the channel impulse response reconstruction. On the other hand, the abilities of the OMP algorithm
are analyzed to distinguish components of the oversampled signal. Based on these analyses, we
proposed modifications to the compressible channel’s impulse response reconstruction algorithm to
minimize the number of transmission errors. A distinction was made between the filters used in the
OMP search and channel reconstruction stages before calculating equalizer coefficients. Additionally,
the results of the search stage were considered as elements within the groups.

Keywords: OFDM; compressed sensing; compressible channel; oversampling; channel estimation

1. Motivation

The problem of channel equalization in OFDM (Orthogonal Frequency Division Multi-
plexing) transmission systems has been extensively discussed. One of the most straight-
forward solutions involves the use of an independent one-tap equalizer for each OFDM
subchannel, calculated using the zero-forcing (ZF) algorithm based on the received pilot
frame [1,2]. This approach is straightforward and practical, particularly when combined
with the estimation of the SNR (Signal-to-Noise Ratio) in the equalization algorithm MMSE
(Minimum Mean Square Error) [3,4]. More advanced equalization techniques can be found
in the literature [5–7], but the most popular methods rely on prior estimation of channel
characteristics in the frequency or time domain [8–11].

The portable transmission system based on SDR (Software-Defined Radio), which
constitutes a crucial aspect of the research discussed in this paper, incorporates the MMSE
algorithm. The primary objective is to improve the outcome of the equalization without
requiring a complete system redesign. To achieve this, a refinement of channel estimation is
proposed, taking advantage of the findings obtained from analyses of transmission channel

Electronics 2024, 13, 843. https://doi.org/10.3390/electronics13050843 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13050843
https://doi.org/10.3390/electronics13050843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8867-0882
https://orcid.org/0000-0001-5323-735X
https://orcid.org/0000-0002-9409-8007
https://orcid.org/0000-0003-3462-0657
https://orcid.org/0000-0001-5516-9733
https://orcid.org/0000-0002-2627-6174
https://orcid.org/0000-0002-3640-263X
https://orcid.org/0000-0002-1275-4147
https://orcid.org/0000-0002-6235-1397
https://orcid.org/0000-0002-2243-397X
https://doi.org/10.3390/electronics13050843
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13050843?type=check_update&version=1


Electronics 2024, 13, 843 2 of 19

measurements. These measurements were made under actual operating conditions of
the transmission equipment. A diagram of the system for collecting data is presented in
Figure 1. More than 78,000 measurements were collected in various transmission environ-
ments, as detailed in Table 1.

Sync. Sequence 

+ Training 

Symbol (Pilots) 

in the loop

SDR 

Transmi�ng 

Module

Saving data to 

the disk

SDR 

Receiving

Module

Data analysis 

(channel 

recogni�on)

in MATLAB

Figure 1. Diagram of system for collecting data for channel recognition (with a portable receiver in
the photo).

Table 1. Information about database of measurements.

Propagation Environment Approx. Number of Measurements

Inside building 25,000

Between inside and outside of building 15,000

Outside building, in city environment 38,000

Examination of the resulting database revealed that the primary problem lies in the
presence of two closely spaced paths, leading to a significant null in the frequency response.
Consequently, the research focused on using compressive sensing methodology [12,13] to
explore the simple signal framework.

The impulse response of the two-path channel only has two coefficients that are not
zero. In the case of band-limited systems, this is only valid if the delay difference between
the paths is equal to the sampling period and if the transmitter and receiver are perfectly
synchronized. When these conditions are met, iterative compressive sensing algorithms
such as OMP (Orthogonal Matching Pursuit) [14,15] and CoSaMP (Compressive Sampling
Matching Pursuit) [16] perform well. However, if the synchronization is not perfect, the
observed channel response is the result of convolving the actual channel response (which
has a limited number of coefficients) with the baseband filter response (which is theoretically
infinite) of the transmission system [17,18].

The central concept proposed by the author is distinguishing between the actual chan-
nel response and the filtered response. This can be achieved by employing the compressive
sensing algorithm to accurately recover the delay of the actual channel paths. To achieve
this, the channel impulse response is oversampled in the equalizer [19,20], and a path
search is conducted using the OMP algorithm on a signal with a resolution higher than
the sampling frequency. The estimated impulse response of the channel is then filtered by
the baseband filter, which models the appropriate response and provides coefficients for
precise estimation of the equalizer.
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This paper aims to enhance the channel recovery mechanism mentioned above to
achieve a lower Bit Error Rate (BER) in the transmission system. We propose the following
modifications to accomplish this.

1. Instead of using the same filter parameters to search the path delay and calculate the
channel impulse response, we use different filters. One filter is used to upsample the
signal before the OMP algorithm, and another is used to downsample the signal back
to the original sampling frequency.

2. In the estimation stage of the OMP algorithm, we consider the delay values obtained
in the search stage and the nearest neighbors. This is carried out by assuming that the
actual path delay lies within that vicinity.

Furthermore, theoretical analyses are presented to justify the modifications introduced.
The simulation results of the entire system validate the effectiveness of the proposed approach.

The following section provides a more comprehensive explanation of the problem of
estimating the channel impulse response. Section 3 focuses on the compressive sensing
algorithm employed for the oversampled signal. In the following section, we aim to
estimate the error values resulting from the filters used in the transmission system and
the calculations of equalizer coefficients. This leads to the formulation of the algorithm.
Section 5 presents the simulation results of the modified transmission system with the
proposed algorithm. Finally, the last section draws some conclusions.

