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Abstract: Traditional malware-classification methods reliant on large pre-labeled datasets falter when
encountering new or evolving malware types, particularly when only a few samples are available.
And most current models utilize a fixed architecture; however, the characteristics of the various types
of malware differ significantly. This discrepancy results in notably inferior classification performance
for certain categories or samples with uncommon features, but the threats of these malware samples
are of equivalent significance. In this paper, we introduce Adaptive Graph ProtoNet (AGProto),
a novel approach for classifying malware in the field of Few-Shot Learning. AGProto leverages
Graph Neural Networks (GNNs) to propagate sample features and generate multiple prototypes. It
employs an attention mechanism to calculate the relevance of each prototype to individual samples,
resulting in a customized prototype for each case. Our approach achieved optimal performance on
two few-shot malware classification datasets, surpassing other competitive models with an accuracy
improvement of over 2%. In extremely challenging scenarios—specifically, 20-class classification
tasks with only five samples per class—our method notably excelled, achieving over 70% accuracy,
significantly outperforming existing advanced techniques.

Keywords: few-shot learning; malware classification; graph neural network; sample adaptation;
prototype

1. Introduction

In the domain of cybersecurity, the persistent and pervasive impact of malware remains
a paramount concern. This category of malicious software, which includes viruses, worms,
trojans, backdoors, and rootkits, is designed to compromise or exploit programmable
devices, networks, and services. According to Kaspersky’s 2023 annual report [1], cy-
bercriminals released an average of 411,000 malicious files daily in 2023, marking a 3%
increase from the preceding year. The escalating complexity and sophistication of these
threats poses an alarming challenge. Traditional methodologies for malware classification,
while moderately effective, are increasingly proving inadequate against the rapid prolifera-
tion and evolution of new malware variants, each characterized by unique mechanisms
and impacts.

In malware classification, there are two main types [2]: binary classification, which
determines if software is malicious or benign (often called malware detection), and multi-
classification, which sorts a malware sample into a specific family. This field primarily uses
two approaches to analyze malware: utilizing static features and dynamic features. Static
features—which represent the malware’s binary sequence, often transformed into grayscale
images—provide a direct representation of its inherent structure. In contrast, dynamic
features, derived from API call sequences through executing binary files in a sandbox, reflect
the malware’s behavior within a controlled environment. This paper concentrated on the
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static-feature approach, employing grayscale images for their simplicity in acquisition and
compatibility with advanced computer-vision techniques.

Machine-learning techniques have been the cornerstone of malware classification,
including methods like Support Vector Machines (SVM), decision trees [3,4], and Shared
Nearest Neighbor (SNN) [5]. These methods have demonstrated moderate success, yet
they often fall short in achieving high accuracy levels [6]. Subsequently, the advent of
deep-learning techniques, including Convolutional Neural Networks (CNN) [7] and Re-
current Neural Networks (RNN) [8], has signified a substantial progression in malware
classification. These models have proven to be highly accurate and effective in identifying
and classifying malicious software.

However, despite their successes, deep-learning methods encounter substantial chal-
lenges. Firstly, the rapid iteration and emergence of new malware variants demands a
swift response that traditional deep-learning techniques struggle to provide. Secondly,
the attainment of high accuracy in deep-learning methods relies heavily on the availability
of large volumes of high-quality labeled data. In the context of malware, acquiring such
labeled data is particularly challenging; it is a task traditionally reserved for experts and
is both time-consuming and costly. To surmount these challenges, this paper adopted
meta learning and Few-Shot Learning (FSL) [9] methodologies. FSL methods address these
challenges by leveraging the ability to learn from a limited number of examples. Consider-
ing the unique characteristics of malware, such as its rapid evolution and the scarcity of
labeled data, alongside the strengths and limitations of deep-learning models, FSL methods
emerge as a promising solution. They adapt to new malware variants swiftly with minimal
examples and mitigate the reliance on extensive labeled datasets. Thus, integrating FSL into
malware-classification systems could significantly enhance their adaptability, efficiency,
and overall performance in the ever-evolving landscape of cybersecurity threats.

Nonetheless, existing Few-Shot Learning methods have inherent limitations. The archi-
tecture of most current few-shot models is universally applied across all malware categories
and instances, encompassing even those that are yet to be encountered. This uniformity may
lead to suboptimal performance, particularly when dealing with categories or instances
characterized by rare features. This is attributable to the model’s propensity to make
trade-offs during the training phase; in pursuit of enhancing overall accuracy, the model
might neglect instances with rare features. However, within the realm of cybersecurity,
the threat posed by these malware samples is of equivalent significance. Consequently,
there is a pressing need for a more robust and dynamically adaptive Few-Shot Learning
model for malware classification that can effectively handle diverse and rare samples.

In this paper, we introduce an innovative approach named Adaptive Graph ProtoNet
(AGProto), to address the challenges and enhance the performance of malware classification
in few-shot scenarios. Unlike traditional Few-Shot Learning methods, such as prototype
networks, which typically generate a fixed prototype for each class and classify based on the
distance between query samples and those prototypes, our method employs the message-
passing mechanism of Graph Neural Networks, allowing the prototypes of each class to
adapt dynamically according to the features of the input samples. Moreover, to further
enhance the model’s robustness and flexibility, we introduce multiple layers of Graph
Neural Network, where each layer dynamically generates a set of prototypes for each
query sample. After generating multiple prototypes for each sample, we use an attention
mechanism to assign different weights to these prototypes, based on the features of the
samples. Thus, the final classification decision is based on a set of weighted, dynamically
adjusted prototypes, rather than a single static one. This approach enhances the model’s
adaptability to new samples and the accuracy of classification. In the optimization of the
model, to ensure the consistency of predictions generated by different prototypes for query
samples, we have incorporated the cosine similarity of each prototype’s prediction results
into the loss function. Once the model is trained, although its parameters are fixed, it can
dynamically adjust the prototypes, based on the features of each new input sample, thereby
achieving more precise and robust classification.
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To summarize, we make the following contributions:

• Adaptive Prototyping via Graph Neural Networks: We introduce a novel approach
where class prototypes dynamically adapt through Graph Neural Networks, enhanc-
ing representations and robustness by aligning prototypes closely with the features of
input samples.

• Consistency Loss: We innovatively integrate the cosine similarity of predictions
from various prototypes into the loss function, ensuring consistent predictions across
different prototypes for a given query sample, thereby improving the model’s overall
stability and accuracy.

• Attention-Based Dynamic ProtoNet: We propose an innovative mechanism that
generates multiple weighted prototypes per sample, utilizing an attention framework
to dynamically adjust the influence of each prototype based on the sample’s unique
characteristics, thereby enhancing the model’s precision and adaptability.

