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Abstract: The evolving landscape of network systems necessitates automated tools for streamlined
management and configuration. Intent-driven networking (IDN) has emerged as a promising solution
for autonomous network management by prioritizing declaratively defined desired outcomes over
traditional manual configurations without specifying the implementation details. This paradigm
shift towards flexibility, agility, and simplification in network management is particularly crucial
in addressing inefficiencies and high costs linked to manual management, notably in the radio
access part. This paper explores the concurrent operation of multiple intents, acknowledging the
potential for conflicts, and proposes an innovative reformulation of these conflicts to enhance network
administration effectiveness. Following the initial detection of conflicts among intents using a
gradient-based approach, our work employs the Multiple Gradient Descent Algorithm (MGDA) to
minimize all loss functions assigned to each intent simultaneously. In response to the challenge posed
by the absence of a closed-form representation for each key performance indicator in a dynamic
environment for computing gradient descent, the Stochastic Perturbation Stochastic Approximation
(SPSA) is integrated into the MGDA algorithm. The proposed method undergoes initial testing using
a commonly employed toy example in the literature before being simulated for conflict scenarios
within a mobile network using the ns3 network simulator.

Keywords: IDN; MGDA; SPSA; intent; conflict; autonomous network

1. Introduction

Autonomous networks are envisioned to provide the necessary integration of learning
and understanding in networks. IDN enables a path towards realizing a network able to
comprehend and deploy user requirements irrespective of the underlying infrastructure.
Internet Engineering Task Force (IETF) defines intent as “a set of operational goals that a
network should meet and outcomes that a network is supposed to deliver, defined in a declarative
manner without specifying how to achieve or implement them” [1]. The intent can be charac-
terized as an optimization objective, which serves as a high-level directive provided by a
network stakeholder (service subscriber, network operator, administrator, or infrastructure
provider) [2]. It entails the determination of a specific key performance indicator (KPI) that
the network is expected to achieve, such as “increase handover success to x%” or “reduce load
by y%” [3].

1.1. Background

Conflict management and resolution is an exciting challenge for IDN systems [4].
The conflicts can be explicit or implicit based on the deployment stage of an intent [5].
Explicit conflicts will be apparent from the intent expressions, but a IDN system still has to
understand the conflict that is apparent to humans. We are more interested in an implicit
conflict that becomes apparent only after a set of conflicting actions are determined, usually
before deployment as per a determined set of KPIs. For example, a conflict between intent
objectives can be due to competing service requirements. In this context, assuring a KPI
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fulfills the expectation that a particular intent might negatively influence the assurance of a
KPI associated with another intent. Moreover, conflicts can stem from a lack of alignment
in the target network control parameter values related to KPIs associated with disparate
intents [3]. A notable manifestation of such conflict is commonly referred to as a direct
target conflict [6]. This category of conflict materializes when multiple intents, each aiming
to accomplish distinct objectives, impose contradictory requirements on network control
parameters (NCPs). Such a scenario arises when one intent necessitates a reduction in the
value of a particular NCPs, while simultaneously, another intent advocates for an increase
in the values of the same NCPs.

1.2. Related Works

Banerjee et al. [3] present a closed-loop model, wherein each KPI is managed by a
cognitive function (CF) and assumes the presence of a single intent activating two distinct
functions, namely mobility robustness optimization (MRO) and mobility load balancing
(MLB), both controlling the same parameters in a direct target conflict. The Nash social
welfare function is proposed as a solution to ascertain the optimal value of the parameters
and propagated to the network operator for decision-making. This work is extended by
modeling the network as a Fisher market model, considering diverse intents’ priorities [7].
The Eisenberg–Gale solution is employed to determine optimal values of control parameters,
which are tuned to KPI functions. The system’s performance is enhanced by 9.18% with
a reduced computation time. Furthermore, a diverse range of bargaining solutions, such
as the Weighted Nash Bargaining Solution (WNBS), the Kalai–Smorodinsky Bargaining
Solution (KSBS), and the Shannon Entropy Bargaining Solution (SEBS), is explored in [8] to
identify optimal parameter values. The goal is to utilize these methods in an intent conflict
resolution framework with the objective of ensuring Jain-based fairness. In another study,
Baktir et al. [9] utilize fitness values or penalties associated with each intent to manage
conflicting conditions, representing the cost of failure to fulfill or partially fulfill their KPIs.
The conflict resolution process assesses the potential impact of KPI to aid the selection of
optimal actions to minimize the predicted penalty followed by a controlled execution in the
network environment. Furthermore, in the study presented in [10], three distinct intents
are examined, each necessitating fulfillment for different services, with packet priority and
maximum bit rate identified as the controlling parameters. Conflicts arise when optimizing
one target KPI has a detrimental impact on another. To tackle this issue, a model-free
multi-agent reinforcement learning approach is employed, where each agent is tasked
with adjusting a parameter associated with the intent-defined objective based on intent
priorities expressed as penalties. This approach produces a proportional degradation of
lower-priority intents to prioritize higher-priority ones.