The notation conventions for this problem formulation involve the combination of
signals in both the time and frequency domains, as well as the incorporation of both discrete
and continuous signals. To distinguish between signals in the frequency domain and those
in the time domain, uppercase letters are used for the former and lowercase letters are used
for the latter. In the case of discrete signals, the elements of the time domain are denoted by
the index n, while the elements of the frequency domain are denoted by the index k. The
letter t typically represents continuous signals, although there are a few instances where it
represents a discrete signal with extremely high resolution that is not explicitly defined.

2. Problem Statement

This research was based on a conventional OFDM transmission system, as shown in
Figure 2. According to this scheme, the signal is transmitted and processed in the baseband.
However, upon analyzing Figure 1, it can be concluded that the actual transmission takes
place in the high-frequency band aligned with the configuration of the SDR module. This
does not affect the presented processing model, although the shaping filter recognition
problem presented later in the article also applies to this module.

The frame structure of the system included an additional OFDM symbol for channel
equalization, placed after the synchronization sequence. This symbol consisted of a pilot in
each subchannel, and the equalizer parameters were calculated entirely in the frequency
domain. The OFDM system uses K subchannels in the frequency domain for transmission,
so the same number of pilots are present in the symbol XK×1 = [X1, X2, ..., Xk, ..., XK] used
for equalization. After applying the IFFT (Inverse Fast Fourier Transform), a cyclic prefix
was added to the symbol xN×1 to create a signal vector in the time domain. This symbol
was transmitted through a channel with a finite-duration impulse response h(t) after being
converted from digital to analog. The signal received includes additive white noise n0(t). In
discrete time, the channel impulse response, shorter than the cyclic prefix, was represented
by the vector hN×1 lengthened N. The receiver filters the signal, removes the cyclic prefix,
and transforms the resulting N-element signal yN×1 into the frequency domain as YK×1
using the FFT (Fast Fourier Transform). The transmitted and received symbols are divided
in the frequency domain to estimate K one-tap equalizers, which are stored in the vector
EK×1 using the ZF algorithm [1]:

EK×1 = XK×1 ⊘ YK×1 = 1K×1 ⊘ HK×1. (1)
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Symbol ⊘ in the above formula denotes Hadamard division, so vectors are divided
element by element:

Ek =
Xk
Yk

=
1

Hk
for k = 1, 2, . . . , K. (2)

The ZF equalizer functions correctly when the actual channel impulse response length
is shorter than the length of the cyclic prefix P used by the system.
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Figure 2. Diagram of the used transmission system with OFDM (Orthogonal Frequency Division
Multiplexing) modulation.

Equation (1) does not rely on specific details about the physical characteristics of the
channel. Previous studies [10,21,22] have shown that actual transmission channels can be
accurately modeled as short FIR (Finite Impulse Response) filters, where the coefficients
represent the different paths through which the signal propagates. Based on our mea-
surements and information collected from the literature, it was determined that six paths
adequately represent the channel.

As stated previously, upon closer examination of the channel data obtained from
measurements of the transmission equipment utilized in our investigation, we observed
that the signal exhibits a prominent path in most cases. However, a significant issue
arises when the reflection from a nearby secondary path is received. This channel type,
characterized by only two closely located paths, results in a deep zero in the channel’s
frequency response, rendering the subchannels useless for transmission. However, if the
channel estimation results closely resemble its original shape, the probability of successful
error correction in the FEC (Forward Error Correction) decoder [23–25] is enhanced.

The discrete impulse response of the channel in the frequency domain, denoted as
HK×1 and obtained from (1), can be computed by applying the FFT to its time domain
counterpart. Therefore, the training data defined by the pilots in the frequency domain
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are sufficient to establish an equation that incorporates the time impulse response of the
channel, represented by hN×1.

YK×1 = XK×1 ⊙F (hN×1) = XK×1 ⊙ FK×NhN×1 (3)

or

HK×1 = F (hN×1) = FK×NhN×1, (4)

In this equation, the Hadamard product of vectors is denoted by ⊙, and the FFT
transform is represented by F . The lengths of the vectors in the frequency domain (K)
and in the time domain (N) are equal, typically determined by the size of the FFT used in
the system, which corresponds to the size of the Fourier transformation matrix, denoted
as FK×N .

If the length of the channel impulse response in the time domain is less than N, the
vector hN×1 will include elements that have a value of zero. Unknown elements of vector
HK×1 in the frequency domain (channels without pilots) lead to the removal of elements of
this vector and row in the matrix FK×N .

The channel impulse response hN×1 is the unknown value in Equations (3) and (4).
The resulting equalizer is a vector of length N, but as mentioned earlier, the channel impulse
response is considerably shorter.

The formulas above do not include the presence of noise, but in reality, noise is present
in the transmission system. Once the noise is considered, the equation that describes the
system’s operation is given by (5). In this equation, eN×1 and EK×1 represent the error
values caused by the noise.

