
Citation: Zhang, Y.; Zhang, Z.; Ji, S.;

Wang, S.; Huang, S. Conditional Proxy

Re-Encryption-Based Key Sharing

Mechanism for Clustered Federated

Learning. Electronics 2024, 13, 848.

https://doi.org/10.3390/

electronics13050848

Academic Editor: Aryya

Gangopadhyay

Received: 7 January 2024

Revised: 4 February 2024

Accepted: 16 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Conditional Proxy Re-Encryption-Based Key Sharing Mechanism
for Clustered Federated Learning
Yongjing Zhang 1, Zhouyang Zhang 2,*, Shan Ji 1, Shenqing Wang 1 and Shitao Huang 3

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China

2 Research Center for Basic Theories of Intelligent Computing, Research Institute of Basic Theories,
Zhejiang Laboratory, Hangzhou 311100, China

3 School of Computer Science, Nanjing University of Science Information and Technology,
Nanjing 210044, China

* Correspondence: zhangzhouyang@zhejianglab.com

Abstract: The need of data owners for privacy protection has given rise to collaborative learning,
and data-related issues heterogeneity faced by federated learning has further given rise to clustered
federated learning; whereas the traditional privacy-preserving scheme of federated learning using
homomorphic encryption alone fails to fulfill the privacy protection demands of clustered federated
learning. To address these issues, this research provides an effective and safeguarded answer for
sharing homomorphic encryption keys among clusters in clustered federated learning grounded in
conditional representative broadcast re-encryption. This method constructs a key sharing mechanism.
By combining the functions of the bilinear pairwise accumulator and specific conditional proxy
broadcast re-ciphering, the mechanism can verify the integrity of homomorphic encryption keys
stored on cloud servers. In addition, the solution enables key management centers to grant secure and
controlled access to re-encrypted homomorphic encryption keys to third parties without disclosing the
sensitive information contained therein. The scheme achieves this by implementing a sophisticated
access tree-based mechanism that enables the cloud server to convert forwarded ciphertexts into
completely new ciphertexts customized specifically for a given group of users. By effectively utilizing
conditional restrictions, the scheme achieves fine-grained access control to protect the privacy of
shared content. Finally, this paper showcases the scheme’s security against selective ciphertext attacks
without relying on random prediction.

Keywords: key sharing mechanism; clustered federated learning; proxy re-encryption

1. Introduction

Developments in computing power have been instrumental in the rapid evolution of
AI across fields such as finance, healthcare, computer vision, and autonomous driving [1].
At the heart of AI’s progress are increasingly sophisticated machine learning algorithms,
drawing keen interest from the research community [2]. The efficacy of these algorithms is
deeply dependent on access to large volumes of high-quality data. However, the richness of
such data often entails privacy-sensitive information, making data owners cautious about
sharing it. This caution leads to the formation of data silos, which not only diminish the
quality of accessible data, but more critically, limit the availability of comprehensive datasets
necessary for advancing machine learning research. Such restrictions pose significant
barriers to innovation in machine learning, thereby directly affecting the pace and scope of
advancements in AI [3,4].

To address the issue of data isolation, McMahan et al. suggested federated learning [5].
In federated learning, users perform model computation locally using their own datasets,
and a server aggregates the individual local models, thereby updating the global model.

Electronics 2024, 13, 848. https://doi.org/10.3390/electronics13050848 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13050848
https://doi.org/10.3390/electronics13050848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13050848
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13050848?type=check_update&version=2

Electronics 2024, 13, 848 2 of 16

Federated learning allows for model training without the exchange of data between users,
thus significantly preserving data privacy [5].

However, federated learning requires the exchange of intermediate parameters be-
tween the client and the server for collaborative training, and in the process of data
exchange, the raw data carried by the intermediate parameters may be exposed to all the
training participants, which leads to privacy leakage [6–8]. To solve this problem, homo-
morphic encryption is widely used to encrypt the data exchange process between the client
and the server [9,10]. Homomorphic encryption provides a cryptographic solution that
enables the client to encrypt the intermediate parameter and send it to the server, which is
able to complete the aggregation operation on the encrypted data without obtaining the
plaintext information of the data [11,12]. The client receives the result of the encryption
operation and decrypts it, which is the same as the result of the aggregation operation on
the plaintext [13–15].

In addition to data privacy issues, data heterogeneity is also an important challenge
facing federated learning today. In federated learning, data heterogeneity refers to the
differences in distribution, characteristics, and size of data among different participants [16].
These differences may impact the effectiveness of federated learning and the model’s
effectiveness. To tackle this issue, Ghosh et al. introduced the idea of clustered federated
learning [17]. Clustering federated learning divides the participants’ data into different
clusters by introducing clustering techniques using clustering algorithms (e.g., K-mean
clustering or hierarchical clustering) [18]. Within each cluster, the participants share their
data for model training, similar to traditional federated learning. After each cluster has
trained its own local model, the model parameters can be selectively aggregated together
to form a global model [19].

However, cluster federated learning brings new challenges to privacy protection
based on homomorphic encryption. It requires that knowledge not be shared between
clusters, and in traditional privacy-preserving schemes for federated learning systems
using homomorphic encryption, all participants share the same encrypting public key and
decrypting key, which results in the data of a participant in one cluster being potentially
exposed to participants in other clusters. Therefore, different encryption and decryption
keys are required between each cluster.

To this end, we propose a conditional proxy broadcast re-encryption method for
distributing and managing homomorphic encryption keys for each cluster in clustered
federated learning. By using proxy broadcast re-encryption, keys for homomorphic en-
cryption produced by the Key Management Center (KMC) can be efficiently forwarded to
participants in a cluster, while proxies and other cluster members cannot access useful data.
This scheme also introduces the concept of access trees to achieve precise management of
re-encryption authorization. In addition, we analyze the security and privacy protection of
the solution in detail.

Moreover, homomorphic encryption keys may be compromised either intentionally or
unintentionally due to non-fully trusted proxy servers [20–23]. Periodic integrity checks can
verify key ownership and detect any unauthorized modifications [24]. This scheme uses
a bilinear pair accumulator following a deterministic verification method to experiment
with the integrity verification functionality. Unlike sampling detection, the verifier checks
all the data blocks in the dataset, thus preventing any unauthorized operations from
occurring.Through detailed security analysis, the program was proven to exhibit a high
level of security against attacks.

In summary, this paper provides an efficient and secure solution for sharing homo-
morphic encryption keys among clusters in clustered federated learning. The particular
contributions can be outlined as follows:

1. In this paper, a key distribution and management scheme is proposed based on proxy
re-encryption to ensure the privacy of homomorphic encryption key storage and
sharing in cluster federated learning. The scheme employs a fine-grained strategy
and provides a framework model and a security model.

Electronics 2024, 13, 848 3 of 16

2. This paper uses a bilinear pair accumulator to implement integrity verification of ho-
momorphic encryption keys and evaluates the effectiveness of the proposed scheme.