1.3. Motivation and Contributions

Conflict management and resolution have gained significant attention within the
intent-based networking community. Recent studies have explored centralized and dis-
tributed coordination-based methods to alleviate the conflicts and manage their impact
on the service KPIs. However, to the best of our knowledge, there is a lack of literature
discussing the possibility of resolving conflict amongst intents with similar or competing
objectives in a multi-intent environment. Utilizing classic optimization theory can provide
improvements and optimal conditions to handle conflicts in an efficient way. Hence, the con-
cept of conflict within the IDN environment is redefined by introducing a novel approach
that leverages gradients of loss functions associated with each intent. This definition also
introduces an inherent conflict detection mechanism without needing an additional step in
the resolution process within the system model. The contributions are listed as follows:

• In the proposed framework, the concurrent reception of multiple intents is addressed
as a multi-objective optimization problem, with potential conflict situations defined in
a novel way and resolution facilitated through the proposed application of the MGDA.
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• To utilize MGDA, it is imperative to compute derivatives of the loss function, with the
prerequisite being the availability of a closed form of the loss function for each intent.
Obtaining closed-form expressions for each intent to facilitate using derivatives is
computationally challenging, especially in a dynamic environment. Addressing this
challenge, SPSA, a derivative-free method, is employed to approximate gradients to
facilitate MGDA in this work to optimize shared NCPs.

• The extensive experimental analysis is performed to test various boundary conditions
of the proposed framework and solve the potential of the conflicts.

1.4. Paper Organization

The rest of the paper is organized as follows. Section 2 describes the system model
for intents and the definition, management, and resolution of conflicts. Section 3 provides
the proposed method for the resolution and optimization of conflicts. Section 4 provides
a detailed experimental model and analysis to assess the proposed methodology. Finally,
Section 5 concludes the paper along with potential future directions.

2. System Model

This section establishes a model for the intent representation leading to defining a
conflict on a generic and intent level. The conflict resolution methodology is established by
discussing a model for SPSA and its role when coupled with MGDA.

The set of N intents can be represented as I = {I1, I2, . . . , IN}, where In denotes the
nth intent characterized by the operational goal, κn, that includes a specific KPI and the
corresponding desired magnitude of change or target value denoted by δn, expressed
as pairs

In = {(κn, δn) | κn ∈ K, δn ∈ ∆} ∀n = 1, 2, . . . , N.

Consider that a received intent, In, with a specific directive such as “increase the energy
efficiency by 5%” can be formally expressed as In = {(κn, δn)}, where κn is energy efficiency
and δn is 5%.

2.1. A New Approach to Defining the ’Conflict’ in IDN

Consider the simultaneous reception of N ≥ 2 distinct intents, each linked to a unique
KPI, κn, with a specific target value, δn. Each KPI κn, such as coverage, interference,
and energy efficiency, can be tuned through a defined set of NCPs, Θ = {θ1, θ2, θ3, · · · , θP},
including parameters such as antenna tilt and downlink transmission power, as discussed
in [11]. These NCPs can be shared across various operational goals κn to attain their respec-
tive target values δn. The total set of NCPs for each KPI κn is denoted as Θn =

{
θ†, θn

}
,

where θ† denotes the shared NCPs across all intents and θn denotes the intent-specific
NCPs (e.g., Θ1 =

{
θ†, θ1

}
, θ† = {θ1, θ2} and θ1 = {θ5, θP}). For each intent In, there is an

associated loss function Ln(θ
†, θn) designed to quantify the disparity between the current

state of the performance metric κn and its target value δn. This situation can be viewed as a
multi-task optimization problem, where diverse intent goals drive the determination of
an optimal set of parameters Θ∗ =

{
Θ1, Θ2, · · · , ΘN

}
=

{
θ†, θ1, θ2, · · · , θN

}
to minimize

Ln(θ
†, θn) ∀n. Formally, the multi-task objective is expressed as

Θ∗ = arg min
Θ

{
Lw(Θ) =

N

∑
n=1

wnLn

(
θ†, θn

)}
, (1)

where wn ≥ 0 is the pre-defined weight (i.e., priority) for nth intent and ∑N
n=1 wn = 1 .