HK×1 = FK×N(hN×1 + eN×1) = FK×NhN×1 + EK×1. (5)

2.1. FIR Filter Design

Equation (4) represents an FIR filter hN×1 with a known frequency response HK×1. The
matrix FK×N contains the base signals that represent the frequencies considered. Initially,
the length of the FIR filter is limited to the size of the cyclic prefix P. The cyclic prefix is
added to the signal to prevent intersymbol interference (ISI) and should have a length
greater than the actual impulse response of the channel h(t). Under the assumption of
proper synchronization at the receiver, the non-zero coefficients of the channel impulse
response are expected only in the first P elements of the ĥN×1 vector. Based on this
assumption, it is possible to reduce the sizes of the matrices FK×N and ĥN×1.

After reducing the size, the matrix FK×N has more rows than columns, which means
that the system of Equation (3) is overdetermined. As a result, the solution ĥN×1 can only
be an approximation. The least squares method [26] is used to find an impulse response
that minimizes the ℓ2 norm between the acquired and calculated pilots. This method does
not make any assumptions about the number of paths that make up the actual channel
impulse response h(t) [21].

2.2. Compressive Sensing

The channel impulse response h(t) is a sparse signal with a limited number of paths.
Compressive sensing algorithms aim to minimize the approximation error of the sparse
response hN×1 by finding the solution with a presumed number of non-zero coefficients.
The FFT matrix FK×N is commonly used as a sensing matrix due to its good selective
properties [13]. Equation (5) defines the sparse system. In the presence of noise in the
received signal, the optimization problem in the noisy channel can be formulated as follows,
where ϵ limits the level of noise:

min ∥hN×1∥ℓ0
subject to ∥FK×NhN×1 − HK×1∥ℓ2

≤ ϵ, (6)

The minimization of hN×1 with ℓ0-norm can be achieved using algorithms such as
OMP [14] or CoSaMP [16]. These algorithms search for the best position of the filter
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coefficients ĥN×1 and then calculate the best approximation value using the least squares
method, similar to the filter design case described earlier. If the path delays of the signal
are accurately identified, the approximated impulse response will closely resemble the
actual response.

Regrettably, both the OMP and CoSaMP algorithms require prior knowledge of the
number of coefficients to be found. The CoSaMP algorithm aims to discover a predeter-
mined number of paths that are not initially known. The basic implementation of OMP
also seeks a fixed number of paths, although alternative stopping conditions have been
proposed in the literature [18]. These conditions are based on the power of the residue
in successive iterations. A reliable stopping criterion occurs when the residue power is
less than the noise power; however, the receiver needs to estimate the noise level [27]. An
alternative approach involves comparing the power of the residue in consecutive iterations
and terminating when the value changes minimally [17,18].

This description has a flaw: the compressive detection algorithm aims to find the best
approximation of the vector hN×1, which represents the channel response rather than the
function h(t) itself. Assuming that the lags between the paths are integer multiples of the
sampling period and perfect synchronization between the transmitter and receiver, the
number of non-zero coefficients in the discrete channel impulse response hN×1 corresponds
to the actual number of channel paths h(t) (Figure 3a). However, if these conditions are not
met, the signal paths are not aligned with the grid, resulting in a higher number of non-zero
coefficients in the digital impulse response hN×1 compared to the number of channel paths
(Figure 3c). This is because the signal propagates through the limited number of tracks in
the channel h(t) and multiple processing paths in both the transmitter and receiver. The
dashed line in Figure 3 represents the additional filtering.

0

0.5

1
(a) real continuous channel impulse response (signal paths)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1
(b) discrete channel impulse response with paths in the sampling grid

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1
(c) discrete channel impulse response with paths out off the sampling grid

Figure 3. Comparison of the real impulse response of the channel and its discrete form depending on
the sampling frequency.

3. Filtered Impulse Response of Channel

To comply with regulations and prevent interference with other systems, it is necessary
to filter the signal in the transmission system into the desired frequency band. The signal
processing path includes analog and digital filters. Although the impact of these filters on



Electronics 2024, 13, 843 7 of 19

equalizer design should be considered, they are partially considered in the design of the
basic zero-forcing algorithm (1).

However, even if the receiver bandpass filter does not introduce distortion to the
signal within the desired frequency range, it alters the signal’s shape in the time domain.
The channel impulse response hN×1 in Equation (3) is no longer sparse but remains com-
pressible, as shown in Figure 3c. However, the compressive sensing algorithms mentioned
above do not yield the expected results. The main challenge lies in accurately estimating
the number of relevant channel paths [18].

One possible solution is to include band filters in the equalizer design, as described in the
model presented by [20]. This approach gives rise to the following computational problem.

YK×1 = XK×1 ⊙ FK×NSN×ThT×1. (7)

Here, the vectors XK×1 and YK×1 still represent the pilot signals transmitted and
received in the frequency domain, respectively. As a result, the receiver does not need to
perform additional measurements on the received signal. The matrix FK×N also remains
unchanged, with the number of rows corresponding to the number of channel frequencies
used in OFDM transmission and the number of columns representing the number of
coefficients in the discrete impulse response of the channel.

The vector hT×1 represents the sparse impulse response h(t) of the analog channel.
However, since the system is digital, the impulse response is a discrete signal. To ensure
accurate representation, the effective sampling frequency must be higher than that of the
D/A and A/D converters in the transmitter and receiver. The oversampling is a conceptual
operation and does not change the actual sampling frequency of the signal. In Equation (7),
the matrix SN×T is the digital FIR filter that simulates the signal processing path of the
transmission system.

