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Abstract: Dynamic binary instrumentation (DBI) is a technique that enables the monitoring and
analysis of software, providing enhanced performance compared to other analysis tools. However,
to provide the robust dynamic analysis capabilities, it commonly requires the setup of separate
environments for analysis, thereby increasing the contrast with normal execution and the distinctive
features that may reveal the presence of the DBI environment. Malware adapts to detect the presence
of DBI environments, and it consequently leads to the expansion of the attack surface. In this paper, we
provide an in-depth exploration of anti-instrumentation techniques that can be exploited by malware,
with a specific focus on the Windows operating system. Leveraging the unique features of the DBI
environment, we introduce and categorize DBI detection techniques. Additionally, we conduct a
comprehensive analysis of the techniques through the implementation algorithms with bypassing
methods for the techniques. Our experiments showcase the effectiveness of these techniques on the
latest versions of several DBI frameworks. Furthermore, we address associated concerns with the
aim of contributing to the development of enhanced tools to combat malicious activities exploiting
DBI and propose directions for future research.

Keywords: computer security; dynamic binary instrumentation; reverse engineering; software
protection

1. Introduction

Nowadays, the scale of damage through various types of attacks is increasing, from
using malicious codes and malware to not only steal program information and technology
but also to infect computer systems. According to the research, approximately 60 million
samples of new malware were discovered on Windows, constituting 96% of all malware
found during the last three quarters of the previous year [1]. Furthermore, the number of
malicious code instances is exponentially increasing over time, highlighting the growing
need for binary analysis methods and tools targeted at these malicious codes. Analysis
tools can be classified into static analysis tools and dynamic analysis tools. Static analysis
tools can analyze the source code without executing the program but have the disadvantage
of being vulnerable to techniques such as binary obfuscation or runtime self-modifying
code. On the other hand, dynamic analysis tools can analyze a program while the program
is running. It is possible to control and manipulate execution flow by monitoring programs
through DBI tools, a representative dynamic analysis tool, and inserting user instructions
into the program at runtime. However, malware engages in malicious behavior to evade or
disrupt the analysis process, detecting and bypassing analysis environments such as static,
dynamic analysis tools and virtual machines [2–4].

For users aiming to analyze malware while countering the interference from DBI
tools among analysis tools, the transparency of the DBI engine is crucial. To achieve this,
approaches ranging from architectural modifications to the development of plugins that
render the engine transparent or the integration of tools can be considered. However, these
methods demand a profound understanding of the DBI engine and in-depth knowledge of
evasion techniques.
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In the case of DBI frameworks, they possess various features necessary for providing
robust analytical capabilities by constructing and running specialized environments [5,6].
Consequently, DBI frameworks typically need to establish an environment for dynamically
analyzing processes, relying heavily on features unique to the DBI environment, including
virtual machines, compilers, and code caches, which differ from normal program execution.
Detecting the features of a typical DBI environment and the differences from the normal
environment makes it possible to identify DBI frameworks in general. Some malware al-
ready includes several anti-instrumentation techniques within their code to disrupt analysis
tools [7], and the number of anti-instrumentation techniques will increase proportionally
with the volume of malicious code. Hence, there is a necessity to analyze DBI detection
techniques to prevent malicious activities aimed at interfering with analysis tools and to
enhance the security of the analysis environment.

To address these requirements, we not only introduce and analyze DBI environment
detection techniques through algorithms based on pseudocode for implementation in
Windows but also countermeasures for evasion techniques for each technique. Through
these works, we expect to contribute to the improvement of transparency in the DBI
environment. Furthermore, through experiments on the latest version of several DBI
frameworks operating in the Windows environment, we verify the DBI features that
malicious code can detect and validate the effectiveness of the techniques. While there
are materials and papers that have implemented some DBI detection techniques, we
include techniques that have not been implemented or are non-operational in the current
environment from existing implementation. In addition to implementation, there are
various methods to distinguish the difference between a program’s normal execution and a
DBI framework environment. However, the primary focus of this paper is on identifying
techniques that can be applied within the Windows environment and have the potential
to be exploited as part of malicious code. Our work comprises a total of 24 DBI detection
techniques in the Windows environment, including implementation algorithms for all
these techniques.

The structure of the paper is as follows. In Section 2, background knowledge is
provided that describes the features of the DBI environments and introduces several DBI
frameworks operational in Windows. Section 3 covers the related work. In Section 4, we
classify DBI detection techniques based on the features of general DBI environments and
provide descriptions and analysis of the techniques using implementation algorithms with
countermeasures against each technique. Section 5 discusses the results of the experiments
conducted with several DBI frameworks within the Windows environment. Finally, in
Section 6, we draw conclusions.

2. Background

In this section, we discuss the features of DBI environments and introduce several DBI
frameworks available for Windows environments.

2.1. Features of General DBI Environment

D’Elia et al. [8] suggest that a DBI system can be generally regarded as an application
virtual machine that provides monitoring and modification capabilities for instructions and
data in user-written components of an analysis tool. In order to establish an environment
that allows for the observation and potential modification of the entire architecture state
of the target program, a separate execution environment is typically required, and DBI
engines in such environments mainly have a common structure.

Through the architecture of a DBI system in Figure 1, it shows the features of the
general DBI environment and the execution flow of DBI. It is primarily composed of the
target process to be analyzed, a virtual machine for analyzing this process, and the analysis
program, which is the DBI tool [9]. Additionally, it provides an API for creating custom DBI
tools that specify the code to be instrumented and the instrumentation methods. Typically,
the DBI tool is loaded in the form of a shared library for usage. Since the DBI engine
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does not directly transform the target binary into a process within the virtual machine, the
initial process involves fetching the code to be analyzed through a dispatcher and code
fetcher and includes the instrumentation code through the instrumentation engine and
the DBI tool. The monitored code is compiled by a just-in-time (JIT) compiler, which can
translate bytecode into machine code at runtime. This allows DBI to maintain control
during execution. The finalized code is executed and analyzed within the code cache.

Figure 1. Architecture of a DBI system.

Due to the features of the DBI environment within the process, not only detecting the
DBI features themselves, such as APIs, JIT compiler, and code cache, but also significant
differences inevitably arise compared to a normal execution environment, including the
runtime overhead, exception handling, memory usage, and more.