2. Related Work
2.1. Malware Image

Nataraj et al. [10] initially proposed the innovative concept of converting raw-byte
malware PE files into grayscale images, setting a foundational approach for future re-
search in the field. This methodology was further advanced by Vasan et al. [11], who
employed an ensemble of CNN architectures to enhance the classification of malware
images, demonstrating the effectiveness of deep learning in this domain. Kancherla and
Mukkamala [12] expanded upon these techniques by proposing an image-based malware-
detection mechanism using Gabor-based features, which contributed to the refinement
of feature-extraction methods for malware images. Venkatraman et al. [13] introduced a
hybrid deep-learning-image-based analysis for effective malware detection, showcasing
the potential of combining various deep-learning techniques for improved accuracy and
robustness. Additionally, Vasan et al. [14] further explored the realm of deep learning
with their work on fine-tuned Convolutional-Neural-Network architectures, which em-
phasized the adaptability and precision of CNNs in classifying malware images. Recently,
Cui et al. [15] proposed a malicious-code-detection method under 5G HetNets based on a
multi-objective RBM model. Their work compared images with different resolutions based
on learning-rate values selected by the CLR strategy, contributing to the understanding of
how image resolution impacts malware detection.

All these studies collectively represent a trajectory of increasing sophistication and ef-
fectiveness in the field of malware-image classification, moving from basic image-conversion
techniques to advanced deep-learning models that offer high accuracy and robustness
against various types of malware. Collective success also underscores the efficacy of utiliz-
ing grayscale images for malware categorization, as demonstrated in Figure 1, which reveals
that grayscale images of malware from the same category display similar characteristics.

Figure 1. Convert raw-byte malware PE files to gray images, using L. Nataraj’s method.

2.2. Few-Shot Learning

Few-Shot Learning (FSL) [9] is a technique aimed at enabling machine-learning models
to rapidly learn new tasks from very limited data. In the domain of malware classification,
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acquiring a large volume of labeled malware samples is often expensive and time con-
suming. Few-shot learning seeks to overcome this challenge. The approaches to Few-Shot
Learning are primarily divided into two main categories: optimization-based methods and
metric-based methods.

Optimization-based methods focus on adjusting the learning algorithm to better adapt
to a small amount of data. These methods typically involve modifying the training process
of the model so that it can quickly adapt to new tasks after seeing only a few samples.
One of the classic examples is Model-Agnostic Meta Learning (MAML) [16], proposed by
Chelsea et al. MAML aims to find a good model-parameter initialization so that the model
can rapidly adapt to new tasks with a few gradient updates. Variants of MAML [17,18]
have also been developed to optimize this initialization by training across multiple tasks,
allowing for effective learning of new tasks with minimal steps. Recently, Kang et al. [19]
introduced the Geometry-Adaptive Preconditioned gradient descent (GAP), which uses
a Geometry-Adaptive Preconditioner to improve the inner-loop optimization, achieving
notable results.

Metric-based methods emphasize learning a good distance or similarity metric, en-
abling the model to effectively classify by comparing the similarity between new samples
and known samples. These methods typically involve learning an embedding space where
samples from the same class are close to each other, while samples from different classes
are farther apart. Representative methods include K-Nearest Neighbors (KNN) and proto-
typical networks [20]. KNN is a simple yet powerful classifier that classifies by measuring
the distance between a test sample and training samples. Prototypical networks operate by
learning a prototypical representation of each class—the centroid of all sample embeddings
of that class. When classifying a new sample, they calculate the distance between the
sample and each class prototype, classifying it as the nearest class. RelationNet [21] learns
a distance metric through a neural network on top of a feature-embedding network. Due
to the simplicity and efficiency of prototypical networks, many works [22,23] are based on
this, including our proposed AGProto.

2.3. GNN in Few-Shot Learning

Initially, Garcia and Bruna [24] laid the groundwork by exploring the potential of
GNNs in Few-Shot Learning, proposing a framework that would inspire future research
in the field. Building on this foundation, Gidaris and Komodakis [25] introduced a meta
model that employs GNN denoising auto-encoders to generate classification weights
specifically for Few-Shot Learning tasks, demonstrating the adaptability of GNNs to this
new domain. As the field progressed, Zhou et al. [26] developed Meta-GNN, a novel
graph-meta-learning framework tailored for few-shot node classification, showcasing the
versatility of GNNs in handling the sparse-data scenarios typical of Few-Shot Learning.
In 2020, Wang et al. [27] introduced the AMM-GNN, focusing on attribute matching for
node classification in Few-Shot Learning, further refining the approach to GNNs in this
context. The year 2021 saw Tang et al. [28] propose the Mutual CRF-GNN, emphasizing
the critical role of GNN in enhancing methods for Few-Shot Learning and illustrating the
continuous evolution of GNN-based strategies. Most recently, Yu et al. [29] presented a
hybrid GNN model, combining instance and prototype GNNs, to improve the performance
and robustness of Few-Shot Learning systems.

In contrast to the majority of Few-Shot Learning GNNs that rely on label propagation,
our AGProto utilizes GNNs to transfer feature information between the support set and
the query set, thereby obtaining multiple prototypes customized for the query set. Sub-
sequently, an attention mechanism is introduced to aggregate these multiple prototypes,
ultimately increasing the accuracy of few-shot malware classification.
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3. Method
3.1. Problem Definition

In this study, we focused on the challenge of malware classification using Few-Shot
Learning (FSL). The primary difficulty in this task lay in the requirement for the model to
accurately categorize new malware families based on a limited number of samples, which
were not encountered during the training phase. To address this, we followed the paradigm
of meta learning. Concretely, we divided the dataset into three distinct parts: the meta
training set (Dtrain) for model training, the meta validation set (Dval) for controlling the
training process, and the meta testing set (Dtest) for evaluating the model’s ability to classify
new categories. The category labels in these three datasets were entirely different, ensuring
that the malware classes faced by the model during testing were novel.

In each training episode, we constructed a specific N-way K-shot classification task
sampled from the meta training set (Dtrain). To be specific, we randomly selected N classes
from Dtrain to form the class set (CN). From each of these N classes, we then sampled
K instances to create the support set (SN) and another Q instances to form the query set
(QN). Thus, the support set SN = {(xi, yi)|yi ∈ CN , i = 1, . . . , N × K} and the query
set QN = {(xi, yi)|yi ∈ CN , i = 1, . . . , N × Q}, with SN ∩ QN = ∅ to ensure no direct
overlap between the training and testing samples within an episode. In each episode,
the categories varied, requiring the model to classify samples in the query set (Q) based
on the samples provided in the support set (S). This task was designed to simulate the
scenario the model would encounter during the actual test phase with the meta test set
(Dtest), where Ctrain ∩ Ctest = ∅ to ensure no class overlap and maintain the novelty of the
test classes.