At this stage, the primary advantage of the model is that the impulse response hT×1
in Equation (7) is sparse and can be estimated using one of the compressive sensing
algorithms. Further research is focused on two areas: (1) determining the oversampling
factor and the necessary density of the oversampled impulse response of the channel hT×1,
and (2) investigating the properties of the impulse response of the FIR filter SN×T and the
system in combination with compressive sensing algorithms—particularly the properties
of the modified sensing matrix, which is now the product of two matrices.

3.1. Shaping Filter

According to Eldar [28], the resampling process can be divided into three main stages:
interpolation, filtering, and decimation. Equation (7) implements the last two stages, which
involve applying a filter to the oversampled signal hT×1 to obtain the band-limited impulse
response of the channel and then reducing the number of samples to match the pilot signals.

The filter SN×T mainly represents the behavior of various components of the existing
system, such as anti-aliasing filters and internal filters in sampling devices. In the field of
channel modeling [29], the sinc() function is truncated to a specific length to approximate
an ideal bandpass filter. Its primary purpose is to filter the signal, which in this case
is the channel’s impulse response, to adjust its parameters to the operating band of the
transmission system. Another function that can be used in the model is the raised-cosine
function [20]. We will later demonstrate that the channel estimation result is improved
when the filter SN×T is correlated with the channel model, which can be achieved by using
measured parameters of the transmission system in practice.

The signal hT×1 contains FOS times more elements compared to the channel response
hN×1, which is obtained by transforming the frequency domain after calculating the pilots
in Equation (1). The oversampling factor FOS can have any theoretical value, but we restrict
it to powers of two in this paper.

When the oversampling factor is equal to one, oversampling has no effect, and the
shaping function becomes a Kronecker delta. This function has only one non-zero element,
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and the matrix SN×T becomes an identity matrix. Equation (7) returns to the base form
given by Equation (3).

3.2. Sensing Matrix

Equation (6) illustrates a compressive sensing problem, in which the measured and
detected signals are connected through the sensing matrix A:

sy = Asx + sz. (8)

Here, sy represents the measurement results, sx denotes the sparse signal to be identi-
fied, and sz represents the presence of noise.

If the sensing matrix satisfies the restricted isometry property (RIP), compressive
sensing algorithms can provide valuable results [12,13]. If matrix A satisfies order m’s RIP,
then a signal sx can be reconstructed using only an m-sparse vector. However, computing
the RIP for a given sensing matrix A is challenging, as it requires searching through all
combinations of matrix columns. The mutual coherence parameter is often used to test
the sensing matrix for sparse recovery practically [30]. For a given matrix A, the mutual
coherence is defined as the maximum absolute inner product between any two distinct
columns of A, normalized by the product of their Euclidean norms:

µ(A) = µ = max
i ̸=j

|aH
i aj|

∥ai∥ℓ2
∥aj∥ℓ2

, (9)

where ai, aj are the columns of A. A lower mutual coherence value indicates that the
columns of the sensing matrix are highly incoherent, which improves the ability of the
matrix to distinguish significant values in sparse results using greedy algorithms such as
OMP or CoSaMP. Although there is no strict threshold for the mutual coherence value in
relation to signal sparsity M, the formula

M <
1
2
( 1

µ
+ 1

)
, (10)

is sometimes used to estimate the maximum number of meaningful elements in the sparse
vector [12]. Once M sparse elements have been identified, the predictive power of match-
ing pursuit algorithms diminishes, and the previously identified indexes contain more
information than new ones. Generally, a lower mutual coherence value indicates a better
matrix for compressive sensing algorithms.

The algorithm presented in this paper utilizes a Discrete Fourier Transform (DFT)
matrix, denoted as FK×N in Equation (5), as its base matrix. The DFT matrix performs well
in algorithms that aim to find sparse signals [13,31]. When K = N, the columns of the DFT
matrix exhibit high incoherence, resulting in a µ value of zero. This makes the matrix useful
as a sensing matrix for signals with any sparsity level. However, the oversampling and
filtering performed by SN×T in (7) affect the detection properties of the matrix. The matrix
can be expressed as AK×T = FK×NSN×T .

The effectiveness of the filtered sensing matrix for greedy algorithms was evaluated
by examining all values in the set used to compute the maximum in Equation (9). The
set elements were calculated for low-pass filters defined by the functions sinc() and srrc()
(square-root-raised-cosine) with varying roll-off factors β. The most favorable outcomes
were observed for the sinc() function, which is known for its narrow main lobe and
discriminating properties [32]. An example of the calculation results is shown in Figure 4.

The spacing between values in Figure 4 is equal to a quarter of the sampling period,
indicating an oversampling factor of FOS = 4. The value of µ is approximately 0.9. The
application of filtering negatively affects the sensing properties of the DFT matrix, making
it challenging to use the filtered sensing matrix for sparse algorithms. However, high
µ values are only present in adjacent columns, as shown in Figure 4. The selectivity of



Electronics 2024, 13, 843 9 of 19

the sensing matrix primarily deteriorates in neighboring elements. Despite the apparent
conclusion from Equation (10), we can still utilize the provided matrix by considering the
following guidelines: (1) The sparse algorithm cannot distinguish between paths that are
closer than the system’s sampling period, and (2) if the search algorithm detects paths that
are closer than the sampling period, they may be the result of the blurring of the same path.

To clarify, the issues related to path differentiation after oversampling persist even
when the receiver-side filtering is simplified to applying the sinc() function. The sinc()
function is the optimal selection for performing path searching greedily, considering the
effectiveness of path discrimination.