2.2. DBI Frameworks

There are prominent DBI frameworks such as Pin [10] and DynamoRIO [11] that
support Windows, along with frameworks like Valgrind [12] and Dyninst [13], primarily
functioning in Linux environments, with limited or no support for Windows. Furthermore,
other frameworks such as Frida [14] and QBDI [15] that interact with target processes are
operational on multiple platforms.

In this paper, we present an introduction and analysis of detection techniques targeting
Pin and DynamoRIO, especially Pin, which construct DBI environments closed to the
common architecture. Additionally, to compare detection rates based on the DBI features,
we included Frida as an experimental subject, a framework operating in a Windows
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environment with relatively different DBI environment and instrumentation processes
compared to the previous two frameworks.

2.2.1. Intel Pin

Pin, a DBI framework from Intel, is a binary file analyzer that supports x64 and x86
binaries on Windows, Linux, and macOS. When executing the process of analyzing through
a shared library called Pin tool, it is executed using the API provided by Pin. Pin has a
structure that gives the executable file to be analyzed and the instrumentation API as input
to the virtual machine inside Pin through a JIT compiler and automatically instruments
and analyzes it [6]. The information of the program can be dynamically obtained through
the analysis code inserted between the program codes, and the code can be changed by the
user using C language and the API provided by Pin.

2.2.2. DynamoRIO

DynamoRIO is a binary optimization system, a binary instrumentation tool that helps by
manipulating code during runtime when a program runs through code translation, acting
as a process virtual machine. DynamoRIO is compatible Windows, Linux, and Android
environments, and it has the advantage of not being restricted to callouts and trampoline
insertions, unlike many other dynamic tool systems. DynamoRIO also supports interfaces
for creating dynamic tools for a variety of applications, including program analysis and
understanding, profiling, instrumentation, optimization, and transformation [16].

2.2.3. Frida

Frida has a different structure from other DBI frameworks, where the main operation
for DBI is via JavaScript and it operates in a C/S structure. In other words, the framework
library is initially injected into the binary to make a pipe, and binary investigation can be
conducted while exchanging commands through the pipe [17]. While the previous two
frameworks operate alongside the target process by copying it for instrumentation, Frida
injects and operates code directly within the target process, leading to significant differences
in the DBI environment. It provides JavaScript, C, and Swift APIs to help users acquire
information, such as runtime information, data types, and function addresses through APIs,
and dynamically analyze applications from various operating systems, such as Windows,
macOS/iOS, Linux, Android, and QNX.

3. Related Works

Since the advent of DBI frameworks, various works and research studies have been
undertaken by security companies and conferences to explore materials and programs
related to detection techniques and methods targeting these DBI frameworks. In this section,
we introduce and compare the works and studies on detection techniques specifically
designed for DBI frameworks such as Pin and DynamoRIO, aiming to provide a deeper
understanding of this topic and emphasize the new contributions and distinctions in the
research. The relevant works can be broadly categorized into two main groups: those
adopting a practical approach with a focus on the detection methods within the DBI
framework itself and those following an academic approach focusing on common features
of the DBI environment and the theoretical aspects of detection techniques.

3.1. Practical Approach

With the aim of detecting Pin by leveraging the unique characteristics exclusive to
Pin, Falcón et al. [18] introduced the anti-instrumentation techniques employed in the
program “eXait”. In this work, Pin is detected through patterns of code and data that
persist in memory, attributed to Pin’s pinvm.dll and JIT compiler. The approach also
includes checks for Pin’s name within processes and inter process communication (IPC)
handles, which are used among processes for exchanging data or the methods and paths
associated with it, employed during Pin’s runtime. Furthermore, they suggest a method to
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differentiate between the instruction pointer (IP) inside the code cache and the actual IP
using floating-point unit (FPU) instructions, while also comparing overall execution times.

To preserve the transparency of DynamoRIO, DBI detection case studies based on
DynamoRIO were conducted by Li et al. [19]. They detected DynamoRIO’s internal
code cache by altering the stack pointer and comparing the sizes of allocated memory
or file handles to differentiate between normal and instrumented environments. It also
distinguishes differences in signal mask values in Linux and employs other methods, such
as finding DynamoRIO’s APIs or triggering exceptions to be handled by different exception
handlers from the structured exception handling (SEH), which is the default exception
handling mechanism in Windows that handles both hardware and software exceptions.

Rather than focusing on the individual characteristics of Pin or DynamoRIO, as in
previous works, the emphasis is on the common features of the DBI environment to
detect Pin and DynamoRio. In this regard, Sun et al. [20] mainly categorizes techniques
into two methodologies: passive detection utilizing instructions not supported in the
DBI environment or application compatibility mode and active detection, which involves
unsupported behaviors in DBI environment, checking for the presence of code cache, and
DBI’s use of thread local storage (TLS), a memory area individually allocated for each
thread, for data storage.

3.2. Academic Approach

The research with an academic approach typically provides detailed categorizations of
detection techniques. Kirsch et al. [21] categorize the detection techniques into three groups:
code cache/instrumentation artifacts, which detect anomalies arising from differences be-
tween the code cache and the general environment; JIT compiler overhead, which identifies
overhead resulting from the use of JIT compilers; and finally, environment artifacts, which
detect anomalies occurring in the execution environment such as memory traces.

Unlike the prior works that exclusively addressed DBI detection techniques, Polino et al. [7]
not only cover detection techniques but also provide a system named Arancino, which
includes a set of countermeasures for the categorized anti-instrumentation techniques. The
detection techniques are categorized into four types: code cache Artifacts, responsible for
differences between the main module of the binary and the memory region where the
code cache resides; JIT compiler detection, which looks for process activity related to API
calls and page allocations; overhead detection, identifying execution time differences; and
environment artifacts, used to differentiate the presence of DBI tools based on variations in
the memory layout.