2. Related Work
2.1. Proxy Re-Encryption

In Eu-rocrypt98 [25], Blaze and his team proposed Proxy Re-Encryption (PRE). This
scheme enables the agent to switch ciphertexts between Alice and Bob. The PRE scheme
enables proxies to perform double encryption on users’ ciphertext, allowing Bob to directly
decrypt the re-encrypted ciphertext while preventing the proxy from accessing any valuable
information. However, the original PRE scheme lacked proper control over conversion
permissions, as proxies could convert encrypted files without Alice’s consent.

Weng et al. put forward conditional proxy re-encryption (C-PRE) [26], where the proxy
possesses the capability to solely re-encrypt the ciphertext after satisfying the criteria speci-
fied by Alice. However, this scheme consumes amounts of time and storage resources [27].
Chu et al. proposed a solution called Conditional Proxy Broadcast Re-encryption (CPBRE)
to address this problem [28], which only once requires the re-encryption of the ciphertext.

Currently, proxy re-encryption techniques have undergone significant advancements [29–31].
These advancements have enabled the widespread application of proxy re-encryption in various
systems, including cloud data sharing, distributed file systems, and network backups [32,33].
Despite these developments, previous approaches lacked free control over the proxy’s conversion
conditions. In this system, the proposed proxy broadcast re-encryption scheme supports a variable
number of conditions, allows for arbitrary combinations of conditions, and facilitates partial
condition matching.

In this situation, the ciphertext undergoes encryption using a collection of keywords,
W, while the access tree T generates a re-encryption key. The agent converts transforming
Alice’s cryptographic text for a squad of users solely if the set of keywords W fulfills the
requirements specified by the access tree T .

2.2. Cryptographic Accumulator

The notion of an accumulator was initially introduced by Benaloh et al. [34]. If for
all x ∈ X and all y1, y2 ∈ Y, the one-way hash function l:X × Y → X satisfies the quasi-
exchange property:

l(l(x, y1), y2) = l(l(x, y2), y1). (1)

The accumulator can accumulate all the elements in the finite set X = {x1, . . . , xn} into
a compact value accX , while the compact value is independent of the order of xi. Randomly
select d ∈ D as the foundation, and the accumulator is described as:

accX = l(l(. . . l(l(l(d, x1), x2), x3), . . .), xk−1), xk). (2)

By computing the witness witxi for every element xi ∈ X, one can verify l(witxi , xi) = accX
and demonstrate the membership of xi in accX . The witness in a dynamic accumulator can
be updated by the user. The process involves calculating the witness witxi for each element
and verifying l(witxi , xi) = accX to prove x′is membership in accX. Apart from offering
member witnesses, the universal accumulator is also capable of providing non-member
witnesses for y /∈ X.

In the current research, many scholars have proposed many accumulator schemes with
different characteristics based on different number theory hypotheses. For instance, hash-
based accumulators are favored for their simplicity and efficient data processing capabilities,
although they may not support complex dynamic data update operations. In contrast,
RSA-based accumulators leverage the difficulty of large integer factorization problems to
provide robust security for data, making them particularly suitable for security-sensitive
applications, but this strong security often comes at the cost of computational efficiency. On
the other hand, elliptic curve accumulators optimize data representation and computation

Electronics 2024, 13, 848 4 of 16

processes, maintaining high security standards while improving processing speed, thus
making them suitable for situations that demand high performance and security.

Initially, an accumulator is used to build a timestamp for recording a specific point in
time for an event. With the continuous development of the accumulator scheme, its use
has become more and more extensive, such as reliable certificate management, distributed
signature, anonymous credentials, and digital cryptocurrency [35–40]. Subsequently, Barić
enhanced the initial accumulator scheme and incorporated relevant security concepts [41].
Based on this solution, Camenisch added a dynamic add/delete value operation to build the
first dynamic accumulator scheme [42]. Nguyen constructed the first dynamic accumulator
scheme based on bilinear pairing, which uses the t-SDH assumption for security proof and
allows for multiple values to be accumulated from a domain Zp [43]. Based on this scheme,
Damgård et al. added general-purpose features to the bilinear pair accumulator [44].

3. Preliminaries
3.1. Bilinear Mapping

Consider two cyclic groups with multiplication operations, D and DT , having identical
prime orders g. The group D is generated by the element d. We have a bilinear map
v : D× D → DT that fulfills the prerequisites below:

1. v
(

da
1, db

2

)
= v(d1, d2)

ab for all a, b R←− Z∗p and d1, d2 ∈ D.

2. v(d, d) ̸= 1.

3.2. The N-BDHE Presupposition

Let us denote the set {0, 1, . . . , g − 1} as Zp and the set {1, 2, . . . , g − 1} as Z∗p. We
consider a prime number g. Now, we have a bilinear map v : D× D → DT . We are given
2k + 2 elements: (

l, d, dα, dα2
, . . . , dαk

, dαk+2
, . . . , dα2k

, T
)
∈ D2k+1 × DT . (3)

Use di to indicate dαi
. The advantage of an adversary H is as follows:

Advn−BDHE
D,H

∣∣∣∣ Pr[H(l, d, d1, . . . , dk, . . . , dk+2, d2k, v(dk+1, l))] = 1
−Pr[H(l, d, d1, . . . , dk, dk+2, . . . , d2k, T)] = 1

∣∣∣∣, (4)

where d, l ∈ D, α ∈ Z∗p, and T ∈ DT are chosen stochastically.

3.3. The Q-SDH Presupposition

Let g be a prime number with a bit length of κ, and d be a generator of D, α ∈R Z∗p.
For all PPT opponents H:

Pr
[(

c, d
1

α+c

)
← H

(
d, dα, , dαq

)]
≤ ϵ(κ), (5)

for ∃c ∈ Zp\{−α}.

3.4. Tag Index Table

The simplified tag retrieval table is derived from the mapping version table [45]. Data
owners create distinct tags for individual data blocks and store them in the verifier to
facilitate dynamic data operations. The tag index table comprises two components: data
block indices and corresponding tag values. The data block index is used to locate the
location of the data block quickly. Tag values are used to prevent conflicts between data
blocks. The verifier verifies the legitimacy of the cloud storage provider’s certificate by
locating the challenge data block. The data owner quickly performs data update, insert,
and delete operations through the tag index block.

Electronics 2024, 13, 848 5 of 16

4. Scheme
4.1. Overview

The framework of a homomorphic encryption key sharing mechanism for clustered
federated learning is shown in Figure 1. The roles in the mechanism are key management
center (KMC), cloud agent, witness, and target cluster S′. Among them, the KMC generates
homomorphic encryption keys for each cluster and acts as an authorizer in the proxy
re-encryption process for homomorphic encryption keys, while the target cluster S′ is an
authorized party; the cloud proxy also acts as an aggregation server. The solid arrows in
the figure indicate the data movement within the key sharing process; the dashed arrows
indicate the data movement within the key integrity verification process.

KMC

Witness

Proxy with
original

ciphertext C Cluster S’

...

...

...

Cluster 1

Cluster N

.

.

.

Figure 1. Overall diagram of key sharing mechanism.