Figure 4. The values calculated from (9) for different distances between columns for sensing matrix A
with 4× oversampling and filtering with sinc() function. The red color indicates the values that have
the most adverse effect on the performance of the search stage of the OMP (Orthogonal Matching
Pursuit) algorithm.

4. Estimation Errors

Equation (7) takes into account an oversampled channel impulse response hT×1, which
accurately represents the analog signal h(t) when the oversampling factor is significant
enough. Using a discrete model with a high oversampling factor, we can effectively capture
the delay of any propagation path in the system. Increasing the oversampling factor
improves the accuracy of determining the delay of each signal path. However, this also
results in increased computational complexity.

The base cause of errors in the channel estimation process in the presented method
is the limited oversampling factor, which leads to inaccuracies in path delay estimation.
Another source of error arises from the discrepancy between the characteristics of the low-
pass filter of the system and the one used in the sensing matrix described in Equation (7).

Theoretically, it is possible to prevent both errors by ensuring that the filter used
in the recovery process perfectly matches the shaping filter used in the transmission
system. Additionally, the accuracy of the channel impulse response can be improved by
increasing its density to the point where each path delay can be precisely determined.
However, achieving the former is technically tricky, and the latter significantly increases
the complexity of computations.

4.1. Discrete Channel

To assess the accuracy of the estimation errors, it is necessary to define two filters
present in the system. The first filter, the shaping filter, represents the sampled version of
the channel impulse response h(t). This filter generates the channel model hN×1. On
the other hand, the second filter is used to compute the estimated channel response
ĥN×1 = SN×ThT×1 in Equation (7).
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Both filters simulate the discrete channel with restricted bandwidth, as proposed by
the authors of [29], and can be expressed as follows:

gn =
I

∑
i=1

ai α(i, n), −N1 ≤ n ≤ N2, (11)

where α(i, n) represents the shaping function, which is sampled with a period of Ts:

α(i, n) = func
( τi

Ts
− n

)
. (12)

The parameters ai and τi for i = 1, 2, ..., I determine the amplitude and lag of the ith
path of the channel. The duration of the path model is limited to N = N1 + N2 + 1 samples.

Typically, the channel is represented using the sinc() function. This modeling approach
is commonly implemented in Matlab® [33]. Other functions, such as the square-root-
raised-cosine srrc() function, also exhibit the desired properties of limited bandwidth and
decreasing amplitude in the time domain.

4.2. Reconstruction Error

We only consider the reconstruction error for the channel with a single path (I = 1)
because this simplified analysis provides enough insight into the error mechanism. The
Mean Squared Error (MSE) is used to measure the reconstruction error. To calculate the error,
we define two functions for the replacement of func() in the model given by Equation (12):
func1() generates the channel model (which describes the existing system) and func2() is
used to reconstruct the channel impulse response in Equation (7) by searching for a channel
response in the sparse space. If the shaping filter func1() is known, then func1() = func2()
should be used to minimize the error.

Considering the information mentioned above, the MSE can be expressed as:

MSE = log10
( 1

N

N

∑
n=1

(gn − fn)
2), (13)

and

gn =
I

∑
i=1

ai func1
( τi

Ts
− n

)
, −N1 ≤ n ≤ N2, (14)

fn =
J

∑
j=1

bj func2
( υj

Ts
− n

)
, −N1 ≤ n ≤ N2. (15)

The primary cause of the error is the discrepancy in the shape of func2() and func1().
If the receiver cannot accurately determine the shape of the channel filter, an error occurs.
The second cause of the error is the discretization of time. If the path lags τi and υj do not
align with the grid of sampling moments (see Figure 3c), the error increases. Even if we
have the same func() in both filters, but the delays differ or the difference between them is
less than the sampling period Ts, a non-zero MSE is observed.

Let us first analyze the second source of the error. The sampling period of the signal is
denoted as Ts. However, the sampling moments in the transmitter and receiver are shifted
by ∆τ = τi − υj, which can range from 0 to Ts/2. If the shaping function is known and
the length N of gn is equal to the size of fn, then there is no expected error as defined by
Equation (13). The vectors of the coefficients are the same: aI×1 ≡ bJ×1 and the shift ∆τ = 0.
However, when the shift is different from zero and the result of the greedy algorithm is
limited to a specific number of coefficients, the error appears. For example, we present
an analysis of the channel model with the sinc() function defined for N = 128 samples.
The estimation error depends on the shift value ∆τ and the number of estimated channel
coefficients, as shown in Figure 5.
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The reconstruction error values shown in Figure 5 decrease as the value of ∆τ de-
creases, and more channel impulse response coefficients are determined. Increasing the
oversampling ratio (corresponding to a higher density grid of values for the coefficient
delays) can improve the error. However, it is essential to note that this increase in the
oversampling ratio also increases the size of the sensing matrix, which in turn leads to
an increase in the computational time and memory complexity of the greedy algorithm.
Furthermore, we can observe that a larger number of steps of the greedy algorithm are
required when a more significant number of channel impulse response coefficients are
determined to decrease the MSE.

Figure 5. Reconstruction error when sampling moments of original and estimated channel impulse
response are shifted by ∆τ.