Following the completion of multiple training episodes, the model was subjected
to validation on the meta validation set (Dval). This phase enabled the evaluation of the
model’s efficacy on previously unencountered data, with the selection of the optimally
performing model on Dval as the ultimate model. To guarantee the exclusivity of the
validation classes, it was ensured that Cval ∩ (Ctrain ∪ Ctest) = ∅, thereby preventing any
class overlap. Subsequently, this model was examined on the meta testing set (Dtest), to
assess its proficiency in classifying novel categories.

During training, we employed a training strategy similar to that of prototype net-
works [20]. Initially, we constructed N-class prototypes, using the support set SN . Subse-
quently, we calculated the similarity between each sample in the query set QN and each
prototype, which served as the predicted probability for classification. By leveraging the
concept of prototypes, we effectively captured the essence of each class, facilitating a more
accurate and efficient classification of new and unseen malware families.

3.2. Convert Malware to Image

Building upon the work of Nataraj et al. [10], our approach specifically involved
segmenting the binary machine code of malware into bytes (8 bits) and converting each byte
into a decimal number (ranging from 0 to 255) to represent the value of a pixel in a grayscale
image. Unlike conventional images, the grayscale images of malware that we generated
contained only one channel. Drawing from the empirical findings of Nataraj et al., we
determined the width of each malware image, as detailed in Table 1. To ensure minimal loss
of information, we employed a padding strategy with zeros for the last row of pixels if it did
not meet the required length. For efficient training of the Convolutional Neural Network
(CNN) model, we resized the images to a standardized dimension of 256 × 256 pixels and
normalized the pixel values.
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Table 1. Image width corresponding to converted malware of different sizes.

File Size Range Image Width

<10 kB 32

10 kB–30 kB 64

30 kB–60 kB 128

60 kB–100 kB 256

100 kB–200 kB 384

200 kB–500 kB 512

500 kB–1000 kB 768

>1000 kB 1024

3.3. Proposed Framework

In this section, we present the framework of our proposed model, AGProto, which is
illustrated in Figure 2. The pseudo code of the model is delineated in Algorithm 1. AGProto
is structured into four distinct components:

1. Embedding Module: This module is responsible for projecting input samples into
an initial feature space, denoted as Fs

0 for the support set and Fq
0 for the query set.

Specifically, for a given support-set sample SN , the feature representation is computed
as Fs

0 = f0(SN), where f0 represents the embedding function implemented with a
CNN4 architecture. The process is analogous for the query set.

2. Adaptive Graph Modules: These models are designed to map the samples from
both the support and query sets into new feature spaces, represented as Fs

i and Fq
i ,

respectively. Assuming there are n Adaptive Graph Modules in the framework,
the index i ranges from 1 to n.

3. Prototype Aggregation Layer: This layer is tasked with obtaining a prototype for each
class within every feature space, based on the features of the support set. The proto-
types serve as representative points for each class in the feature space.

4. Attention-Based Dynamic Proto-Layer: This component adaptively calculates the
weights of the prototypes in each feature space based on the features of the query and
then aggregates these to output the final class probabilities.

Figure 2. Overview of our AGProto framework in a 3-way-3-shot case. Features extracted by CNN
are sequentially fed into several Adaptive Graph Modules and generate several prototypes and
corresponding query features. Then, through an Attention-Based Dynamic Proto-Layer (ADPL),
the probability of each query output category is calculated.

Within this framework, the architecture of the Adaptive Graph Module (AGM) and
the Attention-Based Dynamic Proto-Layer (ADPL) are, respectively, presented in Figures 3
and 4. More details will be discussed in later sections.
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Algorithm 1 AGProto for Few-Shot Malware Classification

Input: Support set with N samples SN , Query set Q, the number of Adaptive Graph
Modules (AGMs) n, embedding function facilitated by CNN4 f0, Adaptive Graph
Module (AGM), prototype aggregation layer P, and Attention-Based Dynamic Proto-
Layer (ADPL).

Output: Logits representing class probabilities for each sample in the query set.
1: // Embedding Module
2: for each sample S in SN do
3: Fs

0 ← f0(S) {Project support-set sample to initial feature space}
4: end for
5: for each query Qi in Q do
6: Fq

0 ← f0(Qi) {Project query set sample to initial feature space}
7: end for
8: // Adaptive Graph Modules
9: for i = 1 to n do

10: (Fs
i , Fq

i ) ← AGM(Fs
i−1, Fq

i−1) {Adjust the features of the support set based on the
information from the query set through GNN}

11: end for
12: // Prototype Aggregation Layer
13: for i = 0 to n do
14: Protoi ← P(Fs

i ) {Compute prototype for each class in Fs
i }

15: end for
16: // Attention-Based Dynamic Proto-Layer
17: for each query Qi in Q do
18: Logits← ADPL(Proto0, Proto1, . . . , Proton, Fq

0 , . . . , Fq
n)

19: Output Logits for Qi
20: end for

3.3.1. Embedding Module

For the embedding module, we opted for the commonly used CNN4 backbone net-
work [30]. This relatively simple Convolutional-Neural-Network structure is specifically
designed for few-shot image-classification tasks. While we experimented with slightly
more complex architectures, such as ImageNet pre-trained ResNet18 [31], we found that
the simpler four-layer convolutional structure of CNN4 yielded better results. We believe
the reason is that malware grayscale images contain less information compared to natural
images and, thus, a complex network structure might lead to overfitting.

Figure 3. Illustration of Adaptive Graph Module, which intakes the features extracted by CNN
and outputs the aggregated features. For the message-passing stage, the blue lines indicate that the
information transfer between the support sets is bidirectional, while the yellow lines denote that the
information transfer between the query set and the support set is unidirectional, occurring only from
the query set to the support set.
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Our implementation of CNN4 deviated slightly from the standard version [30]. We
set the number of channels in the first convolutional layer to 32 instead of the standard
64. This decision was based on the input being grayscale images, which start with a single
channel, as opposed to the three channels of RGB images. Gradually increasing the number
of channels allowed for more effective feature extraction while reducing computational
load. We also added a residual connection between the last two layers of the CNN,
as empirical evidence suggests that this modification stabilizes training and accelerates
model convergence. The details of this architecture are illustrated in Figure 5.