KMC saves data label B = {b1, b2, b3, . . .}. When the data stored in the cloud (i.e.,
the ciphertext C of the homomorphic encryption key pair < ek, sk > of the target cluster
S′) needs to be confirmed whether it has been corrupted or not, the KMC first hands over
the data label B and the auxiliary threshold aux to the agent. It then uses a bilinear pair
accumulator to compute the accumulated value of the data tag accB, generates the tag index
table TIT, and passes it to the verifier Witness Next which generates a random index j
and hands it to the provider. After obtaining the index j, the provider removes bj from the
tags, applies the accumulator to calculate the witness witbj for the remaining tags, and then
hands over witbj and bj to the witness. Finally, the witness performs integrity verification
using the received data and transmits the verification outcome to the data owner KMC.

When the KMC intends to grant access to its cloud storage data to a third party, it
must generate the transformation key rki→S′ ,T corresponding to the conditional access
tree T and provide it to the agent. Once the agent receives the request from the KMC, it
proceeds to verify that all participants individually satisfy the forwarding requirements
specified in the access tree T and finds the cluster S′ constituted by all participants that
satisfy the conditions. Upon successful validation, the agent re-encrypts the data that
resides on the server using the re-encryption key. Subsequently, the agent forwards the
generated re-encrypted ciphertext exclusively to the participants in the target cluster S′ that
satisfy the conditions specified by the KMC, and then the participants in S′ can decrypt the
ciphertext with their individual private keys and acquire < ek, sk >. Meanwhile, the agent
cannot obtain any KMC content in this process.

4.2. Re-Encryption Construction

This section will elaborate on the architecture of this system.

Electronics 2024, 13, 848 6 of 16

Let us define the Lagrange coefficient ∆β,F(x) which would be used in Equation (19) to
generate the components of the re-encrypted ciphertext, denoted as β ∈ Zp, for a given set
P consisting of elements in Zp. The Lagrange coefficient is shown below in Equation (6):

∆β,F(x) = ∏
i∈P,i ̸=β

x− i
β− i

. (6)

The scheme includes the following algorithms:

• Setup(λ, k): Let us generate a set of instructions for constructing a bilinear map
parameter (g, d, D, DT , v) and message Ψ = {0, 1}n. Start by stochastically selecting
α and ϖ from Zp and Z from D. Assign di = dαi

for i = 1, 2, . . . , k, k + 2, . . . , 2k.
Introduce Lα : Z∗p → D and Lω : {0, 1}n → Z∗p as collision-resistant hash functions.
Calculate e = dγ. The output will be the public key PK and the main secret key φsk,
defined as PK = (d, d1, . . . , dk, dk+2, d2k, e, Z, Lα, Lω), φsk = ϖ.

• KeyGen(PK, φsk, i): The private key of user i is ski = dϖ
i .

• Encrypt(PK, S, φ, W): To securely encrypt information φ ∈ Ψ for a user-set S ⊆
{1, 2, . . . , k} based on the prerequisite set W, the encrypt function is employed. First,
a random selection of µ ∈ DT and t ∈ Z∗p is made. The initial ciphertext consists
of six components from Equation (7) to Equation (10), including C1, C2, C3, C4, C5, S.
These components include not only the encrypted information but also the part used
to construct the re-cipher key Equation (15). The resulting ciphertext is denoted as
C = (svk, C1, C2, C3, C4, C5, S).

C1 = µ · v(d1, dk)
t, C2 = dt, C3 =

(
e ·∏

j∈S
dk+1−j

)t

, (7)

C4 =
(

Lα(β)

)t
, (8)

C5 = [PRF(µ, C2)
K−n||([PRF(µ, C2)]n ⊕ φ), (9)

G(λ)→ (svk, ssk), S = S(ssk, (C2, C4, C5)). (10)

• RKGen(PK, ski, S′, T): The following definitions are made: q represents the polyno-
mial, x is a non-leaf node, T is the tree, r is the root node, and qr(0) expresses the
degree of the root of the tree. Given the inputs ski = dϖ

i , S′ ∈ {1, 2, . . . , k}, and T ,
we proceed with the following steps. Firstly, we stochastically select µ ∈ {0, 1}n and
a qx for each x in the T . The process begins at the r and RKG(T , Lω(µ)) is used
to opt for the polynomials in a top-down manner. RKG(T , Lω(µ)) is described as
follows: for each node x, the qx is set with a degree of fx = nx − 1. The qr(0) is set to
Lω(µ). For other x, we set qx(0) to qg(x) , and then stochastically opt for the remaining
coefficients to completely define the polynomial qx. We set β = keyword(x) for each x.
Now, let us calculate the re-encryption key rki→S′ ,T ′ = (T , Ax, Bx, rk1, rk2, rk3, rk4, S′)
in Equation (15) for the agent:

Choose a random value rx
R←− Z∗p and calculate it: Ax = ski · Zqx(0) · Lα(β)rx ; Bx = drx .

Selects stochastic value t′ ∈ Z∗p, r′ ∈ DT , R ∈ {0, 1}n and sets:

rk1 = r′ · v(d1, dn)
t′ , rk2 = dt′ , (11)

rk3 =

e ·∏
j∈S′

dk+1−j

t′

, (12)

rk4 = [PRF
(
µ′, rk2

)K−n||
([

PRF
(
µ′, rk2

)]
n ⊕ R

)
, (13)

G(λ)→
(
svk′, ssk′

)
, S′ = S

(
ssk′, (rk2, rk4)

)t′ . (14)

Electronics 2024, 13, 848 7 of 16

Output the re-cipher key which is used to encrypt the ciphtext C into the cryptographic
text CR Equation (21) that can be decrypted by others’ private keys in the group:

rki→S′ ,T ′ =

T , Ax, drx , r′ · v(d1, dn)
t′ , dt′ ,

e ·∏
j∈S′

dk+1−j

t′

, rk4, S′

. (15)

• ReEnc(PK, rki→S′ ,T ′ , i, S, S′, C): Enter a rki→,S′ ,W ′ and a C. Verify if the equations
below hold:

v

(
C2, e ·∏

j∈S
dk+1−j

)
?
= v(d, C3), (16)

V(svk, S, (C2, C4, C5))
?
= 1, (17)

v(C2, Lα(T))
?
= v(d, C4). (18)

Equations (16)–(18) are used to verify the integrity of ciphertext C.
In the event that any of the aforementioned equations fail to hold, the output will be
⊥. Conversely, a recursive algorithm named NodeReEnc(C, rki→S′ ,T ′ , x) is introduced
to process the initial C, the rki→S′ ,T ′ , and the note x within the tree.

1. When it comes to leaf x, if β ∈W, let β = keyword(X), then

NodeReEnc
(
C, rki→S′ ,T ′ , x

)
= v(C2,Ax)

v(Bx ,C4)
=

v(dt ,ski ·Zqx(0) ·Lα(β)rx)
v(drβ ,Lα(β)t)

= v
(
ski, dt) · v(Z, d)t·qx(0). Otherwise, output ⊥.