Different interpretations can be derived from Figure 6, which illustrates the error
resulting from the unmatched shaping function. Our channel modeling involved the
utilization of the length-limited func1(x) = sin(x)/x function. The error was calculated
using Formula (13) and applied to the first K most significant coefficients. We employed
the raised-cosine function with varying roll-off factors β, as well as the function obtained
through IFFT from the ideal frequency response of the channel to estimate the channel
impulse response. A ∆τ = Ts/2 sampling shift was used.

Figure 6. Reconstruction error caused by different shaping functions.

The error in the reconstruction procedure can be significant if the function used in
Equation (7) does not match the actual function, as shown in Figure 6. This error can be
comparable to the error caused by a mismatch in the sampling moments. However, the
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error increases as the number of estimated coefficients increases. To minimize the error, it is
advisable to detect as few channel impulse response coefficients as possible. Therefore, the
greedy algorithm should terminate as soon as possible. This contradicts the earlier conclusion
regarding the required impulse response length for reconstruction with matched filters.

4.3. Impact of Noise

This analysis does not consider the presence of unavoidable noise in the current
communication systems. Although we aim to minimize the MSE in determining the channel
impulse response, it is essential to note that some of the observed MSE is irreducible due
to the impact of system noise. The literature, such as the work by Kang et al. (2007) [34],
provides some insight into the relationship between MSE and the SNR of the channel.

The main findings of the literature analysis indicate that when using the LS (Least
Squares) algorithm for channel estimation, the curve that shows the error rate (BER, Bit
Error Rate or SER, Symbol Error Rate) as a function of SNR is dependent on the signal
constellations implemented in the individual subchannels of the OFDM system. This
characteristic is specific to the system being analyzed. However, it is possible to mitigate
the noise impact by reducing the length of the estimated channel impulse response [34].
The remaining coefficients can be fixed or set to zero if the number of relevant coefficients
in the time domain is limited to L. The resulting MSE caused by the channel SNR will
decrease proportionally to the ratio of elements used L to the total number of elements N.

Consider the OFDM system with N channels. The cyclic prefix of the system has
a length of P. We determine the unconstrained impulse response of the channel, denoted
by hN×1, which is an N × 1 matrix. This is carried out based on the training data, as shown
in Equation (4). Let us assume that the error in the estimation using the ZF algorithm,
denoted as MSE0, is solely due to noise. In that case, if we compute the impulse response
again and limit its length to P, following the approach in [34], the error caused by noise
decreases to P/N × MSE0.

When employing a compressive sensing algorithm, if the estimated impulse response
is constrained to a small number of coefficients L, which is less than the cyclic prefix length
P, the resulting MSE caused by noise is also limited, as previously explained. In simpler
terms, reducing the number of coefficients we examine leads to a decrease in the error
caused by noise.

4.4. Summary

The preceding examination of reconstruction and estimation errors demonstrates the
importance of accurately determining as many coefficients of the channel impulse response
as feasible, provided that we can effectively reconstruct them.

Given the understanding that the channel response exhibits sparsity, a greedy algo-
rithm, such as OMP, is expected to yield favorable outcomes when a few coefficients are
computed. This approach helps mitigate the impact of noise. However, it is worth noting
that the channel response is also compressible. In such scenarios, an algorithm is required
to effectively identify a limited number of genuine paths (to minimize noise interference)
while producing a significant number of reconstructed channel coefficients that closely
resemble the actual ones, thus ensuring high precision.

Suppose the time response of the channel is not known, but its compressible nature is
acknowledged. In that case, the OMP algorithm can be employed with a stop criterion based on
the balance between the estimated MSE and noise power, as suggested by Dziwoki et al. [18].
Alternatively, if the nature of the time response is known, we recommend using the algorithm
described later in this paper.

5. Proposed Algorithm

The above analysis focuses on determining the channel’s impulse response with
a resolution higher than the sampling period. In the receiver, the next step is to use a
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standard one-tap equalizer for each subchannel of the OFDM system. This equalizer is
created using the elements on the right side of Equation (7):

EK×1 = 1K×1 ⊘ (FK×NSN×ThT×1). (16)

The vector EK×1 has the same number of elements as the number of subchannels in
the OFDM system. Equation (16) consists of two operations: filtering the channel impulse
response hT×1 with the shaping filter SN×T and performing the FFT operation FK×N on
the filtered value. The filtering operation is used to create a channel model [29]. Based on
the analysis results in the previous section, the best results are expected when the same
shaping filter is used for data transmission and channel estimation. The filter parameters
must somehow be transferred to the receiver in the existing system.

The algorithm for estimating the equalizer is derived from the analysis explained
above and can be summarized as follows:

1. Create the sensing matrix AK×T = FK×NSN×T as in (7).
2. Use the OMP algorithm [14] to estimate channel impulse response hT×1 from (7).

Extend the search step with neighbors as described below in the first modification.
3. Calculate the equalizer coefficients using Formula (16). Use a shaping filter according

to the second modification described below.

The significant modifications that have been introduced enhance the determination of
the equalizer coefficients in the transmission system when operating in a noisy environment.

The first issue that the implementation addresses is the problem of the oversampling
factor. In a noise-free system, a higher factor value yields better results. However, this
also increases computational complexity due to the larger matrix A size. Taking noise
into account, it is essential to note that the oversampled detection matrix A has poor
distinguishing properties (see Figure 4), and the estimation error is low even with a high
resolution of the oversampled signal (refer to Figure 5). Going beyond a value of 8 of an
oversampling factor does not significantly enhance the quality of the search stage, but it
comes at a higher computational complexity cost.