In practice, a common objective involves minimizing the average loss with equal weights
for all intents as

Θ∗ = arg min
Θ

{
Lw(Θ) =

1
N

N

∑
n=1

Ln

(
θ†, θn

)}
, (2)
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In the context of optimization, when utilizing the gradient descent directly, the update
step can be given by Θ← Θ− α∇Lw(Θ), where α ∈ R+ represents a positive learning rate.
In a given scenario, if the decrease in the loss for In, Ln

(
θ†, θn

)
, coincides with an increase

in the loss for Im, Lm

(
θ†, θm

)
, where n ̸= m, this situation can be interpreted as a conflict

between intents. Alternatively, if the minimization of the average loss, Lw(Θ), leads to an
increase in the loss for any In, Ln

(
θ†, θn

)
, it can also be characterized as a conflict. In such

situations, the occurrence of a conflict concerning gradient vectors can be characterized
when two gradients (gn = ∇Ln(θ

†, θn) and gm = ∇Lm(θ
†, θm)) associated with opposing

loss directions (specifically, when the cosine similarity, represented as cos ϕnm, is less than
or equal to zero, i.e., cos ϕnm ≤ 0, where ϕnm is the angle between In and Im), as in Figure 1.

In this defined context, the objective of conflict resolution is to optimize the θ so
that both the average loss and each individual loss are minimized simultaneously. This
phenomenon is known as conflicting gradients [12] and has been investigated in the
literature [13–17] under the performance evolution of multi-task learning (MTL).
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Figure 1. (a) 3D plot of the average loss function of Toy example [13] based on the shared parameters,
θ† = {θ1, θ2} and (b) Contour plot of average loss function of Toy example and conflict

2.2. Multiple Gradient Descent Algorithm (MGDA)

The MGDA [14], embodying an advanced methodology within the domain of a multi-
objective optimization, employs the indispensable Karush–Kuhn–Tucker (KKT) conditions
as crucial prerequisites for attaining optimality [18]. It is demonstrated that the solution to
this optimization problem can be either zero, in which case the resulting point complies with
the KKT conditions, or the solution provides a descent direction that enhances performance
across all tasks. The simultaneous optimization of multiple interconnected tasks can be
effectively managed through the application of MTL. In this particular learning paradigm,
a unified model is developed and trained to effectively address a multitude of distinct
yet interrelated tasks. The application of the MGDA in this context offers a promising
methodology for obtaining a solution that not only furnishes a descent direction but also
enhances performance across all tasks concurrently. Multi-objective optimization in terms
of gradients can be expressed as

λ = min
λ1,λ2,...,λN


∥∥∥∥∥ N

∑
n=1

λngn

∥∥∥∥∥
2

2

∣∣∣∣∣ N

∑
n=1

λn = 1, λn ≥ 0 ∀n

 (3)

where gn is the gradient of the loss function of nth intent, λn is the weights of nth gradient
and λ = [λ1, λ2, . . . , λN ]

T .
All methods presented in the literature for addressing the challenge of conflicting

gradients operate under the assumption that the closed-form expressions of the loss func-
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tions for each task are readily accessible, allowing for the direct calculation of gradients by
taking the derivatives of the respective loss functions. In the context of the IDN scenario,
the computational complexity is attributed to the dynamic nature of the environment,
rendering the calculation of gradients through the direct derivation of loss functions for
each intent to be a computationally intensive process. This study proposes the application
of SPSA within the context of MGDA in IDN to address conflicting intents, eliminating
the necessity for closed-form expressions of loss functions. SPSA, as elaborated below, is a
derivative-free method explicitly developed to approximate parameters that minimize the
objective function by acquiring measurements directly from the environment [19].