2. In the case where x represents a non-leaf node, the recursive procedure
NodeReEnc(C, rki→j,T ′ , z) is called by all descendent nodes z of ancestor nodes
x, and the resulting outcome is stored as Tz. Let Fx denote a random selection
of children nodes z with a size of kx, ensuring that Tz ̸= ⊥. If the condition
is not satisfied, NodeReEnc returns the value ⊥. However, if a satisfactory set
F′x = {index(z) : z ∈ S} can be formed, then the following computation is carried
out using the Lagrange coefficient generated in Equation (6) and the result of
NodeReEnc(C, rki→j,T ′ , z):

Tx = ∏
z∈Fx ,i=index(z)

(Tz)
∆i,F′x(0)

= ∏
z∈Fx ,i=index(z)

(
v
(
ski, dt) · v(Z, d)t·qx(0)

)∆i,F′x
(0)

= v
(
ski, dt) · ∏

z∈Fx ,i=index(z)

(
v(Z, d)t·qg(z)index(z)

)∆i,F′x
(0)

= v
(
ski, dt) · ∏

z∈Fx ,i=index(z)

(
v(Z, d)t·qx(i)

)∆i,F′x
(0)

= v
(
ski, dt) · v(Z, d)sqx(0).

(19)

In the end, using Equation (19) to calculate C̃1:

C̃1 = C1 ·
v
(

Tr ·∏j∈S,j ̸=i dk+1−j+i, C2

)
v(di, C3)

. (20)

Electronics 2024, 13, 848 8 of 16

The ciphertext C is re-encrypted into re-cipher CR:

CR =

svk, C̃1, C2, C4, C5, S, r′ · v(d1, dn)
t′ , dt′ ,

e ·∏
j∈S′

dk+1−j

t′

, rk4, S′

. (21)

The original ciphertext C can be decrypted by user i’s private ski and the re-cipher CR
can be decrypted by user j’s private key sk j. If the result of DecryptO and DecryptR is
equal, then the re-encryption succeed.

• DecryptO(PK, ski, i, S, C): Enter a ski and a C = (C1, C2, C3, C4, C5, S) with the follow-
ing program:

1. Verifies the validity of Equation (16) to Equation (18). If any of these equations
fail to hold, then the output will be ⊥, indicating the termination of the process.

2. Calculates µ = C1 · v
(

ski, ∏j∈S,j ̸=i dk+1−j+i, C2

)
/v(di, C3). If PRF[µ, C2]

K−n =

[C5]
K−n hold, returns φ = PRF[µ, C2]n ⊕ [C5]n.

• DecryptR(PK, sk j, i, j, S, S′, CR): Enter a sk j and a CR with the following program:

1. Checks the equations:

v

(
rk2, g ·∏

j∈s
dk+1−j

)
?
= v(d, rk3) (22)

V
(
svk′, S′, (rk2, rk4)

) ?
= 1 (23)

Equations (22) and (23) are used to verify the integrity of re-cipher CR. Success
goes to the next step while failure returns ⊥.

2. Calculate µ′ = rk1 · v
(

sk j ·∏a∈S′ ,a ̸=j dk+1−a+j, rk2

)
/v
(
dj, rk3

)
, if PRF[µ′, rk2]

K−n

= [rk4]
K−n, output R = PRF[µ′, rk2]n ⊕ [rk4]n. Success goes to the next step

while failure returns ⊥.
3. Calculate µ = C̃1/v

(
C2, ZLω(R)

)
. If PRF[µ, C2]

K−n = [V]K−n, output φ =

PRF[µ, C2]n ⊕ [C5]n. Otherwise, returns ⊥ and call off.

Consistency: For any set of common parameters pair, any message M in plaintext
space, any user public-private key pair (pki, ski),

(
pk j, sk j

)
, the following equation holds:

DecryptO(par, ski, Enc(par, M, pki)) = M (24)

DecryptR
(

par, skj, ReEnc
(

par, RKGen
(

par, ski, pkj

)
, CR

))
= M (25)

The integrity of the ciphertext has been verified in the DecryptO and DecryptR, so
here only consistency checks need to be performed on the C1 and C̃1 of the ciphertext C
and the re-encrypted ciphertext CR Equation (21).

Electronics 2024, 13, 848 9 of 16

1. If C = (svk, C1, C2, C3, C4, C5, S) represents the initial ciphertext, then the following
conditions apply:

C1 ·
v
(

ski ·∏j∈S,j ̸=i gk+1−j+i, C2

)
v(di, C3)

= µ · v(d1, dn)
t ·

v
(

dϖ
i ·∏j∈S,j ̸=i dk+1−j+i, dt

)
e
(

di, dϖ ·∏j∈S dk+1−j

)t

= µ · v(d1, dn)
t ·

e
(

dt, ∏j∈S,j ̸=i gk+1−j+i

)
e
(

dt, ∏j∈S gk+1−j+i

)
= µ · v(d1, dn)

t

v(dt, dn+1)

= µ

(26)

2. If CR = (svk, C̃1, C2, C4, S, svk′, rk1, rk2, rk3, rk4, rk5, S′) represents the re-encrypted
ciphertext, then the following conditions apply:

C̃1 = C1 · Tr ·
v
(

∏j∈S,j ̸=i gk+1−j+i, C2

)
v(di, C3)

= µ · v(d1, dk)
t · v
(
ski, dt) · v(Z, d)sqx(0) ·

v
(

∏j∈S,j ̸=i dk+1−j+i, dt
)

v
(

di, e ·∏j∈S gk+1−j

)t

= µ · v
(
dt, Z

)Lω(R)

(27)

It is eventually feasible of calculating:

C̃1

v
(
C2, ZLω(R)

) = µ (28)

From the results of Equations (26)–(28), it can be seen that the decryption results of the
corresponding parts of the ciphertext and re-encrypted ciphertext during the decryption
process are the same, thus confirming consistency.

4.3. Integrity Verification Construction

Setup: Input a security parameter λ and original ciphertext C, whereby the raw data
owner proceeds as follows:

1. Construct bilinear map tuple t = (g, D1, D2, DT , v, d1, d2) and t′ =
(

d2, ds
2, , dsk

2

)
.

Randomly select s R←− Z∗p.
2. Divide the data C into n copies, which is C = {c1, c2, c3, . . .}. Then, each data block

corresponds to a label τi, where i is the segment index. Store each label in TIT
afterward.

3. Add tags to the corresponding ciphertext segment ci, generate a data block B =

{b1, b2, b3, . . .}, and calculate the accumulated value of the data block accB = d∏k
i=1(bi+s)

1 .

4. Generate aux =
(

d2, ds
2, , dsk

2

)
and outsource them to the provider.

5. The provider calculates f (s) = ∏b∈B\bi
(b + s), where s represents the unknown num-

ber and ai represents the coefficient of s. Finally, obtain aux =
{

d2, ds
2, , dsk

2

}
.

Electronics 2024, 13, 848 10 of 16

6. The witness calculates the challenge block: witbj
= da0

2 ∗ (ds
2)

a1 ∗ . . . ∗
(

dsk−1

2

)ak−1
=

∏k−1
i=0

(
dsi

2

)ai

.

7. The cloud storage provider sends
(

witbj
, bj

)
to the trusted witness.

Veri f y: The algorithms included in the verification process are as follows:

1. The witness first checks v(accB, d2)
?
= v

(
d

bj
1 ds

1, witbj

)
. In case the preceding equation

fails to satisfy, an error symbol ⊥ should be outputted. If the equation holds, then
proceed with the subsequent instructions.