D’Elia et al. conducted a more detailed categorization based on the attack surface,
classifying the detection methods into seven categories [8]. Their categories include time
overhead, utilizing code execution time comparisons; leaked code pointers, using dif-
ferences in the actual IP caused by the code cache environments; memory contents and
permissions, detecting information exposed by DBI engines sharing address space with
analyzed code; DBI engine internals, identifying CPU context exposed for DBI runtime sup-
port; interactions with the OS, detecting interactions with the operating system, including
process-related information; exception handling, identifying differences due to DBI-specific
exception handling; and translation defects, detecting issues related to unsupported in-
structions or compatibility.

3.3. Discussion

As a practical approach primarily addressing methodologies for detection techniques,
Ref. [18] targets Pin, while Ref. [19] focuses on DynamoRIO. Nevertheless, they share a common-
ality in conducting detection within the shared DBI environment, such as code cache. Ref. [20]
expands upon the research from [18,19], introducing detection techniques that emphasize the
DBI environment, enabling detection of both DynamoRIO and Pin.

Works under the academic approach do not specifically identify the targeted DBI but
reveal differences in categorizing techniques. Refs. [7,21] encompass common classifica-
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tions such as code cache, JIT overhead, and environment artifacts. Additionally, Ref. [7]
includes detection categories for changes caused by JIT compilers and countermeasures
for some techniques. Ref. [20] provides the most detailed categorization of detection
techniques, including countermeasures similar to those in [7].

In this paper, considering these aspects, we propose a classification of techniques
along with implementation algorithms to simultaneously address both practical and aca-
demic approaches. This includes the direct nature of techniques through implementation
algorithms, allowing for the classification of techniques and proposing countermeasures.

4. DBI Detection Techniques

DBI detection techniques in this article prioritize detecting Intel Pin, which has various
common aspects of the DBI environment, and the techniques are categorized based on
five characteristics, as illustrated in Figure 2. These categories include “Time Overhead”,
which identifies differences in program execution time between DBI and regular execution
environments; “Code Cache Artifact”, which pertains to the creation of an independent
execution environment called code cache and the execution of internally instrumented code
within a DBI framework; “Memory Fingerprints”, which detects fingerprints of DBI left in
the memory of processes running in a DBI environment; “JIT Compiler”, which identifies
the characteristics of process and code that is transformed and executed in real-time by a
just-in-time compiler; and “Environment Artifact”, which detects the presence of DBI by
observing situations that can occur both inside and outside the process in the execution
environment. Each category includes a total of 24 techniques.

Figure 2. Classification for DBI Detection Techniques.

4.1. Time Overhead Detection

The most fundamental method for detecting a DBI environment is by comparing
the computational cost required for program execution. In other words, this technique
leverages the characteristic of runtime overhead that occurs during the instrumentation
process in a DBI execution environment compared to when the program is executed directly.
It involves measuring the time taken for execution, setting a threshold, and distinguishing
the execution environment, making use of instructions or APIs to measure the execution
time for detection.
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4.1.1. Execution Time

Despite the improved instrumentation performance of the DBI framework, a certain
amount of overhead occurs even through small-scale benchmark tests [7]. Therefore, it
is possible to detect the DBI environment by calculating the clock number due to the
inevitable overhead.

QueryPerformanceCounter is used due to its higher precision and resolution compared
to other Windows APIs, providing an elapsed tick count. By calling QueryPerformance-
Counter twice and storing the counter values in structure variables in Algorithm 1, the
elapsed time can be calculated by the difference between the field values of the variables.
This allows for determining the presence of a DBI based on a predefined threshold n.

Algorithm 1 Execution Time

Data: Pointer to a Counter Value (ticks1, ticks2)
QueryPer f ormanceCounter(&ticks1)
QueryPer f ormanceCounter(&ticks2)
if (ticks1.QuadPart− ticks2.QuadPart) ≤ n then

detected← True
end if

Since this technique calls Windows API and compares its return value with a threshold,
if forging the return value is possible, the technique can be bypassed. Therefore, by
recognizing the relevant API in the trace, hooking it, and patching the return value with a
new one, detection becomes impossible.

4.1.2. Loading Time

In situations where a program is being instrumented while loading a certain number
of libraries, it takes significantly more time [18]. Since DBI reuses binary instructions that
are initially compiled and analyzed, library loading and unloading are performed faster
after the first one. However, this task’s overhead varies depending on the computing
power of the CPU and can yield different results based on the framework used. Therefore,
by comparing the difference in time taken for library loading and unloading as a ratio, it
becomes possible to distinguish execution environments without being influenced by CPU
or platform, even when using specific threshold values [21].

In Algorithm 2, commonly used dynamic link libraries (DLL), a file format that
dynamically loads and shares the required functions and data for a program, in Windows
are loaded and unloaded using the LoadLibraryA and FreeLibrary APIs. The elapsed
cycles are measured using the assembly instruction rdtsc through an intrinsic function,
capturing the time it takes for two consecutive library loading and unloading operations.
The difference in time is then calculated as a ratio for comparison.

Algorithm 2 Loading Time

libs[]← “kernel32.dll”, “user32.dll”, . . .
for i = 0 to 1 do

Ts[i]← __rdtsc()
for j = 0 to N do

LoadLibraryA(libsj)
FreeLibrary(libsj)

end for
Te[i]← __rdtsc()

end for
f irstLoad← Te[0]− Ts[0]
secondLoad← Te[1]− Ts[1]
if secondLoad÷ f irstLoad ≤ n then

detected← True
end if
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According to [7], Pintool can detect the execution of the rdtsc instruction, and it is
possible to apply a user-defined constant and divide the return value of rdtsc. This allows
for the alteration of the return value, providing a way to bypass the detection technique.

4.1.3. Compiling Time

DBI saves and reuses trace blocks consisting of consecutive basic blocks in the cache,
so a large amount of time is consumed in the process of compiling traces for the first time.
When DBI needs to obtain a new trace of the program to be analyzed, the JIT compiler first
searches for it in the hash table and recompiles it if the compiled trace does not exist [21],
resulting in poor performance during the process.

In Algorithm 3, the time taken from each iteration to the next iteration is stored as a
value. Considering the process of recreating the static context before executing the newly
created trace in the VM, the maximum value of the values stored is set as the result value.
When the measured value deviates significantly from the time measured during normal
execution, it is implemented to trigger detection.