2.3. Simultaneous Perturbation Stochastic Approximation (SPSA)

SPSA is a derivative-free optimization method designed to find the optimum input
values, x∗, which minimize a multivariate function f (x) : Rn → R, defined as

x∗ = argmin
x

f (x), (4)

where x ∈ Rn = (xn)0≤n≤N−1 = (x0, x1, ..., xn) is the input parameters of f (x). This
methodology proves especially advantageous when the function, f (x), lacks a closed-form
expression, thereby implying that the exact gradient is not readily available for utilization
in gradient descent algorithms. In such scenarios, SPSA relies on noisy and stochastic
function measurements, embodying a data-driven and robust approach for optimization
in situations where a comprehensive understanding of the characteristics of the function is
uncertain or limited [19].

It employs an iterative optimization approach, commencing with x0, initial input
values of x, and subsequently updating them using a stochastic approximation of gradient
∇ f (x), denoted as ĝt

f =
(

ĝt
fn

)
0≤n≤N−1

, where ĝt
fn

is the nth element of ĝt
f ∈ Rn at the

iteration of t and given as

ĝt
fn
=

f
(
xt

n + ctρt
n
)
− f

(
xt

n − ctρt
n
)

2ctρt
n

, (5)

where ct = c/tγ is the perturbation size and ρt
n signifies a random perturbation element

applied to the nth parameter at the iteration of t, ρt ∈ Rn ∼ U (−1, 1). For t ∈ {0, 1, 2, . . . , T}
iteration, the iterative update of a parameter set, x, with gradient approximations to
minimize the f (x), is given as

xt+1 ← xt − ηtĝt
f , (6)

where the step size, ηt, is defined in [20] as

ηt =
η

(t + A)ν . (7)

The performance of the SPSA algorithm hinges on the critical choice of the step size,
ηt, and perturbation size, ct, with suggested values for computing γ and ν being 0.101 and
0.602, respectively, as recommended in [21].

3. Proposed SPSA-Based MGDA for Conflict Resolution in IDN

The proposed method given in Algorithm 1 utilizes the MGDA for handling conflicting
intents and SPSA to approximate the gradients due to the dynamic environment and the
absence of a closed form of the loss function for each KPI. The system model, illustrated
in Figure 2, outlines the process of receiving intents in the format of KPIs, κn, and target
values, δn. Subsequently, the system identifies the shared NCPs, θ†, to optimize each KPI.
The gradients need to be approximated using the SPSA method to employ MGDA. Initially,
the shared parameters are perturbed, and measurements, m+ and m−, are obtained for
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each parameter set,
[
θ†
]+

and
[
θ†
]−

via the ns3 network simulator. Subsequently, losses,

L+ and L− (i.e., L = {L1, L2, L3, · · · , LN}), are computed based on the measurements and
the target values that are requested from the intents. Afterward, gradients ĝt are estimated
to leverage the MGDA algorithm, as outlined in (3), for the minimization of all the losses.
Finally, the shared NCPs, θ†, are updated based on the weights wt obtained from the
MGDA algorithm.

Algorithm 1: Proposed SPSA-based MGDA.

1 Input: SPSA parameters Θ0, Θmax, Θmin, η, A, ν, c, γ
2 Output: Θ∗

3 for t = 0, 1, . . . , T do
4 Calculate step size ηt: ηt ← η

(t + A)ν
;

5 Calculate perturbation size ct: ct ← c
tγ

;

6 Generate random perturbation vector: ρt ∼ U (−1, 1);
7 Compute the perturbed parameter sets:

8

[
θ†
]+
← θ†t

+ ctρt

9

[
θ†
]−
← θ†t − ctρt;

10 Measure the objective function for the perturbed sets:

11 m+ ← O
([

θ†
]+)

12 m− ← O
([

θ†
]−)

;

13 Compute the losses for the measurement and target values of intents, δn :
14 L+

n = (m+
n − δn)

2

15 L−n = (m−n − δn)
2;

16 Estimate the gradient g using measurements: ĝt ← 1
2ctρt (L+ − L−);

17 Find weights based on MGDA:

18 λ = minλ1,λ2,...,λN

{∥∥∥∑N
n=1 λngn

∥∥∥2

2

∣∣∣∣∣ ∑N
n=1 λn = 1, λn ≥ 0 ∀n

}
19 Update the parameters using the estimated gradient:

20 θ†t+1 ← θ†t − ηtwtT ĝt;
21 Constrain the values of θt+1 to be within the specified bounds

θ†t+1 ← min(θ†t+1
, (θ†)max);

22 θ†t+1 ← max(θ†t+1
, (θ†)min);

23 end
24 return Θ∗ = θ†;
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Figure 2. Proposed SPSA-based MGDA system model (Θ1 =
{

θ†, θ1
}

, θ† = {θ1, θ2} and

θ1 = {θ5, θP}).