Figure 4. Illustration of Attention-Based Dynamic Proto-Layer, which intakes the prototypes and
query features generated by the AGM. It applies an attention mechanism to the weighted distances
and outputs the probabilities for each category in the query set.

Figure 5. The CNN4-embedding-module architecture comprises sequential conv blocks, each with a
convolutional layer, Batch Normalization, and ReLU activation. The first conv block has 32 channels,
a stride of 2, while subsequent blocks maintain 64 channels, a stride of 1, padding of 1, and a 3 × 3
kernel size. Pooling layers are MaxPool2d (kernel_size = 2, stride = 2), except for the final layer,
which employs an AdaptiveMaxPool with dimensions (2,4), optimizing feature extraction, and spatial
dimensionality reduction.

3.3.2. Adaptive Graph Module

One of the pivotal components of our novel framework is the Adaptive Graph Module
(AGM). This module intakes feature embeddings from a support set and a query set,
subsequently adjusting the features of the support set based on the information from
the query set. The output is the feature embeddings of the support and query sets in an
alternative feature space. Essentially, our proposed AGM re-projects the features, enabling
the model to calculate the distance or similarity between the query samples and various
class prototypes within the channel feature space.

For simplicity, let Fl = Concat[Fs
l , Fq

l ], which represents the feature representation of
all samples from the support and query sets after the lth layer of AGM. These samples are
processed through the next layer of AGM as follows:

Fl+1 = G(Fl) = FFN(Fl + σ(F
′
l )) (1)
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F
′
l = AGGREGATE(Fl) = AFlW (2)

Here, F
′
l denotes the aggregated sample information, A is an adjacency matrix repre-

senting the relationships between samples at that layer, W is a projection matrix, σ denotes
a non-linear activation function, and FFN stands for FeedForward Network. The AGM
module can be dissected into two segments: (1) Graph Construction: This part details
how we express samples from the support and query sets as a graph; (2) Message Passing:
We delve into the mechanism of message passing within Graph Neural Networks in the
context of our problem. Specifically, to obtain adaptive prototypes, we direct the flow of
information from the query-set towards the support-set samples, which allows for dynamic
adjustments based on the query.

(1). Graph Construction

For simplicity, we denote T = N × (K + Q) as the total number of samples encom-
passing both the support and query sets.

Let G = (V, E) represent a graph constituted by nodes from these sets, where V is the
collection of nodes, defined as V = {F1

l , F2
l , . . . , FT

l }. Here, Fi
l symbolizes the ith malware

sample at the lth AGM layer. For samples drawn from the support set, i ranges from 1 to
N × K, and for those from the query set, i ranges from N× K to T. Given the discussion
pertains to samples from a singular layer of the AGM, we simplify our notation by omitting
the subscript l, thus reducing it to V = {F1, F2, . . . , FT}. E is the set of edges, where for any
i, j ∈ [1, K + Q], eij ∈ E delineates the relationship between the ith and jth samples.

However, the semantic relationships between samples remain somewhat nebulous.
The subsequent discussion aims to elaborate on the precise construction process of these re-
lationships, enhancing the understanding and analytical capabilities within the graph model.

We define eij as a measure of the relationship between the ith and jth samples. The un-
derlying premise is that the closer or more relevant the samples are to each other, the larger
the value of eij should be. This conceptualization allows us to capture the intrinsic structure
and relationship dynamics within the data. The formula for this relationship measure can
be represented as follows:

eij = fθ(Fi, Fj) (3)

Here, fθ represents the distance function between different samples, with θ denoting
the parameters that can be learned. This function can take various forms, including
both parametric and non-parametric expressions. For non-parametric forms, fθ could be:
(1) Euclidean Distance: fθ(x, y) = ∑((x− y)2); (2) Cosine Similarity: fθ(x, y) = − x·y

|x|·|y| .

For parametric forms, fθ could be: (3) Sum: fθ(x, y) = WTtanh(x + y); (4) Dot Product:
fθ(x, y) = xTWy.

In our constructed sample graph, to enable a more flexible framework that could
capture a wider variety of relationships and to allow the model to learn a more nuanced
and accurate representation, we employed a parametric distance function fθ . Furthermore,
to maintain the symmetry of distance, ensuring eij = eji, we incorporated a methodology
delineated in [24], which adopts a Multilayer Perceptron (MLP) stacked after the absolute
difference between two vectors. This can be mathematically represented as:

fθ(x, y) = MLPθ(|x− y|) (4)

Here, θ represents the learnable parameters. By using this architecture, the symmetry
of the distance function fθ(x, y) = fθ(y, x) is satisfied, and the distance property identity
fθ(a, a) = 0 is easily learned. For illustration, we visualize the MLP architecture in Figure 6.

Having established the pairwise distances between samples, we can readily construct
the adjacency matrix A, where the proximity of two samples inversely correlates with the
strength of their connection. This relationship is mathematically represented as:

A = {eij|1 ≤ i, j ≤ T} (5)
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Subsequently, we normalize each row of the adjacency matrix. For this process, we
adopt the normalization technique proposed in the Graph Attention Network (GAT) [32],
which involves applying a LeakyReLU activation function to the adjacency matrix fol-
lowed by a softmax computation to determine the attention coefficients αij for the edges.
The formula for this computation is as follows:

αij =
exp(LeakyReLU(eij))

∑T
k=1 exp(LeakyReLU(eik))

(6)

With the graph constructed, defining its nodes as the collective set of samples from
both the support and query sets, and its edges as the relationships between each pair of
samples, we now proceed to the message-passing phase. Specifically, we aim to transmit
the query set’s information to the support set. This process allows for the acquisition of
adaptive features that are refined in response to the query set’s characteristics.

Figure 6. MLP structure of the distance function.

(2). Message Passing

Unlike traditional Graph Neural Networks, the direction of message passing in the
Fully Connected graph constructed in the previous section is not bidirectional. Primarily,
it is important to note that within the query set, information sharing is not feasible. This
is understandable, since each sample in the query set is independent, with no inherent
relations between them.

Our objective was to allow the support set to encompass the information from the
query-set samples, thereby acquiring adaptive prototypes. This was inspired by [29], which
maintained the invariant features of the support set and directed the flow of information
towards the query set. However, our goal differed, in that we sought prototypes adapted
to the query set, meaning the support set should contain information from the query set.
As illustrated in Figure 3, the blue lines between samples represent mutual information
transfer, while the yellow lines indicate information flow solely from the query to the
support set.