Algorithm 3 Compiling Time

for i = 0 to N do
T[i]← __rdtsc()

end for
jitTime← max(max(T[1]− T[0], T[2]− T[1]), T[3]− T[2])
currentMax ← max(T[4]− T[3], . . . , T[N]− T[N − 1])
if n× currentMax ≤ jitTime then

detected← True
end if

As described earlier, for the DBI detection technique using rdtsc, it is possible to bypass
by recognizing rdtsc in the trace and forging the return value.

4.1.4. CPU Time

Since the DBI tool runs programs on its own virtual machine, running cpuid instruction
on the guest OS through Intel VT-x requires a process of switching root authority compared
to running on the host OS through normal execution [22], which results in consuming more
execution time. When the cpuid instruction is executed in the guest OS, it operates in VMX
non-root operation mode, necessitating a switch to root authority through a “VM Exit”.

In a VM environment, the time consumed by the authority conversion process in-
creases. Hence, the measurement of time intervals before and after executing the cpuid
instruction, as illustrated in Algorithm 4, serves as a detection method.

Algorithm 4 CPU Time

for i = 0 to N do
Ts[i]← __rdtsc()
CPUID
Te[i]← __rdtsc()
total ← total + (Te[i]− Ts[i])

end for
if total ÷ N ≥ n then

detected← True
end if

As described earlier, for the DBI detection technique using rdtsc, it is possible to bypass
by recognizing rdtsc in the trace and forging the return value.
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4.2. Code Cache Artifact Detection

In the normal execution environment, when running a program, the target binary is
loaded directly into a process. In contrast, in the case of DBI, it executes a code cache that
includes instrumentation code. In other words, DBI does not load the code directly into
memory for immediate execution during runtime. Instead, it caches the original code along
with the instrumentation code in a separate cache area and executes that particular region.
The distinction in memory regions can be leveraged to detect the DBI environment.

4.2.1. Predefined Signature

Due to the process of caching and executing the code of the target program in memory,
when searching for specific code or data from memory using predefined signature values,
it results in two searches in the DBI environment, including the portable executable (PE)
image, the image of executable file format used in the Windows operating system, and
code cache, in contrast to normal execution where it is searched for in the memory only
once [20].

In Algorithm 5, predefined signature values are searched for throughout the entire
memory, with a threshold for the count of these values to differentiate between the normal
execution environment and the DBI environment.

In techniques that involve scanning memory to find allocated pages and searching for
unique strings or codes in the DBI environment, specific API calls related to the state of
certain memory pages are used during the memory scanning process. In this study, the
Windows API, VirtualQuery, is predominantly utilized, and by monitoring and controlling
such functions, queries can be detected and managed [7]. Therefore, if one is aware
of the memory regions where artifacts related to DBI exist, it is possible to bypass the
technique by preventing the detection or alteration of those artifacts during the memory
scanning process.

Algorithm 5 Predefined Signature

Data: Predefined Signature (preSig)
for addr = 0 to N do

if ∗(addr) == preSig then
sigCount = sigCount + 1

end if
end for
if sigCount > 1 then

detected← True
end if

4.2.2. Cache Signature

In the case of Pin, it caches the code of the target program in the memory and, as a
result, can detect the presence of DBI while running by searching for the signatures in the
cached memory [20].

Since Pin’s signature values are stored at the beginning address of each page, the memory
is sliced into pages for internal searching as in Algorithm 6, and if a signature is found at each
corresponding address, the count is incremented. As this signature value is unique to Pin,
setting the threshold to 0 confirms the presence of a DBI if any one of them is detected.
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Algorithm 6 Cache Signature

Data: Current Memory Pages (memPage)
for i = 0 to N do

if ∗(memPage i.BaseAddress) == 0xFEEDBEAF then
detected← True

end if
end for
if sigCount > 0 then

detected← True
end if

As described above, for detection techniques that require memory scanning, bypassing
the techniques can be achieved by managing the accessible memory regions.

4.2.3. Self-Modifying Code

DBI tools, in order to analyze a program, do not load the code directly into memory
during execution but cache it separately for instrumentation purposes before execution.
Consequently, in a DBI environment, if the code is modified at runtime, DBI ends up
executing the code that remains unchanged in the cached area.

In Algorithm 7, modifications are made to the code that are executed after the currently
executing code. It begins by obtaining the address of the presently executing instruction
and then defines the location of the code to be altered by adding an offset. Subsequently, it
creates code to overwrite the new code at the specified address. The value stored at that
location is checked, and if the code is not modified, it is considered to be executed from
within the cache.

Algorithm 7 Self-Modifying Code

EAX ← EIP
MOV [EAX + 0x9], 0xABABABAB
MOV EAX, 0xFFFFFFFF
result← EAX
if result ̸= 0xABABABAB then

detected← True
end if

Monitoring the memory write instructions enables the detection of instruction modifi-
cations during runtime. Consequently, by forcing the application of modified code in the
code cache of the DBI environment, the technique can be bypassed. Additionally, using
the Pin option ‘smc_strict’ initiates the monitoring for blocks that modify their own code.
Upon detection, Pin triggers a code cache invalidation alert, followed by recompiling the
existing code in the code cache. Through these methods, detection can be bypassed.

4.2.4. FPU State (Fxsave/Fstenv)

DBI only executes the measured and translated code within the cache, which means
that to maintain compatibility with the program, it attempts to mask the VM’s IP value to
the actual IP value of the executing program whenever necessary [15]. Therefore, by using
the method of storing FPU status in memory through FPU instructions, it is possible to
retrieve the unmasked IP value.

There are two FPU state retrieval instructions that can be used to implement this
technique, which are fstenv and fxsave. Since the implementation mechanism is nearly
identical, we only explain the algorithm using the fstenv instruction.

In Algorithm 8, when executing the FPU instruction fldz and then the fstenv instruc-
tion, the FPU state is stored in the stack. From the stack, it retrieves the IP value of the
executed FPU instruction. The IP value obtained from the stack is not masked, and it
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represents the same actual IP value regardless of the execution environment. Therefore, it
is compared with the current instruction location address within the cache to distinguish
the cache environment.