2. The witness retrieves the data segment ci and its associated indicator τi from the
challenged block. Then, using KL and cj, the witness calculates τ′j = L(ci||kH).

3. Verify τ′j
?
= τj.

5. Proof of Security
5.1. Ind-Cca Security

Theorem 1. Assuming the Decisional n-BDHE assumption holds, and considering Lα and Lω as
collision-resistant hash functions, the key sharing mechanism achieves IND-CCA security in the
absence of random oracles.

Lemma 1. Suppose there exists an opponent H capable of breaking the security of the key sharing
mechanism under the IND-O-CCA notion. In such a case, one might consider constructing a
simulator B that is capable of solving the Decisional n-BDHE assumption.

Proof. When presented with a Decisional n-BDHE instance (l, d, d1, . . . dk, dk+2, . . . , d2k, T),B
determines if T equals v(dk+1, l) or if T is an arbitrary element chosen randomly from DT .

B starts with an empty table as its initial state:
KeyList: It keeps track of the tuples (ω, i, ski) which contain the details of the private keys.
ReKeyList: Saves the data produced by RKGen(ski, S′, W ′) in the (ω1, i, S′, W ′, rki→S′ ,T ,

µ, R, f lag1) tuple where the information is stored. f lag1 = 1 signifies the legitimacy of
the re-encryption key, while f lag1 = 0 signifies that the re-cipher key is a randomly
generated value.

Initialize. The challenger H chooses a set of users S∗ from {1, 2, . . . , k} and a set of
conditions W∗ = β∗1, β∗2, . . . , β∗k .

Setup. The simulator B selects a random non-zero value σ from Z∗p and an element Z
from D. It then defines the following to create users’ private keys:

e = dσ ·
(

∏
j∈S∗

dk+1−j

)−1
∆
= dϖ (29)

H is provided with the public key PK = (d, d1, . . . , dk, dk+2, . . . , d2k, e, Z, Lα, Lω) and
the secret key sk = ϖ, which are chosen by B.

Query Phase I. B provides answers to the inquiries posed by H as follows:

• Extract(i): After verifying that i is not an element of S∗, B proceeds to check KeyList.
If the tuple (ω, i, ski) is present in KeyList, B will provide H with the corresponding
ski. However, if the tuple does not exist, then B will generate a biased coin ω with a
probability of Pr [ω = 1] equal to δ.

- If ω = 0, then B termination.
- If ω = 1, then B calculates the following equation to obtain the private key ski of

user i in S∗:

Electronics 2024, 13, 848 11 of 16

ski = dσ
i ·
(

∏
j∈S∗

dk+1−j

)−1

=

dσ ·
(

∏
j∈S∗

dk+1−j

)−1
αi

= eαi

= dϖ
i

(30)

• RKGen(i, S′, T): Set i ∈ S∗, j ∈ S∗, and T (W∗) = 1. B ensures that there are no tuples
in KeyList of the form (∗, j, sk j), where ∗ is a placeholder. If such a tuple is found, B
terminates the process. However, if there exists a tuple (∗, i, S′, T , rki→S′ ,T , µ, R, ∗) in
ReKeyList, B returns the value of rki→S′ ,T . If neither of these conditions is met, then B
proceeds with the following steps:
Suppose there is a tuple (1, i, ski) present in KeyList. In that case, B employs ski to
create the re-cipher key rki→S′ ,T using the RKGen algorithm, following the same
procedure as in the actual scheme. B then provides the re-cipher key to H, includes
(∗, i, S′, T , rki→S′ ,T , µ, R, 1) in ReKeyList, and randomly selects r′ and R during the
RKGen algorithm.
Alternatively, B employs a biased coin B to make a decision. If ω equals 1, B in-
teracts with Extract(i) to obtain ski. Subsequently, B generates the re-encryption
key rki→S′ ,T using the RKGen algorithm, returns it to H, and adds (1, i, ski) and
(∗, i, S′, T , rki→S′ ,T , µ, R, 1) to KeyList and ReKeyList, respectively. In the case where ω

equals 0, B sets
(

Aβ = ρβ

)
,
(

Bβ = ρ′β

)
; β ∈ keyword(β) for randomly selected ρβ and

ρ′β from D. Next, B constructs rk1, rk2, rk3, rk4 and selects µ′ and R. Finally, B forwards

the re-cipher key to H and then appends (∗, i, S′, T , rki→S′ ,T , µ, R, 0) to ReKeyList.
• ReEnc(i, S, S′, C): B executes the subsequent procedures:

In the presence of (∗, i, S′, T , rki→S′ ,T , µ, R, ∗) in ReKeyList, B encrypts (PKm, S, φ, W)
as C using the encrypt function. If T (W) equals 1, then B employs the re-encryption
key rki→S′ ,T to generate CR through the ReEnc. Following this, B appends (i, S, S′, C,
CR, ∗) to ReEncList and returns CR to H.
If (∗, i, S′, T , rki→S′ ,T , µ, R, ∗) is not found in ReKeyList, B initiates an RKGen(i, S′)
query to acquire the re-encryption key rki→S′ ,T . Subsequently, B generates CR and
includes (i, S, S′, C, CR, ∗) in the ReEncList.

• DecryptO(i, S, C): B performs a validation check to confirm the fulfillment of
Equations (16)∼(18). If these equations are unsatisfied, then B outputs ⊥. Other-
wise, B proceeds with the following steps:
If there is an entry (1, i, ski) in KeyList, then B utilizes ski to retrieve φ.
In the absence of (1, i, ski) in KeyList, B initiates an Extract(i) query to acquire ski and
applies ski to restore φ.

• DecryptR(i, j, S, S′, CR): B validates the validity of Equations (22) and (23). If the
aforementioned formulas are invalid, then B outputs ⊥ and terminates. If they hold,
then B continues with the following steps:
If there is an entry

(
1, j, sk j

)
in KeyList, then B utilizes sk j to retrieve φ.

In the absence of (1, j, ski) in KeyList, B initiates an Extract(j) query to acquire sk j and
applies sk j to restore φ.

Challenge. Upon completion of Query Phase I as determined by H, it produces two
messages φ0 and φ1 of the same length. B randomly selects a value b from {0, 1} and r∗

from GT . Let l be equal to dt∗ , where t∗ is randomly chosen. B performs the following
computation:

C∗1 = µ∗ · T (31)

C∗2 = l = dt∗ (32)

Electronics 2024, 13, 848 12 of 16

C∗3 = lσ = dσt∗

=

dσ ·
(

∏
j∈S∗

dk+1−j

)−1(
∏
j∈S∗

dk+1−j

)t∗

=

(
e · ∏

j∈S∗
gk+1−j

)t∗

(33)

C∗4 = Lα(β)t∗ , β ∈W∗ (34)

C∗5 = [PRF(µ∗, C∗2)]
K−k||([PRF(µ∗, C∗2)]k ⊕ φb) (35)

G(λ) = (ssk∗, svk∗) (36)

S∗ = S(svk∗, (C∗2 , C∗4 , C∗5)) (37)

If T = v(dk+1, l), then C∗1 = µ∗ · T = µ∗ · v(d, dk+1)
t∗ . Let us denote C∗3 as a legitimacy

challenge cryptographic text. If T represents a stochastic element in DT , then the adversary’s
observation of C∗3 is unrelated to the value of b.