4. Performance Analysis
4.1. SPSA-Based MGDA for Toy Example

The toy example presented in [13] is employed to illustrate the conflicting behavior of
gradients in Figures 3 and 4 when solely using the SPSA-based vanilla gradient descent
(VGD) algorithm [22]. This scenario assumes the absence of closed-form loss functions (i.e.,
not utilizing derivatives for gradients), necessitating the measurement in each iteration.
Hence, the SPSA algorithm was employed to approximate the gradients of Lw, L1, and L2.
Figure 3 illustrates contour plots of the loss functions Lw, L1, and L2, along with the
trajectory for the shared parameters, θ† = {θ1, θ2}, when employing VGD to minimize Lw.
Furthermore, it is evident that L2 increases after a certain number of iterations, while Lw
and L1 consistently decrease when the objective is to minimize Lw using VGD, as depicted
in Figure 4. This scenario is defined as a conflict in the previous section.
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Figure 3. Trajectories for Lw, L1 and, L2 with SPSA-based VGD (Initial point for (θ1, θ2)) is (−12,−5)).

In contrast, Figures 5 and 6 demonstrate the application of the MGDA algorithm in the
same scenario. Figure 5 illustrates the trajectory for the shared parameters, θ† = {θ1, θ2},
when utilizing SPSA-based MGDA to minimize Lw. The MGDA method facilitates the
reduction of both L1 and L2 when the goal is to minimize Lw, as depicted in Figure 5. This
algorithm halts when any tasks, L1, L2, or the common objective, Lw, reach the optimum
point. In this example, L2 reaches the minimum point, as depicted in Figure 6. However,
the VGD algorithm solely concentrates on the common objective, Lw, without considering
any contributing tasks, L1 and L2.
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4.2. A Conflict Scenario in IDN with KPI Measurement Tools

One of the typical conflicts in the literature revolves around KPIs associated with
coverage and interference [7,23–25]. This issue often arises due to the inherent trade-off
between optimizing coverage, which involves extending the network reach and managing
interference, which requires minimizing signal disruptions in neighboring cells. A vital
indicator of the coverage within a network is the reference signal receive power (RSRP),
which reflects the strength of the signal received by the user equipment. The mean RSRP
can be employed as a KPI to provide a representative measurement of signal strength
across the entire network by averaging RSRP values from currently active and utilized
cells. The mean signal-to-interference ratio (SIR), excluding the influence of background
noise registered by receivers, can be employed to evaluate interference in the network. This
calculation aids in assessing the extent of inter-cell interference (ICI) and its consequent
impact on network capacity and spectral efficiency.

Typically, these conflicting KPIs are commonly controlled by two shared control
parameters: Transmission power and Antenna tilt angle [11]. The dynamic adjustment of
transmission power and antenna tilt angle is crucial to optimize and balance these con-
flicting KPIs in wireless communication systems. Increasing transmission power levels
diminishes outage probability at the cell edge, ensuring a more robust signal reach. Con-
versely, reducing power transmission levels effectively minimizes interference, thereby
optimizing the network capacity. Similarly, adjusting the antenna tilt plays a pivotal role:
reducing the tilt angle extends the coverage area, enhancing coverage in affected regions,
whereas increasing tilt concentrates the signal within a smaller area, effectively mitigating
inter-cell interference.

4.3. Simulation Setup

A cellular network model with three eNB sites is employed to model conflicts within
an IDN approach as a simulation scenario. Among the 100 users, 80 are designated as
call-text users, while the remaining 20 are involved in video streaming. This simulation
scenario is evaluated using the ns-3 LENA platform, adhering to the parameters outlined
in Table 1. The simulation involves two shared control parameters: Transmission power and
Antenna tilt angle. The transmission power of the antenna is varied within a range of 30 dBm
to 45 dBm, while the mechanical tilt of the antenna is adjusted within a range of 0◦ to 15◦,
with incremental adjustments of 1◦ at each step. In Figure 7, the plot illustrates variations
in KPIs (SINR and RSRP) corresponding to the adjustments made to two shared NCPs as
illustrated in Figure 8.
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Figure 7. (a) Variation of mean RSRP and (b) mean SINR with respect to shared parameters: trans-
mission power and tilt angle.
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Figure 8. Simulation scenario.