Algorithm 8 FPU State

currentIP← EIP
FLDZ
FSTENV[ESP− 0x1C]
real IP← [ESP− 0x10]
if currentIP ̸= real IP then

detected← True
end if

When monitoring and detecting the execution of instructions in the returning FPU
state, it is possible to bypass the detection technique by replacing the IP register value in
memory from the cache address to the actual address of the code.

4.2.5. System Call (Int 2e/Syscall)

When executing a system call using an instruction, the current instruction pointer
value, before accessing the kernel, is copied to a specific register, and the return is made
from the kernel to the previously saved address. In contrast, in the case of execution within
a DBI environment, such as emulating all system calls performed by the application outside
of the VM, it is necessary to save the program’s register state before terminating the VM [23].
Consequently, specific register values in the application remain unchanged, and the values
stored before the system call execution are preserved as is.

The instructions for system call include int 2e in 32-bit and syscall in 64-bit environ-
ments. The difference is that int 2e stores the IP value in the EDX register, while syscall
stores it in the RCX register. Other than this distinction, the implementation mechanism is
almost identical. Therefore, we only explain the algorithm for the syscall instruction.

By placing an arbitrary value into the RCX register, such as 0 × 0, and inserting the
desired number of a system call into RAX, we then invoke the system call through an
instruction in Algorithm 9. In a normal execution environment, after the syscall, RCX
contains the return address. However, in a DBI environment, where there is no change in
the original value, the determination is based on whether the value of RCX is 0x0 or the
restored IP value.

Algorithm 9 System Call

RCX ← 0x0
RAX ← 0xN
SYSCALL
restoredIP← RCX
if restoredIP == 0x0 then

detected← True
end if

Similar to the FPU state detection technique, detecting the execution of system call
instructions and modifying the value stored in the RCX register, where the return value is
stored, to the actual address, can bypass the detection.

4.3. Memory Fingerprints Detection

The memory fingerprints detection is a technique that searches for fingerprints left in
memory related to DBI. It allows the detection of the DBI environment through exposed
information from the DBI tool as the parent process of the process to be analyzed or by
identifying the data or code patterns stored in the memory for analysis.



Electronics 2024, 13, 871 12 of 22

4.3.1. Parent Process

First, we obtain the PID of the current process from the process entry as in Algorithm 10.
Using the PID, we retrieve the path of the parent process and compare it to check if the
filename matches the name of the DBI tools.

Algorithm 10 Parent Process

Data: Process Entry (PE), Current Process ID (PID)
if PE.ProcessID == PID then

pPID ← PE.ParentProcessID
parentName← GetModuleFileName(pPID)
if parentName == “pin.exe” or parentName == “drrun.exe”, . . . then

detected← True
end if

end if

It can be bypassed by altering the data containing the name of the parent process. For
instance, in the case of Pin, changing the string “pin.exe” to another string would suffice.

4.3.2. DBI Fingerprints

In the case of programs analyzed under the DBI environment, there are features where
the parent process loads the DBI tool and specific DLLs. The PE structure of the DBI
tool and DLLs includes exported functions, section names, and more [18,19]. However,
attempting to detect DBI based solely on the DLL name is unreliable because the name can
change. Therefore, it is possible to scan the memory where the DLL binary is loaded to find
DBI-related fingerprints.

By searching the memory page regions of the parent process at the page level, as in
Algorithm 11, if specific strings associated with the DBI tools and DBI libraries are found, it
is considered that the program is undergoing analysis by DBI.

Algorithm 11 DBI Fingerprints

Data: Memory Pages of Parent Process (pMemPage)
f ingerprints[]← “pinvm.dll”, “CharmVersionC”, . . .
for f p in f ingerprints do

while VirtualQueryEx(. . . , addr, . . .) do
if f p is in pMemPageaddr then

f pCount = f pCount + 1
end if
addr = addr + N

end while
end for
if f pCount > 0 then

detected← True
end if

As a specific method to bypass this technique, monitoring the memory scan APIs
or system calls before specific strings are searched and compared and pre-checking the
values passed as parameters to bypass them is one approach [24]. Additionally, as a
comprehensive method, it seems possible to control memory searches by hooking functions
such as OpenProcess, which are invoked during the process of obtaining handles to inspect
the memory space of the parent process.

4.3.3. Mapped File

Depending on the operating system, there are cases where a file storing the memory
mapping information of a process is created when the process is loaded into memory [23].
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However, in the case of Windows, the information is not saved as a separate file, allowing
the retrieval of process memory mapping details to detect if a DBI is mapped.

When searching for the name of a DBI in the current process’s memory at the page
level, as in Algorithm 12, it may find a string that includes the name. However, since
even processes not analyzed by DBI can also have this string in the memory, an appropriate
threshold n is set to distinguish between regular execution and execution in a DBI environment.

Algorithm 12 Mapped File

Data: Memory Pages of Current Process (memPage), Name of DBI System (mapName)
while VirtualQueryEx(. . . , addr, . . .) do

if mapName is in memPageaddr then
nameCount = nameCount + 1

end if
addr = addr + N

end while
if nameCount > n then

detected← True
end if

As described earlier, monitoring parameters from API calls or system calls related to
memory scans enables bypassing detection through comparison with specific values.

4.3.4. Code Patterns

Processes undergoing analysis by DBI may contain specific code patterns [18]. DBI
saves the current VM context on the stack and restores the registers of the program be-
ing analyzed, during which a unique specific code pattern required for this operation
is identified.

It identifies the DBI environment in Algorithm 13 by searching for particular code
patterns in the memory of the current process and applying a threshold count.

Algorithm 13 Code Patterns

Data: Specific Code Pattern (codePattern), Memory Pages of Current Process (memPage)
while VirtualQueryEx(. . . , addr, . . .) do

if codePattern is in memPageaddr then
patternCount = patternCount + 1

end if
addr = addr + N

end while
if patternCount > n then

detected← True
end if

As described earlier, monitoring parameters from API calls or system calls related to
memory scans enables bypassing detection through comparison with specific values.