Query Phase II. While adhering to the constraints specified in the IND-O-CCA game,
H proceeds to make further queries, following the identical pattern as in Query Phase I.

Guess. H provides the guess b′, and if b′ matches b, then the output is 1, indicating
that T = v(dk+1, l). Otherwise, the output is 0, indicating that T is a random value selected
from DT .

5.2. Attack Prevention

This section will analyze sequentially the types of attacks that may be affected by
the integrity verification section. It will also demonstrate the resilience of this program to
these attacks.

Tag counterfeiting attack. The property of collision resistance is essential for a hash
function. Due to the utilization of a hash function L

(
c′j
)

in generating tags τ′j , the likelihood
of generating the same tag with different data is extremely low. Consequently, cloud service
providers are unable to deceive witnesses by creating counterfeit tags.

Data deletion attack. When confronted with the witness challenge, the provider is

unable to compute the witness witbj
by aggregating data blocks and tags ∏k−1

i=0

(
dsi

2

)ai

if the
original data is misplaced or erased. Therefore, cloud service providers cannot use tags to
generate legitimate proof of ownership in the event of the loss of raw data

(
witbj

, bj

)
.

Substitution attack. In the event that the witness challenges the provider using a
randomly selected block index, if the provider substitutes the corrupted or deleted data
with an incompatible data block or label, then the token τ′j calculated by the witness
becomes unverifiable. Consequently, the provider is unable to employ alternative tactics to
deceive the witness.

Replay attack. The provider’s utilization of previously cached data to respond to the
new challenge posed by the current authenticator holds no significance. Firstly, during the
verification and challenge process, the likelihood of the verifier executing the challenge
using the same random index j is negligible. This is due to the fact that the provider can
solely compute the witness witbj

through the auxiliary value aux2, whereas the auxiliary
value aux2 transmitted by the original data owner does not include skacc = s. Second,
the witness generated by the challenge before caching needs to store the corresponding
data block, which requires more storage space for the cloud service provider. In summary,
integrity verification is unaffected by replay attacks.

Data leakage attack. Since the data owner has encrypted the data stored on the
server, no third party can know the actual content of the outsourced data during integrity

Electronics 2024, 13, 848 13 of 16

verification and re-encryption. Therefore, even if leaking encrypted data, the system can
still guarantee its security.

6. Performance
6.1. Performance of PBRE

For the proxy broadcast re-encryption subsystem, this section evaluates the time
expenditure for each phase in the scheme with the prior scenario. The Golang-based
PBC software package (version 0.5.14) implements the ciphertext conversion module of
the mobile multimedia sharing system. The PBC software package not only comprises
a cryptographic library based on bilinear pairings but also provides a framework for
building cryptographic systems. The test was conducted on a system comprising an Intel
Xeon X5365 @3.00 GHz processor, Centos 7.5 operating system, and Go 1.19 programming
language. For the test, a 160-bit elliptic curve Y2 = X3 + X was chosen. To minimize errors,
the program was executed 10 times, and the average value was recorded as the test result.
The test results are shown in Table 1.

Table 1. Ciphertext conversion performance comparison.

Scheme
RKGen

(ms)
Encrypt

(ms)
ReEncrypt

(ms)
DecryptO

(ms)
DecryptR

(ms)

Scheme [32] 26.87 14.96 169.6 19.45 20.37
This system 27.93 19.58 53.06 21.88 25.97

Based on the test findings, it was observed that the time required for ciphertext
conversion in the experimental scheme is significantly lower compared to the control
scheme. This is because the experimental scheme only requires a single re-encryption
operation to generate a collection of public ciphertexts. However, the remaining steps of
the system take more time than the control scheme. This is attributed to the fact that the key
length generated by the system is directly proportional to the magnitude of the user group,
and the amount of data processed in each operation is substantially larger. Nevertheless,
the overall efficiency of the subsystem is deemed satisfactory.

6.2. Performance of Integrity Verification

For the integrity verification subsystem, the experiment uses the DCLXVI library to
calculate the elliptic curve, and SHA-3 to generate the 160-bit label. The software and
hardware environment used for the test is the same as the environment of the ciphertext
conversion subsystem. In the subsystem establishment phase, the original ciphertext C
needs to be divided into multiple data segments. Through previous experiments, it was
empirically determined that a data block size of 768 bytes yields optimal results. For the
current testing phase, a dataset of 1 GB was used. The obtained test results are presented in
Table 2.

Table 2. Integrity verification performance comparison.

Scheme
Setup

(s)
Challenge

(µs)
Proof

(s)
Verify
(Bytes)

Storage
(MB)

Scheme [46] 9480 3.3 68.4 42.3 33.1
This system 18.9 0.64 53.06 0.0033 28.9

It can be seen from the comparison between this scheme and the control scheme that
our scheme exhibits certain benefits across various performance aspects. The most crucial
point is that the time complexity of performing the verification operation is a fixed value of
O(2), which does not change as the block size increases. Moreover, the time spent in the
system establishment phase is much smaller than that of the control scheme.

Electronics 2024, 13, 848 14 of 16

This is because the input field of the RSA accumulator used in the comparison scheme
is limited to prime numbers, and each data block needs to be bitwise shifted to avoid a
collision. The bilinear pair accumulator used in this scheme does not need to preprocess
the data during the initialization phase. Moreover, the scheme possesses the advantages of
time cost and space cost in terms of storage overhead, challenges, and proof. In summary,
the solution used by the integrity verification subsystem is suitable for computing-capable
devices or frameworks, so it has a broader range of applications, such as multimedia mobile
devices, edge computing, etc.

7. Conclusions

In this paper, we propose a conditional agent-based re-encryption key sharing mech-
anism for clustered federated learning. The scheme combines a proxy broadcast re-
encryption mechanism and an integrity verification mechanism to protect the keys used
for homomorphic encryption across clusters stored in the cloud. The proxy broadcast
re-encryption subsystem can convert the keys generated and encrypted by the KMC into a
new set of ciphertexts to be provided to the user without the server having the capability
to access the valuable data. Thus, the KMC can control the access conditions through
an access tree. The integrity verification subsystem ensures that the keys are not deleted
or corrupted while reducing the computational and storage costs of the verification pro-
cess. Experiments show that the proposed scheme has significant improvements in overall
computing efficiency and communication cost, especially in terms of storage overhead,
challenges and proofs, and has greater advantages in time cost and space cost. Therefore,
the scheme can be applied well in environments with limited computing power.