To achieve the directional requirements of the aforementioned information transfer,
while ensuring that the sum of each row in the normalized adjacency matrix equaled one,
we introduced a mask matrix. The visualization of the mask matrix is shown in Figure 7.
With a total sample count of T for the support and query sets, the mask and adjacency
matrices were of dimension T × T. The first N × K rows of the mask were zero, and the
subsequent rows were set to −∞ (to become zero after softmax calculation).
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Figure 7. Visualization of the mask matrix.

The entire process can be articulated as:

A = So f tmax(LeakyReLU(A + mask)) (7)

With the modified adjacency matrix in place, we then proceeded to the standard
graph-convolution-aggregation and update processes. The aggregation process involved
gathering the information of neighbors, first obtaining the projection of each sample
FlW, and then aggregating information according to the adjacency matrix, as shown in
Formula (2). The update process involved merging the node’s own information with the
aggregated neighbor information, where we simply employed a residual connection:

F
′′
l = Fl + σ(F

′
l ) (8)

We also experimented with more complex update mechanisms, such as the one used
in GAT [32]:

F
′′
l = MLP(Concat[Fl , σ(F

′
l )]) (9)

However, the empirical results suggested that the other update mechanisms did not
offer a clear advantage. Instead, the simple residual connection model demonstrated more
stable convergence.

As described in Formula (1), after updating the features of each sample, we enhanced
the model’s expressiveness and obtained more flexible feature-dimension representation
by adding a Feed-Forward Network (FFN) following the graph-convolution operation,
achieving the feature embedding of each sample in the new feature space.

3.3.3. Proto Aggregation Layer

In the preceding section, we explored the transformation of sample features Fl from
the support and query sets through an AGM into Fl+1. Assuming our model comprised
L AGM layers, in addition to the initial features extracted via a CNN4 architecture, we
obtained L + 1 sets of sample features for both the support and query sets, denoted as
F = {F0, F1, . . . , FL}. Each set, Fl , contained features from the support (Fs

l ) and query (Fq
l )

sets.
The proto aggregate layer focuses on computing the prototype of each class within

the support-set sample features. We adhered to the most classical prototype calculation
method [20], utilizing the mean of all features within the same class in the support set as
the prototype for that class. The computation proceeds as follows:

Prototype Calculation: For each class c within the support set at layer l, the prototype
Pc

l is computed as the mean of all feature vectors belonging to that class. Mathematically,
this is represented as:

Pc
l =

1
Nc

∑
f∈Fs

l (c)
f (10)

Here, Pc
l is the prototype for class c at layer l, Nc is the number of samples in class c,

and Fs
l (c) represents the set of all feature vectors in the support set at layer l that belong to

class c. This formula ensures that the prototype is the centroid of the features in the class,
effectively summarizing the class’s overall position in the feature space.
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For each set of sample features, we computed prototypes using the aforementioned
method, ultimately obtaining L + 1 sets of prototypes, denoted as P = {P0, P1, . . . , PL}.

3.3.4. Attention-Based Dynamic Proto-Layer

In this section, we introduce an innovative Attention-Based Dynamic Proto-Layer
(ADPL), which marries the principles of prototype networks with the dynamic-convolution
methodology. Upon traversing the proto aggregate layer, we acquire L + 1 prototype sets
denoted by P. Inspired by the dynamic-convolution concept proposed by [33], ADPL
leverages an attention mechanism to adeptly distribute weights across these prototypes,
contingent upon the query-set embeddings’ nuances.

As shown in Figure 4, the ADPL mainly consists of three parts:
Distance Computation: For each prototype set Pi, where there are C classes of pro-

totypes denoted as P1
i , P2

i , . . . , PC
i ,we calculate the Euclidean distance between the query

embedding Fq
i and each class’s prototype. This metric, denoted as Distanceq

i , assesses
how closely each prototype corresponds to the query instance. It forms the foundational
metric for subsequent attention-weight allocation, influencing the model’s decision-making
process in classification or retrieval tasks. The distance for the ithprototype set is computed
as follows:

Distanceq
i =

[
∑ (Fq

i − Pj
i )

2
]C

j=1
(11)

Here, Distanceq
i represents the Euclidean distance for the ith prototype set to the query

sample Fq
i ; Fq is the query-embedding vector; Pc

i is the cth class prototype in the ith set; and
C is the total number of classes.

Attention Mechanism: We introduce an attention mechanism where the input is the
embedding from the first feature space (the 0th space) of the query set. This mechanism
comprises a Fully Connected (FC) layer succeeded by Batch Normalization (BN) and
Rectified Linear Unit (ReLU) activation. A subsequent FC layer projects the dimensions to
align with the number of prototypes, and a softmax function is applied, to yield the attention
weights π(i) for each prototype. To address the issue of the softmax layer’s output labels
approximating one-hot encoding or, in other words, to prevent the model from excessively
focusing on prototypes specific to certain groups, we use a large temperature in softmax to
flatten attention as follows:

πi =
exp(oi/τ)

∑j exp(oj/τ)
(12)

where oi is the output of the last FC layer in the attention branch (see Figure 4). The attention
weights reflect the importance or relevance of each prototype in relation to the query.

Weighted Summation: In the final step, a weighted summation is performed, where
the Euclidean distances are multiplied by their corresponding attention weights. Since
a smaller distance indicates that the query set sample is closer to the class, the predicted
probability should be higher; therefore, the logits need to be negated. The formula for the
weighted summation is expressed as:

Logits = −
L

∑
i=0

π(i)× Distancei (13)

The logits are the aggregated result of this process and represent the final predictive
output of the model.

By integrating the attention mechanism, the ADPL allows our model to dynamically
emphasize the most pertinent prototypes and provides a more nuanced and context-aware
method for prototype weighting. This ensures that our model remains robust and efficient,
even when faced with the challenge of learning from a limited number of samples.
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3.4. Optimization

This section introduces the optimization objectives (loss functions) of our model. Af-
ter processing through the Attention-Based Dynamic Proto-Layer (ADPL), the obtained
logits represent a C-dimensional vector, where each dimension corresponds to the prob-
ability that the query sample belongs to a respective class. Cross-entropy is a common
choice for the loss function in classification problems; thus, we adopted it as part of our
loss function. Specifically, we first applied softmax to convert the logits into probabilities
and then computed the cross-entropy loss. The loss for comparing the predicted class of
the query-set samples with the true labels can be expressed as:

Prob(k) =
eLogits[k]

∑C
j=1 eLogits[j]

(14)

L1 = −
C

∑
k=1

yk log(Prob(k)) (15)

Here, Prob(k) is the probability that the query sample belongs to class k, and C is the
total number of classes; yk is the true label of the sample, which is 1 for the correct class
and 0 for all others. The loss is calculated across all classes, but only the term for the true
class will contribute to the sum.