4.4. JIT Compiler Detection

One of the components in the DBI environment, the JIT compiler, compiles the code of
the provided application as input to optimize it for storage and execution within a code
cache. During this process, the JIT compiler hooks into system calls and libraries and
accesses memory to properly adjust memory permissions. Detecting these processes can be
used to distinguish the presence of DBI.
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4.4.1. System Library Hooks

The DBI engine modifies certain functions within system libraries through hooking to
maintain control of the application. In the case of Pin, to transfer control to the VM monitor,
intercepting system calls at the instruction is needed [25]. These low-level API hooks are
implemented by the JIT compiler and can be found at the beginning of modified functions,
making it possible to inspect them and detect the DBI environment.

At the beginning of specific functions, a jump instruction overwrites the entry points as
trampolines in the ntdll.dll system library and jumps to the corresponding event dispatchers
by executing those functions from the code cache. The presence of jmp instructions (0xE9),
as illustrated in Algorithm 14, can be checked to confirm the existence of the JIT compiler.
It is possible to bypass by hooking the API or system call used to verify instructions at
specific memory addresses, altering the return value to produce different results.

Algorithm 14 System Library Hooks

Data: Handle of NTDLL (hNtdll)
f unc[]← “KiUserCallbackDispatcher”, “KiUserApcDispatcher”, . . .
for i = 0 to N do

addr ← GetProcAddress(hNtdll, f unc[i])
byte = ∗(unsigned char∗)addr
if byte == 0xE9 then

f uncCount = f uncCount + 1
end if

end for
if f uncCount == N then

detected← True
end if

4.4.2. Date Execution Protection

Data execution prevention (DEP) is a system-level feature that restricts the execution
of specific memory pages such as the heap, stack, and memory pool. Executing code within
that address space triggers DEP, leading to exceptions [18]. However, in the case of DBI, it
demands various permissions, preventing DEP from activation.

In Algorithm 15, the process involves storing the assembly instructions to be executed,
setting the access type for the memory allocated by VirtualAlloc as read/write and copying
the stored instructions to that memory. The differentiation in the DBI environment is
determined by whether exceptions occur when calling this memory.

According to [24], PinVMShield provides a countermeasure for memory region per-
mission inconsistencies. It creates a table to record all events such as allocation, deallocation,
memory permission changes, or any events that can alter the address space. Through this
table, it monitors memory access. If a violation is detected, it enables evasion, such as
triggering exceptions.

Algorithm 15 Data Execution Prevention

asm← {0x90, 0x90, 0x90, 0xC3}
vMem← VirtualAlloc(. . . , PAGE_READWRITE)
CopyMemory(vMem, asm, . . .)
try:

CALL vMem
detected← True

except:
detected← False
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4.4.3. RWX Permission

The characteristic feature of a JIT engine is the presence of pages with read, write, and
execute permissions. The compiler records pre-compiled instructions in memory through
the VM. Therefore, compared to the scarcity of memory regions marked as RWX in a normal
execution environment, the code cache in a JIT engine has a larger number of memory
pages with RWX permissions [18].

When using the VirtualQueryEx function to examine the pages within the virtual
address space of a specified process, if the memory allocated at valid addresses with RWX
permissions is detected, the count is incremented, as in Algorithm 16.

Algorithm 16 RWX Permission

Data: Current Process Handle (hProcess), Memory Basic Information Structure (mbi)
while VirtualQueryEx(hProcess, addr, addresso f (mbi), . . .) do

if mbi.Protect == PAGE_EXECUTE_READWRITE then
rwxCount = rwxCount + 1

end if
addr = addr + N

end while
if rwxCount > n then

detected← True
end if

As described above, it becomes possible to bypass the technique by monitoring and
detecting memory region permission inconsistencies.

4.4.4. Memory Page Guard

According to [8], DBI has the capability to bypass the deactivation (PAGE_NOACCESS)
and protection (PAGE_GUARD) of memory page access permissions, enabling the execu-
tion of code in memory pages without code execution permissions. Therefore, if the target
program performs actions that violate these permissions and continues to operate without
any exceptions, it can be identified as a DBI environment.

In Algorithm 17, the process involves allocating memory space and applying execution,
read, and write permissions, along with the page guard protection option, to the allocated
memory pages. The page guard option triggers an exception when the page is initially
accessed, and since the page guard status is subsequently deactivated, the detection of DBI
is achieved based on the occurrence of exceptions when the page is executed.

As described above, it becomes possible to bypass the technique by monitoring and
detecting memory region permission inconsistencies.

Algorithm 17 Memory Page Guard

vMem← VirtualAlloc(. . . , PAGE_EXECUTE_READWRITE)
vMem[0]← 0xC3
VirtualProtect(vMem, . . . , PAGE_EXECUTE_READWRITE | PAGE_GUARD, . . . )
try:

CALL vMem
detected← True

except:
detected← False

4.5. Environment Artifact Detection

Environment artifacts, including interactions with OS, exception handling, and more,
have the most varied detection targets in the DBI environment.
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4.5.1. Debug Flag

There are several native APIs that offer anti-debugging measures, and among them,
the API targeting process, NtQueryInformationProcess, allows for the identification of an
environment under analysis by a DBI as being in a debugging state using the debug flag
value [26].

By placing 0 × 1F, representing ProcessDebugFlags, in the second parameter of the
NtQueryInformationProcess, as in Algorithm 18, it allows for the determination of the
debugging state based on the return value, consequently revealing the DBI environment.

If the API or system call that checks the debugging state is hooked to modify the
parameter or return value, it becomes possible to bypass the technique.

Algorithm 18 Debug Flag

Data: Current Process Handle (hProcess)
val ← 0
debugFlag← 0x1F
NtQueryIn f ormationProcess(hProcess, debugFlag, &val, . . .)
if val == 0 then

detected← True
end if

4.5.2. Environment Variables

DBI employs specific environment variables during its execution. DBI frameworks,
through the creation of the program to be analyzed as their child process, enable the
analyzing process to access these environment variables in the memory allocated by the
process under analysis.

In Algorithm 19, the count is increased by calling the GetEnvironmentVariable with
the name of the target process environment variable as an argument and verifying that the
return value is not equal to zero.

It becomes possible to bypass the technique if the API that checks the environment
variables is hooked to modify the parameter or return value. Furthermore, according to [21],
in the case of Pin, it is considered possible to bypass this method by cleaning up variables
during the initialization process.