Based on the findings presented earlier in Figure 5, it is anticipated that the accuracy
of determining the delay values will be compromised by limiting the oversampling factor.
However, we assumed that the actual maximum value obtained during the search phase of
the OMP algorithm is close to the values determined. This assumption leads to a significant
modification of the algorithm: The matrix utilized in the LS algorithm stage of the OMP is
composed of the maximum value found in each iteration of the search phase, along with
the adjacent columns of the sensing matrix. A similar approach is proposed for the OMP
block algorithm [35], which assumes that the result is sparsely grouped.

The algorithm undergoes a second significant modification in which the sensing matrix
used in the OMP algorithm differs from the matrix used to calculate the equalizer coeffi-
cients. These matrices have varying shaping filters, denoted as SN×T . The shaping filter
used to calculate the equalizer in step 3 aims to closely match the shape of the transmission
path over time, as observed in Figure 6. On the other hand, the OMP algorithm in the search
phase utilizes the sinc() function as a shaping filter, using a rectangular window during
the oversampling process. Though this provides the best possible path discrimination
properties in an upsampled signal, it still needs improvement, as demonstrated in Figure 4.

6. Numerical Simulation
6.1. Simulation Parameters

We evaluated the algorithm in a simulated transmission system environment. We
employed OFDM modulation with the QPSK (Quadrature Phase Shift Keying) constellation
on each of the 128 channels. The size of the cyclic prefix was set at 32 samples, which was
considered adequate based on the measurements we carried out using physical devices in
different working environments, including indoors and outdoors, in urban and outdoor areas.
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Most simulations were conducted on a channel with two paths with similar attenuation
levels. This particular channel was the most challenging environment during the measure-
ments. The distance between the two paths was set to be within the 0.5 to 2.5 sampling
periods, and the sampling moment varied within one sampling period. This channel type
is relatively straightforward in the time domain but presents significant difficulties in
equalization in the frequency domain due to deep fades. In the simulation model, the phase
of the second path was adjusted from 0 to 2π depending on the specific realization of the
simulation. As a result, the deep fading was shifted across the entire frequency band of the
transmission system.

We conducted simulations on 100 channels consisting of two paths to obtain statisti-
cally significant results. The parameters used for these channels were as described earlier.
For each channel, we transmitted a total about 100,000 symbols, which included one frame
with pilots and 800 frames with random data. The channel model for each case was created
based on the literature [33], where the paths were filtered using the sinc() function.

We compared the channel estimation obtained using the oversampling algorithm
presented here with the standard OMP algorithm. We also compared the results obtained
using the simple zero-forcing equalizer with noise estimation (ZF MMSE in the figures)
and the data obtained when the receiver knows the simulated channel state information
(known as CSI in the figures). The known CSI result represents the performance limit the
equalizer aims to achieve based on the estimated channel.

We modified the parameters for particular simulations. Initially, we examined the
channel model with data paths in the sampling grid. We emphasized the importance
of testing actual channels with values, not on the grid, and considering the possibility
of unnecessary modifications to the proposed algorithm. Subsequently, we investigated
our analysis using a channel model that employed a different function from the standard
sinc(). It was demonstrated that the function utilized for equalizer calculations should
closely resemble the channel model. Therefore, we conducted simulations using a modified
channel modeling algorithm. Finally, we evaluated the performance of the algorithm
presented in a different environment from our measurements by employing COST-207
channel models [21].

6.2. Simulation Results

Figures 5–8 show the results of the simulation. Each data point in the figures represents
the average of 100 distinct channel implementations, each with the specified structure for
the corresponding set of simulations.

The initial results depicted in Figure 7 entail a comparison between the basic OMP
algorithm and the algorithm that incorporates oversampling (referred to as FOS = X in the
Figure, where X represents the oversampling factor) for channels with two paths and a delay
of one or two sampling periods between paths. These channels fall within the previously
defined range, but the delays always conform to the sampling grid. As observed in the
figure, the basic OMP algorithm performs exceptionally well, and while oversampling does
not yield any improvement, it also does not lead to significant degradation. All versions of
the OMP algorithm aim to identify the two paths (which serves as a stopping criterion).
Upon closer examination of the results, it is evident that the discrepancy between the
estimated and known channel response is approximately 0.3 dB at an SNR of 25 dB.

The results shown in Figure 8 are obtained from a more realistic model where the
paths are not located on the sampling grid. The standard OMP algorithm performs poorly
with this channel type when searching for only two paths. To address this issue, we have
implemented an additional stop criterion in the OMP search algorithm, which analyzes the
power of the residual error. As a result, the number of coefficients in the channel’s impulse
response varies between simulations. The outcome (OMP stop) is significantly better than
the basic OMP, but it is still not satisfactory, as per our previous work [18].

The performance of the oversampling algorithm is satisfactory in this model. The
estimated channel shows a difference of approximately 0.7 dB at an SNR of 25 dB compared
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to the known CSI result, and the difference becomes even smaller for low SNR values.
The analysis presented in Figure 5 confirms that the comparison between standard and
oversampled OMP algorithms is consistent. After oversampling, all channels reconstructed
from the identified paths were filtered using the shaping filter that matches the channel
model. However, the sensing matrix has poor discriminating properties, resulting in
a negligible gain for higher oversampling factors.