Additionally, to ensure consistency in the prediction scores for each query across
all feature spaces, we also incorporated a consistency loss as part of our loss function.
We initially experimented with KL divergence but found that the logarithmic operations
involved led to instability and even to gradient explosion during model training. Therefore,
we opted to measure consistency using cosine similarity between the prediction scores of
models in different feature spaces. To simplify the calculations, we only computed the

consistency between adjacent layers, reducing the computational burden from
(

2
L + 1

)
to L. Specifically, we calculated the consistency of the distances between the query-set
samples and the prototypes across adjacent layers, mathematically expressed as:

L2 =
1
|Q|

L

∑
i=1

∑
q∈Q

(1− sim(Distancei, Distancei−1)) (16)

sim(x, y) =
x · y
|x| · |y| (17)

Here, Q represents the set of query-set samples, and cos_sim calculates the cosine
similarity, which has a range of [−1,1]. A higher value indicates greater similarity. To ensure
that the loss was positive and decreased as similarity increased, we constructed the formula
as above. Finally, our optimization objective was the sum of the two loss values:

L = L1 + λL2 (18)

Here, λ is a hyperparameter representing the weight of the consistency loss.

4. Results
4.1. Datasets

In our research, we evaluated our method on two few-shot malicious-software datasets,
LargePE [22] and VirusShare [23], both of which contain the binary code of malware and
corresponding classes. LargePE comprises 100, 58, and 50 classes for training, validation,
and testing, respectively, with each category containing 20 samples. Similarly, VirusShare
contains 87, 20, and 20 classes for training, validation, and testing phases, with each class
also having 20 samples.
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Unlike traditional datasets in the computer-vision domain, labels in malware datasets
are relatively complex to obtain and often require expert knowledge. The samples in these
datasets were first scanned through the professional analysis website VirusTotal [34], to
obtain detection reports. These reports included many Anti-Virus (AV) labels provided
by third-party companies. Subsequently, we utilized AVClass [35] to standardize the
nomenclature of these third-party labels, to serve as the final class labels.

As both datasets consist solely of raw malicious-software binary codes, we employed
the method mentioned in Section 3.2 to extract the grayscale images of the malware. This
process resulted in obtaining images with a single channel, with dimensions of 256 ×
256 pixels.

4.2. Baseline Models

Three types of baselines were chosen for comparisons:

1. Classic machine-learning methods
Gist+KNN [36]: A classic machine-learning method for few-shot malware classifica-
tion that uses Gist descriptors to capture the spatial structure of an image as features
for the K-Nearest Neighbors algorithm.
Pixel+KNN: This method directly utilizes the normalized pixel values of images as
features for the K-Nearest Neighbors algorithm.

2. Optimization-Based Methods
MAML [16]: Model-Agnostic Meta Learning is designed to rapidly adapt to new
tasks with minimal data. It prepares the model with an initialization that is sensitive
to changes in the task, allowing for quick adaptation in just a few gradient updates.
GAP [19]: This approach enhances the inner-loop optimization in meta learning by
using a Geometry-Adaptive Preconditioner.

3. Metric-Based Methods
ProtoNet [20]: Prototypical networks learn a metric space in which classification can
be performed by computing distances to prototype representations of each class.
RelationNet [21]: Employs a learnable relation module to compare query and few-
shot support images.
ConvProtoNet [22]: This model enhances the standard ProtoNet by incorporating a
convolutional induction module.
Dynamic Conv [33] + ProtoNet [20]: This model replaces the convolution blocks
of each layer of the backbone network in ProtoNet with the dynamic convolution
proposed by Chen et al. [33].

4.3. Experiment Setup

For the machine-learning models, we set k = 3 for the K-Nearest Neighbors (KNN)
model, to ensure a degree of generalization and prevent overfitting. We used the Euclidean
distance as a metric. If there were multiple neighbors with the same class label, we
selected the label of the nearest neighbor as the model’s output. For the Gist+KNN
model, we employed the same Gabor filters settings as in [22], using orientations of 0,
π/4, π/2, and π, and scales of 3, 5, 7, and 9 to construct 16 Gabor filters, segmenting the
input image into 64 blocks and the results into a 1024-dimensional feature vector. For
the deep-learning models, to ensure fair comparison, we employed the CNN4 structure
mentioned in Section 3.3.1 as our backbone for all the models except ConvProto [22], which
followed the original paper’s settings. The last layer of our backbone had 64 channels,
followed by a max-pooling layer of shape (2, 4), resulting in a 512-dimensional feature
embedding. For the optimization-based Few-Shot Learning methods MAML and GAP,
both the inner-loop and outer-loop learning rates were set to 1 × 10−4, with other settings
remaining consistent.

We employed a three-layered Adaptive-Graph-Module architecture. Each layer incor-
porated a learnable distance function, as depicted in Figure 6. The FeedForward Network
within each layer progressively mapped the feature space from 512 dimensions to 256, 128,
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and, finally, 64 dimensions. This gradual reduction was designed to refine the focus of the
model as it delved deeper into the network. Concurrently, the attention temperature was
uniformly decreased from 30 to 1 across the layers [33]. For the loss function, we opted for
a hyperparameter setting of λ = 1.

Our dataset was divided into three parts: meta training sets, meta validation sets,
and meta testing sets. The meta training set was used for updating the model parameters,
the meta validation set for controlling the training process, and the meta testing set for
evaluating model performance. In one training epoch, the model would randomly select
N classes from the meta training set, with K samples per class as the support set, and the
remaining samples as the query set. During meta validation, after every 100 training epochs
on the meta training set, validation was conducted for 100 epochs on the validation set.
The model with the best performance on the validation set was selected for final evaluation
on the test set. For simplicity, we focused solely on the model’s accuracy.

Each malware sample’s grayscale image was of shape 256× 256, with augmentation in-
cluding random cropping to 224 and horizontal flipping. We used the Adam optimizer with
an initial learning rate of 1 × 10−4, decaying the learning rate by ×0.5 every 10,000 epochs,
with a weight decay of 0.01, training for a total of 50,000 epochs. All experiments were run
on 4 RTX 2080Ti GPUs and the code was implemented by PyTorch.