Algorithm 19 Environment Variables

Data: Environment Variables (envvars)
envvars[]← “INTEL_J IT_PROFILER32”, . . .
for var in envvars do

if GetEnvironmentVariable(var, . . .) ̸= 0 then
varCount = varCount + 1

end if
end for
if varCount ̸= 0 then

detected← True
end if

4.5.3. Exception Handling

There are exceptions that DBI cannot handle properly. For example, when a single step
exception occurs due to changing the CPU to single step mode via the trap flag of EFLAGS
in a typical environment, Windows utilizes its exception handling mechanism, known as
SEH, to manage it, whereas DBI employs its own exception handling approach [26].

Since there is no specific instruction to modify EFLAGS, the trap flag value of EFLAGS
can be altered to 1 using the stack as in Algorithm 20, which, in turn, changes the CPU to
single step mode. While executing instructions in single step mode, exceptions occur, and
in handling these exceptions, DBI distinguishes whether SEH is invoked or not.
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Algorithm 20 Exception Handling

detected← True
try:

PUSHFD
OR [ESP], 0x100
POPFD
NOP

except:
detected← False

In the case of Pin, by adding a feature to disable exception handling through plugin
code, it becomes possible to bypass it.

4.5.4. Heaven’s Gate

DBI and system emulators may have defects and limitations in the process of trans-
lating machine code [20]. For example, in an ×64 environment, when a 32-bit program is
executed, there is a technique called “Heaven’s Gate” that allows the process to execute×64
assembly code instead of ×86 assembly. DBI fails to execute this properly in some cases.

In Algorithm 21, the retf instruction (0xCB) is used to push the value 0 × 33 into
the stack, along with the code segment (CS) register value, representing the 64-bit native
mode. Then, it calls the address of the retf instruction, pushing the current IP onto the stack.
Consequently, by changing the CS register value to 0 × 33, it executes the retf instruction,
allowing execution in the ×64 assembly code. Detection is determined based on whether
exceptions occur or not.

Algorithm 21 Heaven’s Gate
try:

EAX ← EIP
EAX ← EAX + 7
PUSH 0xCB0033
CALL EAX

except:
detected← True

4.5.5. Thread Local Storage

Thread local storage, which allows each thread to have its unique storage space, may
lead to the expectation of additional storage usage in the parent process when the program
being analyzed is executed by DBI. Using TLS, a process can be accessed using global indices,
and values allocated in one thread can be accessed by other threads through the index of the
respective value [20]. This allows us to identify the additional TLS usage by DBI.

In Algorithm 22, it iterates through all TLS indices via TLS functions to check if data
exist in the storage space and detects DBI based on the number of storage spaces in use.

Based on the fact that interactions with TLS occur through OS APIs, Ref. [24] employs
a method of redirecting any attempts to read or write to TLS to different locations to
circumvent the technique. Moreover, in the case of Pin, it seems possible to bypass by
using a plugin program to set the value of TLS slots to 0, making it appear as if TLS is not
being used.



Electronics 2024, 13, 871 18 of 22

Algorithm 22 Thread Local Storage

Data: Index of Thread Local Storage (dwTlsIndex)
for dwTlsIndex = 0 to N do

value← TlsGetValue(dwTlsIndex)
if value ̸= 0 then

tlsCount = tlsCount + 1
end if

end for
if tlsCount > n then

detected← True
end if

4.5.6. Maximum Handles

Due to differences in the handles used between processes analyzed by DBI and the
normal execution environment, the number of handles also varies [19].

All handles from the current process are duplicated in Algorithm 23. When the
function’s return value becomes 0, indicating that no more handles can be copied, it
calculates the maximum handle count. This is used as a threshold to differentiate the
handle count in the execution environment.

Algorithm 23 Maximum Handles

Data: Current Process Handle (hProcess)
hSource← CreateEvent(NULL, . . . )
cnt← 0
for cnt = 0 to N do

ret← DuplicateHandle(hProcess, hSource, hProcess, . . .)
if ret == 0 then

break
end if

end for
if cnt < n then

detected← True
end if

It seems possible to bypass the technique by creating a counter for the number of
process handles in a normal environment and hooking the API that returns the handle’s
status to make the results consistent with those in a normal environment.

4.5.7. Ram Usage

DBI may lead to increased RAM usage compared to regular execution due to activ-
ities such as instrumentation, tracing, logging, data collection, and analysis required for
analyzing processes.

First, it retrieves the memory information of the current process, accesses the process
memory counters structure, and measures the memory usage. It then distinguishes the
in-use RAM size based on a predefined threshold in Algorithm 24.

Algorithm 24 Ram Usage

Data: Process Memory Counters Structure (pmc), Current Process Handle (hProcess)
pPmc← (PROCESS_MEMORY_COUNTERS*)&pmc
GetProcessMemoryIn f o(hProcess, pPmc, . . .)
if pmc.WorkingSetSize > n then

detected← True
end if
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It seems possible to bypass by hooking the API that returns memory-related informa-
tion and modifying the parameters and return values.

5. Discussions

Experiments were conducted to determine whether the distinction between a regular
execution environment and a DBI environment could be established using the previously
mentioned DBI detection techniques. The executables, including evasion techniques, were
built using Visual Studio 2022, and the experiments were conducted on Windows 10 21H2,
targeting Pin 3.27, DynamoRIO 10.0.0, and Frida 16.0.18. The executable was built for both
32-bit and 64-bit, but notably, since the Heaven’s Gate technique is applicable only to 32-bit
programs, the experiments were performed only on 32-bit executable for Heaven’s Gate.
There are also differences in register names due to the transition from 32-bit to 64-bit.

The experimental results for the 24 techniques provided in Table 1 with the checkmark
indicates the unveiling of the DBI framework by the technique. As this work primarily
aimed to detect the features of the Pin DBI environment, it is evident that all techniques
confirm the detection of Pin. In the case of DynamoRIO, which shares common features of
the DBI environment with Pin, 19 of the techniques successfully detected it, while Frida,
which operates within the target process by injecting and executing code, could only be
detected by 7 of the techniques, due to the lack of common DBI features, unlike the previous
two frameworks. While the detection rate for Frida was low in the experimental results,
there is always the potential for an expanded attack surface when focusing primarily on
features of the Frida environment.

Table 1. Experimental Result for Detection Techniques.