Author Contributions: Y.Z., Z.Z. and S.W. were responsible for conceptual analysis, methodological
analysis, and writing of the original draft. S.J., Z.Z. and S.H. were responsible for thesis revision and
review. Y.Z. was responsible for review, supervision, and project administration. All authors have
read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (No. 62072249),
the Natural Science Foundation of Zhejiang Province (No. LHY22E080004), the Open Fund of
the Key Laboratory of Port, Waterway, and Sedimentation Engineering, Ministry of Communica-
tions, China (No. YK222001-7), the National Key Research and Development Program of Guang-
dong Province (No. 2020B0101090002), and the Natural Science Foundation of Jiangsu Province
(No. BK20200418, BE2020106).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Yin, C.; Xi, J.; Sun, R.; Wang, J. Location privacy protection based on differential privacy strategy for big data in industrial internet

of things. IEEE Trans. Ind. Inform. 2017, 14, 3628–3636. [CrossRef]
2. Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.J. An intelligent data gathering schema with data fusion supported for mobile

sink in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719839581. [CrossRef]
3. Ge, C.; Liu, Z.; Susilo, W.; Fang, L.; Wang, H. Attribute-based encryption with reliable outsourced decryption in cloud computing

using smart contract. IEEE Trans. Dependable Secur. Comput. 2023, early access.
4. Liu, J.; Liang, T.; Sun, R.; Du, X.; Guizani, M. A privacy-preserving medical data sharing scheme based on consortium blockchain.

In Proceedings of the GLOBECOM 2020–2020 IEEE Global Communications Conference, IEEE, Taipei, Taiwan, 7–11 December
2020; pp. 1–6.

5. Konečnỳ, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated learning: Strategies for improving
communication efficiency. arXiv 2016, arXiv:1610.05492.

6. Maurya, C.; Chaurasiya, V.K. Collusion-resistant and privacy-preserving data sharing scheme on outsourced data in e-healthcare
system. Multimed. Tools Appl. 2023, 82, 40443–40472. [CrossRef]

7. Yin, Y.; Xu, W.; Xu, Y.; Li, H.; Yu, L. Collaborative QoS prediction for mobile service with data filtering and SlopeOne model. Mob.
Inf. Syst. 2017, 2017, 7356213. [CrossRef]

http://doi.org/10.1109/TII.2017.2773646
http://dx.doi.org/10.1177/1550147719839581
http://dx.doi.org/10.1007/s11042-023-15006-8
http://dx.doi.org/10.1155/2017/7356213

Electronics 2024, 13, 848 15 of 16

8. Li, Q.; Wen, Z.; Wu, Z.; Hu, S.; Wang, N.; Li, Y.; Liu, X.; He, B. A survey on federated learning systems: Vision, hype and reality
for data privacy and protection. IEEE Trans. Knowl. Data Eng. 2021, 35, 3347–3366. [CrossRef]

9. Ge, C.; Susilo, W.; Liu, Z.; Baek, J.; Luo, X.; Fang, L. Attribute-based proxy re-encryption with direct revocation mechanism for
data sharing in clouds. IEEE Trans. Dependable Secur. Comput. 2023, early access.

10. Zheng, T.; Luo, Y.; Zhou, T.; Cai, Z. Towards differential access control and privacy-preserving for secure media data sharing in
the cloud. Comput. Secur. 2022, 113, 102553. [CrossRef]

11. Yeh, L.Y.; Shen, N.X.; Hwang, R.H. Blockchain-based privacy-preserving and sustainable data query service over 5g-vanets. IEEE
Trans. Intell. Transp. Syst. 2022, 23, 15909–15921. [CrossRef]

12. Ren, Y.; Leng, Y.; Cheng, Y.; Wang, J. Secure data storage based on blockchain and coding in edge computing. Math. Biosci. Eng.
2019, 16, 1874–1892. [CrossRef]

13. Maiti, S.; Misra, S. P2B: Privacy preserving identity-based broadcast proxy re-encryption. IEEE Trans. Veh. Technol. 2020,
69, 5610–5617. [CrossRef]

14. Pu, Y.; Hu, C.; Deng, S.; Alrawais, A. R2PEDS: A recoverable and revocable privacy-preserving edge data sharing scheme. IEEE
Int. Things J. 2020, 7, 8077–8089. [CrossRef]

15. Ge, C.; Susilo, W.; Baek, J.; Liu, Z.; Xia, J.; Fang, L. Revocable attribute-based encryption with data integrity in clouds. IEEE Trans.
Dependable Secur. Comput. 2021, 19, 2864–2872. [CrossRef]

16. Zhu, H.; Xu, J.; Liu, S.; Jin, Y. Federated learning on non-IID data: A survey. Neurocomputing 2021, 465, 371–390. [CrossRef]
17. Ghosh, A.; Hong, J.; Yin, D.; Ramchandran, K. Robust federated learning in a heterogeneous environment. arXiv 2019,

arXiv:1906.06629.
18. Ghosh, A.; Chung, J.; Yin, D.; Ramchandran, K. An efficient framework for clustered federated learning. Adv. Neural Inf. Process.

Syst. 2020, 33, 19586–19597. [CrossRef]
19. Duan, M.; Liu, D.; Ji, X.; Wu, Y.; Liang, L.; Chen, X.; Tan, Y.; Ren, A. Flexible clustered federated learning for client-level data

distribution shift. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 2661–2674. [CrossRef]
20. Ren, Y.; Leng, Y.; Qi, J.; Sharma, P.K.; Wang, J.; Almakhadmeh, Z.; Tolba, A. Multiple cloud storage mechanism based on

blockchain in smart homes. Future Gener. Comput. Syst. 2021, 115, 304–313. [CrossRef]
21. Sun, J.; Xu, G.; Zhang, T.; Yang, X.; Alazab, M.; Deng, R.H. Verifiable, fair and privacy-preserving broadcast authorization for

flexible data sharing in clouds. IEEE Trans. Inf. Forensics Secur. 2022, 18, 683–698. [CrossRef]
22. Zhang, X. Bilinear mapping and blockchain-based privacy-preserving and data sharing scheme for smart grid. Int. J. Netw. Secur.

2023, 25, 151–160.
23. Ge, C.; Susilo, W.; Baek, J.; Liu, Z.; Xia, J.; Fang, L. A verifiable and fair attribute-based proxy re-encryption scheme for data

sharing in clouds. IEEE Trans. Dependable Secur. Comput. 2021, 19, 2907–2919. [CrossRef]
24. Ren, Y.; Huang, D.; Wang, W.; Yu, X. BSMD: A blockchain-based secure storage mechanism for big spatio-temporal data. Future

Gener. Comput. Syst. 2023, 138, 328–338. [CrossRef]
25. Blaze, M.; Bleumer, G.; Strauss, M. Divertible protocols and atomic proxy cryptography. In Proceedings of the International

Conference on the Theory and Applications of Cryptographic Techniques, Espoo, Finland, 31 May–4 June 1998; pp. 127–144.
26. Weng, J.; Deng, R.H.; Ding, X.; Chu, C.K.; Lai, J. Conditional proxy re-encryption secure against chosen-ciphertext attack. In

Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, Sydney, Australia,
10–12 March 2009; pp. 322–332.

27. Fang, G.; Sun, Y.; Almutiq, M.; Zhou, W.; Zhao, Y.; Ren, Y. Distributed Medical Data Storage Mechanism Based on Proof of
Retrievability and Vector Commitment for Metaverse Services. IEEE J. Biomed. Health Inform. 2023, early access.