4.4. Experiment Results

We report results for the N-way K-shot classification on LargePE and VirusShare as,
respectively, shown in Tables 2 and 3, with a 95% confidence interval. The number of
classes N is in [5, 20], and the number of support-set samples, K, is in [5, 10], constituting
a total of four tasks, as is common in most Few-Shot Learning experiments. In nearly all
configurations, AGProto significantly outperformed all the baseline models, achieving
commendable accuracy even in the challenging 20-way-5-shot tasks. Due to the constraints
of the graphics-card memory capacity, the results for the optimization-based methods
(MAML and GAP) in all 20-way settings are not reported. Even when compared to well-
performing models (such as ProtoNet, ConvProto, and MAML), AGProto consistently
showed an increase of around 2% in accuracy, and for the more demanding 20-way tasks,
the accuracy improvement of AGProto exceeded 3% or more. Against other somewhat
weaker models, AGProto demonstrated an advantage exceeding 10%.

To validate the generalization ability of our model, we also performed cross-validation
between the two datasets. Specifically, we tested the model trained on the LargePE dataset,
using data from VirusShare and, similarly, we tested the model trained on VirusShare with
data from LargePE. The experimental results are presented in Table 4. It was observed that
once AGProto was well trained it could achieve impressive results on other datasets without
the need for retraining or fine tuning. It is noteworthy that when evaluated on the same
dataset, the performance of AGProto, trained with external data, was comparable to that of
the baseline methods, further underscoring the robustness and efficacy of our approach.

To further underscore the effectiveness of AGProto, we visualized the confusion matrix
for the 5-way-5-shot task on the VirusShare dataset, as shown in Figure 8. Clearly, AGProto
accurately classified the vast majority of malware samples. The confusion matrix reveals
not only high true positive rates but also minimal misclassifications, indicating a robust
discriminatory capability even among closely related malware classes. This highlights
AGProto’s nuanced understanding of subtle feature differences, crucial in the precise
identification of various malware types.

4.5. Performance Analysis

In the subsequent analysis, we dissected the performance metrics of our proposed
model, following the experimental outcomes presented. Our evaluation was benchmarked
against established metric-based models, as detailed in Section 4.4, critically assessing
our model’s efficiency along several axes: the quantity of parameters, model dimensions,
training and inference speeds, and memory consumption. The comparison was deliber-
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ately confined to metric-based approaches for Few-Shot Learning, such as those exempli-
fied by optimization-based methods like MAML. This choice stemmed from the inherent
differences in training strategies between the two paradigms. Specifically, optimization-
based methods, due to their reliance on the backbone network for parameter quantity and
their intensive use of inner-loop gradient updates within a single step, typically exhibit
slower training and inference times as well as higher memory demands than metric-based
methods.

Our analytical framework centered on a 5-way-5-shot task, shedding light on the
operational efficiency of our model. This methodology facilitated a balanced review
of computational demands in relation to performance outcomes, as illustrated in the
comparative results with baseline models shown in Table 5.

Table 2. Testing accuracy of all models on LargePE Dataset. 95% confidence intervals are attached
after the mean accuracy, and the best accuracy of each column is in bold. Results marked with an
asterisk (*) are derived from [22].

Model/Task 5-Way-5-Shot 5-Way-10-Shot 20-Way-5-Shot 20-Way-10-Shot

Gist+KNN3 * 69.07 ± 2.81 75.18 ± 2.53 55.51 ± 1.60 61.82 ± 1.58

pixel KNN3 * 63.60 ± 0.94 67.39 ± 0.96 42.49 ± 0.58 45.22 ± 0.42

MAML 83.11 ± 0.02 86.20 ± 0.02 - -

GAP 83.19 ± 0.03 85.96 ± 0.03 - -

ProtoNet * 79.57 ± 0.22 82.63 ± 0.20 63.31 ± 0.12 65.00 ± 0.11

RelationNet * 74.98 ± 0.23 77.28 ± 0.23 53.13 ± 0.12 57.48 ± 0.13

ConvProtoNet * 83.34 ± 0.13 86.63 ± 0.13 68.56 ± 0.08 71.38 ± 0.08

Dynamic Conv 82.59 ± 0.20 84.72 ± 0.19 69.27 ± 0.11 72.25 ± 0.12

Ours 86.08 ± 0.18 89.22 ± 0.16 72.09 ± 0.11 75.03 ± 0.10

Table 3. Testing accuracy of all models on the VirusShare Dataset, with 95% confidence intervals
attached after the mean accuracy. The best accuracy of each column is in bold.

Model/Task 5-Way-5-Shot 5-Way-10-Shot 20-Way-5-Shot 20-Way-10-Shot

Gist+KNN3 74.30 ± 0.22 80.60 ± 0.19 61.12 ± 0.06 68.36 ± 0.05

pixel KNN3 63.59 ± 0.27 69.28 ± 0.24 49.79 ± 0.08 55.57 ± 0.06

MAML 83.32 ± 0.02 85.06 ± 0.02 - -

GAP 83.07 ± 0.02 86.20 ± 0.02 - -

ProtoNet 81.78 ± 0.20 84.24 ± 0.17 67.60 ± 0.05 71.01 ± 0.06

RelationNet 78.25 ± 0.22 80.14 ± 0.19 65.29 ± 0.04 67.03 ± 0.04

ConvProtoNet 83.39 ± 0.19 85.87 ± 0.18 67.52 ± 0.06 71.52 ± 0.06

Dynamic Conv 83.40 ± 0.18 86.34 ± 0.17 68.43 ± 0.06 72.25 ± 0.06

Ours 86.15 ± 0.19 88.80 ± 0.17 71.13 ± 0.05 74.72 ± 0.05

Table 4. Cross-validation results demonstrating model performance on different tasks. For “LargePE
+ AGProto”, the test data were sourced from VirusShare, while for “VirusShare + AGProto”, the test
data were sourced from LargePE.

Model/Task 5-Way-5-Shot 5-Way-10-Shot 20-Way-5-Shot 20-Way-10-Shot

LargePE + AGProto 82.13 ± 0.19 85.04 ± 0.18 66.34 ± 0.04 68.86 ± 0.05

VirusShare + AGProto 80.65 ± 0.25 83.10 ± 0.22 65.93 ± 0.13 68.12 ± 0.13
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Figure 8. Confusion matrix of the LargePE datasets for 5-shot 5-way problem. Weights less than 0.02
are omitted.

Table 5. Comparative analysis for a 5-way-5-shot task, with parameter quantity and model size
derived using PyTorch tools, and speed and memory usage measured using a consistent 2080Ti GPU
across experiments.