Pin DynamoRIO Frida

Time Overhead

Execution Time ✓ ✓
Loading Time ✓ ✓ ✓

Compiling Time ✓ ✓
CPU Time ✓ ✓

Code Cache Artifact

Predefined Signature ✓ ✓
Cache Signature ✓

Self-Modifying Code ✓
FPU State

(fxsave/fstenv) ✓

System Call (int
2e/syscall) ✓ ✓

Memory Fingerprints

Parent Process ✓ ✓
DBI Fingerprints ✓ ✓ ✓

Mapped File ✓ ✓ ✓
Code Patterns ✓ ✓

JIT Compiler

System Library Hooks ✓ ✓
Data Execution

Prevention ✓ ✓

RWX Permission ✓ ✓ ✓
Memory Page Guard ✓

Environment Artifact

Debug Flag ✓ ✓
Envrionment Variables ✓ ✓

Exception Handling ✓ ✓
Heaven’s Gate ✓ ✓

Thread Local Storage ✓ ✓
Maximum Handles ✓ ✓ ✓

RAM Usage ✓ ✓ ✓

We implement and provide algorithms for the existing techniques that currently go
undetected, as well as techniques that have not been implemented for the purpose of
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DBI detection and those implemented in non-Windows operating systems. All of these
techniques are designed to operate and be detectable in both Windows and the latest DBI
framework environments. Through this effort, we can ensure compatibility with various
DBI techniques in the latest environments and contribute to enhancing the transparency of
DBI environments through the utilization of these techniques.

Most detection techniques rely on threshold values to detect the DBI environment,
leading to a higher risk of false positives and false negatives in the experimental results.
Particularly in the case of overhead detection methods based on execution time, the result
values vary for each execution, and the execution time differs based on the environment.
This diversity introduces concerns about setting inappropriate threshold values, which can
lead to inaccurate detection outcomes.

For example, when there is a significant difference between result values, finding an
appropriate threshold is relatively straightforward. However, when the results exhibit
similarity, it becomes necessary to conduct multiple experiments to derive average values
or employ methods such as calculating ratios. Considering the uncertainty of experiments,
adjusting the threshold values and iteratively fine-tuning the experiments is essential to
obtain accurate results. It is anticipated that through such adjustments, the reliability of
experiments can be enhanced, contributing to increased accuracy in result interpretation.

The results imply that DBI systems still have a significant exposure to malicious code
and are susceptible to exploitation at any given time. It already has been revealed that
a large volume of malware is equipped with anti-instrumentation techniques [7], and
also, software protection tools such as VMProtect, Obsidium, and ACProtect can detect
and bypass the DBI environment and exploit vulnerabilities within the DBI system [4].
Furthermore, the increase in configuration components for enhancing analytical capabilities
may inadvertently expand the attack surface, necessitating security precautions.

As a response to these issues, open-source anti-instrumentation tools implementing
countermeasures against some of the DBI framework detection techniques exist, such as
Arancino [7] and PinVMShield [24]. We recognize the need for improving and expanding
these tools to build a robust system. Furthermore, the technological advancement of the
DBI framework, including memory protection and access control technologies, is a critical
component in strengthening the DBI architecture. Since identifying vulnerabilities leads
directly to their prevention and enhancement, the necessity for a wide range of detection
techniques and a high detection rate is essential. Therefore, we believe that our research
contributes to the field of security by addressing vulnerabilities in DBI systems and assisting
users in mitigating these issues.

The priority of enhancement in this study is as follows:

(1) Detection techniques targeting other operating systems: While this research introduces
and implements techniques targeting Windows, the most accessible and frequently
targeted OS for malicious activities, there is a need to extend these techniques to
accommodate OS-specific features. This is particularly relevant due to the existence
of commands and functions supported exclusively in Linux environments.

(2) Experiments targeting various DBI frameworks: As the current techniques are tailored
for Windows, the experiments are limited to DBI frameworks operating on this
platform. However, by expanding the scope beyond a specific OS, the experiments
can encompass a broader array of DBI frameworks. This approach would provide
a more comprehensive understanding of the effectiveness of the techniques across
different environments.

(3) Concrete countermeasures and their integration: Given that multiple DBI detection
techniques may coexist within a program, it is crucial to develop specific and combin-
able countermeasures. These countermeasures, when integrated, should be capable
of detecting each technique individually. This approach facilitates more efficient
experiments while minimizing potential errors.
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6. Conclusions

In the software reverse engineering process, malware and obfuscation tools (protectors)
equipped with anti-reversing techniques that delay and disrupt program analysis can lead
to deviations from the normal program execution flow or even its abrupt termination,
causing potential exploitation issues. Among the reverse engineering tools, the DBI system
is a powerful tool in the field of security, providing valuable analytical techniques by
dynamically manipulating and analyzing programs. However, DBI is also susceptible to
exposure by attackers, and understanding and preparing for these threats is crucial.

In this paper, the features of the DBI environment that can be exposed by attackers
were identified, and based on this, the techniques for detecting DBI were classified. In
addition, implementation algorithms were provided with detection techniques to analyze
and understand the techniques, and their effectiveness was demonstrated by conducting
experiments in the latest versions of DBI frameworks.

Consequently, while we were not able to analyze detection techniques for all features
of the various DBI frameworks or DBI environments, it seems that practical measures to
counter anti-instrumentation can be devised in a way to strengthen the DBI environment
through the proposed approach in this paper. As discussed earlier, DBI systems can be
vulnerable due to distinctive artifacts and implementation flaws, and efforts to protect
against malicious code and adversarial attacks can be enhanced through the research and
development of new detection methods, collaboration, and knowledge sharing. In the
future, we plan to conduct an analysis and implementation of countermeasures for the
discovered detection techniques.
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Abbreviations

The following abbreviations are used in this manuscript:

DBI Dynamic binary instrumentation
API Application programming interface
JIT Just-in-time
C/S Client/Server
IPC Inter process communication
IP Instruction pointer
FPU Floating point unit
SEH Structured exception handling
TLS Thread local storage
DLL Dynamic link library
VM Virtual machine
PE Portable executable
DEP Data execution Protection
CS Code segment
RAM Random access memory
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