28. Chu, C.K.; Weng, J.; Chow, S.S.; Zhou, J.; Deng, R.H. Conditional proxy broadcast re-encryption. In Proceedings of the Information
Security and Privacy: 14th Australasian Conference, ACISP 2009, Proceedings 14, Brisbane, Australia, 1–3 July 2009; pp. 327–342.

29. Liu, Y.; Ren, Y.; Ge, C.; Xia, J.; Wang, Q. A CCA-secure multi-conditional proxy broadcast re-encryption scheme for cloud storage
system. J. Inf. Secur. Appl. 2019, 47, 125–131. [CrossRef]

30. Ren, Y.; Qi, J.; Liu, Y.; Wang, J.; Kim, G.J. Integrity verification mechanism of sensor data based on bilinear map accumulator.
ACM Trans. Internet Technol. (TOIT) 2021, 21, 1–19. [CrossRef]

31. Ge, C.; Liu, Z.; Xia, J.; Fang, L. Revocable identity-based broadcast proxy re-encryption for data sharing in clouds. IEEE Trans.
Dependable Secur. Comput. 2019, 18, 1214–1226. [CrossRef]

32. Weng, J.; Chen, M.; Yang, Y.; Deng, R.; Chen, K.; Bao, F. CCA-secure unidirectional proxy re-encryption in the adaptive corruption
model without random oracles. Sci. China Inf. Sci. 2010, 53, 593–606. [CrossRef]

33. Borcea, C.; Polyakov, Y.; Rohloff, K.; Ryan, G. PICADOR: End-to-end encrypted Publish–Subscribe information distribution with
proxy re-encryption. Future Gener. Comput. Syst. 2017, 71, 177–191. [CrossRef]

34. Benaloh, J.; de Mare, M.; Accumulators, O.W. A Decentralized Alternative to Digital Signatures. In Proceedings of the Advances
in Cryptology-Proceedings of Eurocrypt, Perugia, Italy, 9–12 May 1994; Volume 93.

35. Miers, I.; Garman, C.; Green, M.; Rubin, A.D. Zerocoin: Anonymous distributed e-cash from bitcoin. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, IEEE, Berkeley, CA, USA, 19–22 May 2013; pp. 397–411.

36. Ren, Y.; Lv, Z.; Xiong, N.N.; Wang, J. HCNCT:A Cross-chain Interaction Scheme for the Blockchain-based Metaverse. ACM Trans.
Multimed. Comput. Commun. Appl. 2023, accepted. [CrossRef]

http://dx.doi.org/10.1109/TKDE.2021.3124599
http://dx.doi.org/10.1016/j.cose.2021.102553
http://dx.doi.org/10.1109/TITS.2022.3146322
http://dx.doi.org/10.3934/mbe.2019091
http://dx.doi.org/10.1109/TVT.2020.2982422
http://dx.doi.org/10.1109/JIOT.2020.2997389
http://dx.doi.org/10.1109/TDSC.2021.3065999
http://dx.doi.org/10.1016/j.neucom.2021.07.098
http://dx.doi.org/10.1109/TIT.2022.3192506
http://dx.doi.org/10.1109/TPDS.2021.3134263
http://dx.doi.org/10.1016/j.future.2020.09.019
http://dx.doi.org/10.1109/TIFS.2022.3226577
http://dx.doi.org/10.1109/TDSC.2021.3076580
http://dx.doi.org/10.1016/j.future.2022.09.008
http://dx.doi.org/10.1016/j.jisa.2019.05.002
http://dx.doi.org/10.1145/3380749
http://dx.doi.org/10.1109/TDSC.2019.2899300
http://dx.doi.org/10.1007/s11432-010-0047-3
http://dx.doi.org/10.1016/j.future.2016.10.013
http://dx.doi.org/10.1145/3594542

Electronics 2024, 13, 848 16 of 16

37. Wang, J.; Gao, Y.; Liu, W.; Wu, W.; Lim, S.J. An Asynchronous Clustering and Mobile Data Gathering Schema Based on Timer
Mechanism in Wireless Sensor Networks. Comput. Mater. Contin. 2019, 58, 711–725. [CrossRef]

38. Wang, J.; Ju, C.; Gao, Y.; Sangaiah, A.K.; Kim, G.J. A PSO based energy efficient coverage control algorithm for wireless sensor
networks. Comput. Mater. Contin. 2018, 56, 433–446.

39. Ren, Y.; Zhu, F.; Sharma, P.K.; Wang, T.; Wang, J.; Alfarraj, O.; Tolba, A. Data query mechanism based on hash computing power
of blockchain in internet of things. Sensors 2019, 20, 207. [CrossRef] [PubMed]

40. Ge, C.; Susilo, W.; Liu, Z.; Xia, J.; Szalachowski, P.; Fang, L. Secure keyword search and data sharing mechanism for cloud
computing. IEEE Trans. Dependable Secur. Comput. 2020, 18, 2787–2800. [CrossRef]

41. Barić, N.; Pfitzmann, B. Collision-free accumulators and fail-stop signature schemes without trees. In Proceedings of the
International Conference on the Theory and Applications of Cryptographic Techniques, Konstanz, Germany, 11–15 May 1997;
pp. 480–494.

42. Camenisch, J.; Lysyanskaya, A. Dynamic accumulators and application to efficient revocation of anonymous credentials. In
Proceedings of the Advances in Cryptology—CRYPTO 2002: 22nd Annual International Cryptology Conference, Proceedings 22,
Santa Barbara, CA, USA, 18–22 August 2002; pp. 61–76.

43. Nguyen, L. Accumulators from bilinear pairings and applications. In Proceedings of the Topics in Cryptology–CT-RSA 2005: The
Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, 14–18 February 2005; pp. 275–292.

44. Damgård, I.; Triandopoulos, N. Supporting Non-Membership Proofs with Bilinear-Map Accumulators. Cryptology ePrint
Archive. 2008. Available online: https://eprint.iacr.org/2008/538 (accessed on 28 December 2008).

45. Barsoum, A.F.; Hasan, M.A. Provable multicopy dynamic data possession in cloud computing systems. IEEE Trans. Inf. Forensics
Secur. 2014, 10, 485–497. [CrossRef]

46. Hao, Z.; Zhong, S.; Yu, N. A privacy-preserving remote data integrity checking protocol with data dynamics and public
verifiability. IEEE Trans. Knowl. Data Eng. 2011, 23, 1432–1437.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.32604/cmc.2019.05450
http://dx.doi.org/10.3390/s20010207
http://www.ncbi.nlm.nih.gov/pubmed/31905910
http://dx.doi.org/10.1109/TDSC.2020.2963978
https://eprint.iacr.org/2008/538
http://dx.doi.org/10.1109/TIFS.2014.2384391

	Introduction
	Related Work
	Proxy Re-Encryption
	Cryptographic Accumulator

	Preliminaries
	Bilinear Mapping
	The N-BDHE Presupposition
	The Q-SDH Presupposition
	Tag Index Table

	Scheme
	Overview
	Re-Encryption Construction
	Integrity Verification Construction

	Proof of Security
	Ind-Cca Security
	Attack Prevention

	Performance
	Performance of PBRE
	Performance of Integrity Verification

	Conclusions
	References