Model Parameters Model Size Training Speed Inference Speed Memory Usage

ProtoNet 95.49 k 390.3 KB 38.21 it/s 99.78 it/s 2163 MB

RelationNet 143.18 k 601.59 KB 37.34 it/s 97.66 it/s 2219 MB

ConvProtoNet 106.4 k 439.6 KB 37.83 it/s 98.57 it/s 2345 MB

Dynamic Conv 373.66 k 1.50 MB 28.64 it/s 82.46 it/s 2027 MB

AGProto (Ours) 852.61 k 6.65 MB 27.37 it/s 80.75 it/s 2415 MB

The results indicate that, although our model exhibited a higher parameter count and
model size than the other baseline models, its 6 MB size remained within an acceptable
range and was easily deployable. Despite a slower training speed compared to the baselines,
the inference speed was comparable, underscoring the practical utility of our model.
Considering the disparity in parameter quantity and the marginal difference in inference
speed, our model demonstrated efficient GPU utilization. Our model’s parameter count
was more than eight times that of ProtoNet, yet the inference speed was slowed by less
than 20%, with a significant improvement in accuracy. Memory consumption across these
models showed no significant variation.

5. Discussion
5.1. Why AGProto Works

To elucidate why our AGProto network demonstrated superior performance over
other Few-Shot Learning models, a meticulous analysis of the results garnered by AGProto
was conducted. To be specific, for an N-way K-shot task, we meticulously chronicled the
correctness of each query-set sample’s original category for every task. This comprehensive
data compilation enabled us to compare the accuracy distribution for each category across
the dataset. Our methodology was grounded in two pivotal considerations: the inherent
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variability in features within samples of the same category and the random nature of
the support-set sample selection, both of which could significantly impact the outcomes.
Furthermore, the pronounced feature differences between distinct categories also played a
critical role, where the selection of N − 1 categories to compare against a fixed one could
skew the accuracy of that category. AGProto was conceived with the ambition of fostering
a network capable of adapting to the sample’s unique features, autonomously adjusting its
output in response to the data’s intrinsic characteristics. Therefore, the task described above
was very suitable for comparing the differences between AGProto and other Few-Shot
Learning models. We chose the classic ProtoNet as comparison and visualized the tasks
described above in box plots, as shown in Figure 9.

Figure 9. The comparative analysis of (a) ProtoNet and (b) AGProto, using box plots to display the
distribution of accuracy across different categories.

Upon inspecting the results visualized in the box plots, we can clearly observe that
compared to the box plots of ProtoNet, AGProto’s box plots have two very noticeable
advantages: overall accuracy improvement and constricted InterQuartile Range.

Overall Accuracy Improvement: It is evident that AGProto catalyzed an elevation in
the median accuracy across categories when compared to ProtoNet. For some categories
that are difficult to identify, the improvement was obvious. It can be seen from here that for
categories such as zbot, psyme, refroso, etc., AGProto improved the accuracy by about 7%
compared to ProtoNet. Such a holistic enhancement is suggestive of AGProto’s robustness
and its capacity to consistently elevate performance across diverse scenarios, which is a
cornerstone of Few-Shot Learning models’ utility.

Constricted Interquartile Range: The constriction of the InterQuartile Range (IQR) in
AGProto’s box plot compared to that of ProtoNet’s is particularly telling. This narrowed
IQR signifies a more stable and consistent accuracy across various tasks, with a reduction in
the dispersion of data points. The AGProto model’s ability to adapt leads to a performance
that is not only higher on average but also more predictable and reliable, with fewer
instances of erratic outliers. The marked consistency, as evidenced by the diminished range
of the middle 50% of data points, underscores AGProto’s competency in handling the
inherent variability within Few-Shot Learning tasks.

In summary, the visual data from the box plots unequivocally illustrate that AGProto
not only enhances the overall accuracy but also brings about a constricted InterQuartile
Range, manifesting a more consistent and reliable performance. The results validate our
hypothesis that our designed Adaptive Graph ProtoNet tuning itself to the features of the
samples can indeed achieve superior performance.

5.2. Future Work

We suggest several potential avenues for extending our work, aimed at advancing
research in few-shot malware classification. Firstly, traditional approaches generally assume
an equal number of samples per class; however, this is seldom the case in real-world
scenarios where some malware types are more prevalent than others. This leads to a model
bias towards recognizing common malware classes while neglecting rarer ones. To mitigate
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this, future studies could explore adaptive techniques that adjust the learning process based
on class frequency, thereby ensuring a more balanced and representative model.

Additionally, our experimental results indicate that optimization-based Few-Shot
Learning methods, such MAML [16] and GAP [19], achieve commendable accuracy, trailing
our proposed AGProto by less than 3% in 5-way-5-shot and 5-way-10-shot tasks. These
methods fundamentally learn an embedding model, which is the same as our AGProto,
and append a classifier layer. Integrating these optimization-based approaches could
potentially enhance performance, warranting further exploration.

Moreover, we observed that the choice of backbone network significantly impacts
performance. While some pre-trained models from the computer-vision domain, such as
ResNet and ViT, did not exhibit superior performance on malware datasets, designing
convolutional backbone networks tailored to the characteristics of malware grayscale
images may yield improvements. For instance, considering that malware grayscale images
typically contain less information than natural images and have more densely packed lateral
information (adjacent bits), simpler network architectures or asymmetric convolutional
kernels might be more effective. Such specialized networks would cater to the unique data
structure and distribution found in malware images, potentially leading to more accurate
and robust classification results.

Lastly, the issue of using adversarial attacks to bypass model detection has always been
a focal point in the field of malware classification. However, adversarial attacks targeting
multi-classification problems are currently underexplored. While bypassing malware-
detection models through adversarial attacks is undoubtedly valuable for simulating the
process by which attackers disguise malicious code, we posit that attacking malware-
classification models holds significant research value as well. Such efforts can aid in
understanding the relationships among different malware families. This approach not
only addresses an existing research gap but also contributes to the development of more
sophisticated and secure malware-classification systems.

6. Conclusions

In this research, we introduced AGProto, an innovative approach designed to tackle the
few-shot malware-classification challenge. This method ingeniously harnesses the power
of Graph Neural Networks for effective message passing, thereby generating multiple
prototypes that encapsulate the query-set samples’ information. These prototypes are
then dynamically weighted through an attention mechanism, considering each sample’s
distinctive features. Consequently, AGProto tailors a customized prototype for each sample,
from which classifications are derived using Euclidean distances.

Our empirical studies manifested that AGProto achieves the highest accuracy on two
distinct few-shot malware datasets. Further explorations revealed that not only does AG-
Proto exhibit commendable generalization and robustness, but it also significantly enhances
the classification accuracy of particularly challenging categories. This performance aligns
with the initial aspiration behind AGProto’s creation: to foster a network that inherently
adapts to the unique characteristics of each sample, autonomously modifying its responses
based on the inherent traits of the data. Such adaptability and precision underline AG-
Proto’s potential as a formidable model in the realm of malware classification, particularly
in scenarios constrained by limited data availability.
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