Table 1. Simulation Parameters.

Parameter Value

No. eNB sites 3
Sectors per site 3
No of CallText UEs 80
No. of Video UEs 20
Tx Power 30–45 dBm
Path loss model 3GPPPropagationLossModel
Mobility model for CallText ConstantPosition
Mobility model for Video SteadyStateRandomWaypointMobilityModel
Scheduler Proportional fair
Shadow Fading Log-normal, std = 8 dB
AMC model PiroEW2010
Cell layout radius 500 m
Bandwidth 5 MHz
No. of RBs 25; RBs per RBG:2
Horizontal angle ϕ −180◦ ≤ ϕ ≤ 180◦

Half power beamwidth Vertical 10◦: Horizontal 70◦

Antenna gain G0 10 dBi
Vertical angle θ −90◦ ≤ ϕ ≤ 90◦

Side lobe level Vertical −18 dB : Horizontal −20 dB
Side lobe level0 −30 dB
Actions (tilt) 0◦–15◦: Granularity 1◦

Simulation time 10 s
Confidence level 95%
No. of independent runs 77

For each iteration, the simulations are run several times to obtain the measurements
required for the objective function in line# 11, 12 of Algorithm 1 and consolidated output
parameter measurement for the optimization of conflicting intents. Hence, each simulation
runs for 10 s, and the measurements are performed to obtain RSRP and SINR values from
the simulator. These values are used to estimate the gradient and optimize the expected
output for the intent using MGDA.
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4.4. Simulation Results

The initial parameters are set at 40 dBm for transmission power and 7◦ for antenna tilt
angle. The corresponding KPI values for RSRP and SINR with a 95% confidence level are
−86± 1.32 dBm and 2.6± 0.24 dB, respectively. The scenario assumes the simultaneous
reception of two distinct intents for a sector site, with the target value of SINR set at −3 dB
for one intent and−100 dBm for RSRP for the other. The optimization processes exclusively
employ the SPSA-based VGD algorithm and the proposed SPSA-based MGDA, and a
comparative analysis is conducted. Both algorithms aim to identify optimal parameter
values that minimize losses per the specified target values within the intents.

In Figures 9 and 10, two algorithms depict the variations in the loss functions, where
L1 denotes the RSRP loss, and L2 represents the SINR loss. It is important to note that the
objective function is to minimize the average losses for both algorithms. It is observed
that the SPSA-based VGD algorithm successfully minimizes both losses initially, but the L2
loss increases after reaching its minimum value (i.e., achieving the target value), as shown
in Figure 9. This illustrates that the SPSA-based VGD algorithm encounters challenges
in resolving conflicting situations, as evidenced by the observed increase in the L2 loss
after reaching its minimum value. On the other hand, the SPSA-based MGDA ensures the
concurrent minimization of all losses without generating conflicts, as depicted in Figure 10.
The algorithm concludes its operation when at least one target is achieved.
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Figure 9. Minimization of L1 and L2 with SPSA-based VGD.
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Figure 10. Minimization of L1 and L2 with SPSA-based MGDA.
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5. Conclusions

Conflict management is a critical challenge in emerging IDN owing to its key role
in the validation of user intents. This paper proposes a novel approach to handle direct
conflicts between competing user intents in order to realize an optimal deployment solution
for them. The lack of a closed-form objective function serves as a motivation to employ
a gradient-free optimization framework consisting of SPSA and MGDA. The proposed
solution involves a perturbed search through the parameter space for selected NCPs (i.e.,
mechanical tilt and transmit power). Optimal values are determined for these NCPs that
satisfy and meet the target values dictated by the user intents. An experimental analysis
reinforces the assertions regarding the performance of the proposed solution, as optimal
operational values are determined for the NCPs.

The future work expands upon the scope of the proposed solution in a complete intent
processing pipeline with an active closed-loop control of an intent’s life cycle. Moreover,
the selection criterion for the NCPs and the target values will be determined to tune the
proposed algorithm for a generic design applicable in different types of conflicting scenarios.
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