Figure 7. Comparison of tested algorithms on channels with delays in the sampling grid (channel
with 2 paths, results averaged over 100 channel realizations).

Figure 8. Comparison of tested algorithms on channels with delays out of the sampling grid (channel
with 2 paths, results averaged over 100 channel realizations).

The results shown in Figure 9 demonstrate the impact of mismatch between the shaping
filter in the transmission system and the equalizer. These results align with the analysis
presented in Figure 6. When the signal-to-noise ratio (SNR) is low, the equalizer filter can
differ from the one used in the transmission system, resulting in similar symbol error rates
(SERs) for all shaping filters. However, the matching between the two filters becomes necessary
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as the SNR increases. In this case, oversampled models with a factor of four were used (see
Figure 8). The channel was generated using the sinc() function, while the equalizer utilized
sinc() and srrc() filters with different values of β. As expected, the results indicate that the
closer the shaping filter is to the channel model, the fewer errors are detected.

Figure 9. Comparison of tested algorithms on channels with delays out of the sampling grid and
unmatched shaping filter—channel modeled with the sinc() function (channel with 2 paths, results
averaged over 100 channel realizations).

The last result involved a modification in channel type. Specifically, the COST-207
model [21] was used to generate 30 channels, each consisting of 6 paths. Gain values from
the COST-207 model were adopted, but absolute delay values were adjusted to fit within
the range of the cyclic prefix in the simulation environment. It is important to note that the
relative relationships between the delay values were maintained. Additionally, the number
of paths to be explored in the OMP algorithm was increased to six.

The results for the COST-207 model shown in Figure 10 are comparable to those
obtained for the channel with only two paths. Notable differences can be observed for
higher SNR values. In this case, the algorithm aims to identify six significantly noise-
impacted paths. The standard OMP algorithm once again fails to perform adequately (path
delays deviate from the grid), emphasizing the importance of selecting an appropriate
shaping filter (the channel was simulated using the sinc() function).

The disparities in the performance of the evaluated channel equalization algorithms
become more noticeable as higher SNR levels are applied. In this range, a more accurate
channel correction by the equalizer will enable efficient transmission, even with correction
codes that have reduced redundancy [36].

6.3. Computational Complexity

The computational complexity of the presented algorithm primarily stems from the OMP
algorithm itself. An analysis of OMP’s complexity can be found in the literature [37]. In brief,
it depends on three key factors: the size of the sensing matrix (search stage), the number of
paths searched (matrix inversion in the LS algorithm stage), and the number of iterations.

The search stage is the most time-consuming. Oversampling increases the number of
computations in the search stage in proportion to the oversampling factor FOS. Furthermore,
the use of adjacent coefficients increases the number of elements calculated in each iteration
of the LS algorithm by a factor of three. The number of iterations remains unchanged
compared to the baseline OMP.
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Thus, while achieving greater accuracy in determining channel characteristics, the
trade-off is increased numerical complexity. Interestingly, it turns out that it is possible to
significantly reduce the computational effort by selectively oversampling specific parts of
the sensing matrix, as shown in [38].

Figure 10. Comparison of tested algorithms on example COST-207 channel (channel with 6 paths,
results averaged over 100 channel realizations).

7. Conclusions

The paper concentrates on channel equalization based on its physical nature. The work
started on OMP algorithm implementation to the recognized channel model. However,
the OMP algorithm is effective only when the delays of the channel paths align with the
sampling devices’ grid. It is possible to increase the number of elements searched by the
OMP. However, it takes the algorithm away from the channel’s physical model, and in
a noisy environment, enhances the effect of noise on the result.

Another approach presented in this paper is to search for channel coefficients, or
more precisely, paths describing delays, with a resolution higher than the sampling grid
distance. The resolution of the model is increased with an oversampling algorithm using
interpolation and filtering. Then the OMP algorithm, again with only a few elements to
find, can be implemented on the oversampled channel model.

Creating the oversampled model is quite simple, but a deeper analysis presented here
showed that the type of filter used in the algorithm is essential. This shaping filter should
match the characteristics of the signal transmission path for the best results. Theoretically, it is
possible to increase the channel resolution indefinitely, but it reduces discrimination properties
of the sensing matrix and does not improve the result of channel reconstruction.

We proposed modifications to the OMP algorithm based on the analysis to achieve
better channel estimation in a noisy environment. Primarily, we distinguished filters used
in the different stages of computation. We used various ones during the search stage of the
OMP and during channel reconstruction before the equalizer coefficients’ calculation. The
second modification, which treats the results of the search stage as elements of groups, also
increased the algorithm’s overall performance.

We have focused on the best possible channel reconstruction, especially in our trans-
mission environment with two relative paths, but the algorithm was also successfully tested
with more complex channels. The problem of computation complexity was put in the back-
ground during the research. Analyzing the proposed modifications, we can say that their
impact on the algorithm already working on oversampled signals is negligible. However,
the oversampling itself increases the number of computations because of the increased size
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of the sensing matrix. The successive delay approximation algorithm presented in [38] will
help save computing resources.

Some questions still need to be addressed in our analysis and additional research.
Further mathematical analysis would be helpful to define the best oversampling factor
precisely and the required quality of the shaping filter matching the channel characteristics.
Additionally, analysis is needed to determine the shaping filter characteristics for a given
transmission system.
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