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Abstract: Element detection is an important step in the process of the non‑destructive testing of
printed circuit boards (PCB) based on computed tomography (CT). Compared with the traditional
manual detection method, the image semantic segmentation method based on deep learning greatly
improves efficiency and accuracy. However, semantic segmentation models often require a large
amount of data for supervised training to generalize better model performance. Unlike natural im‑
ages, the PCB CT image annotation task is more time‑consuming and laborious than the semantic
segmentation task. In order to reduce the cost of labeling and improve the ability of the model to
utilize unlabeled data, unsupervised pre‑training is a very reasonable and necessary choice. The
masked image reconstruction model represented by a masked autoencoder is pre‑trained on the un‑
labeled data, learning a strong feature representation ability by recovering the masked image, and
shows a good generalization ability in various downstream tasks. In the PCB CT image element seg‑
mentation task, considering the characteristics of the image, it is necessary to use amodel with strong
feature robustness in the pre‑training stage to realize the representation learning on a large number
of unlabeled PCB CT images. Based on the above purposes, we proposed a contrastive dual‑masked
autoencoder (CD‑MAE) pre‑training model, which can learn more robust feature representation on
unlabeled PCBCT images. Our experiments show that the CD‑MAE outperforms the baselinemodel
and fully supervised models in the PCB CT element segmentation task.

Keywords: unsupervised pre‑training; image segmentation; PCB nondestructive testing; model
finetuning

1. Introduction
Printed circuit boards are a core part of electronic devices by connecting various types

of components to achieve various functions. For some important and complex electronic
equipment, regular inspection and maintenance are required, where printed circuit board
testing technology based on computed tomography provides a nondestructive inspection
method, such as [1,2]. Regarding the different elements on the printed circuit board, the
vias provide space for the arrangement of components, and the pads and wires provide
pathways for the connection of components, so the detection of wires, vias, and pads is the
key to the entire nondestructive testing process. With the continuous development in the
field of computer vision, some algorithms based on deep neural networks have been intro‑
duced for element detection, such as the use of image semantic segmentation technology
to achieve the segmentation of the wires [3] and the detection of vias [4]. Compared with
the traditional manual detection methods, deep learning‑based image segmentation meth‑
ods can be very effective in improving efficiency and accuracy. However, deep learning
models often require a large amount of annotated data to perform well, which will result
in huge labeling costs.

In order to adequately train themodel and extract potential features on limited labeled
data, pre‑training is a very effective and necessarymethod. Based on this, by building an ef‑
ficient pre‑trainingmodel, a powerful feature extractor is obtained after learning on a large

Electronics 2024, 13, 1006. https://doi.org/10.3390/electronics13061006 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061006
https://doi.org/10.3390/electronics13061006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13061006
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061006?type=check_update&version=1


Electronics 2024, 13, 1006 2 of 14

amount of unlabeled data, and then the pre‑trainedmodel is fine‑tuned on a small amount
of labeled data to perform the PCB CT image element segmentation task. This approach
is important to reduce the dependence of the model on labeled data and reduce the label‑
ing cost. For the above purposes, unsupervised pre‑training is a very good solution. Un‑
like supervised pre‑training, unsupervised pre‑training does not require the supervision
of labeled data but learns feature representation on unlabeled datasets by self‑supervised
or unsupervised means. In addition, the success of large language models such as Trans‑
former [5] has inspired researchers in the field of computer vision. As a higher‑dimensional
modality withmore noise andmore redundant information than text, modeling on images
is more difficult. However, the proposal of Vision Transformer [6] shows great potential of
transformer in computer vision tasks, as shown in some remarkableworks such as BEiT [7],
iGPT [8], MAE [9], etc. These transformer‑based models with a self‑attentive mechanism
have a significant advantage of being able to work on a large amount of unlabeled data, in
addition to having good scalability and the ability to obtain global information.

Unsupervised pre‑training is continuously showing great potential, and is mainly di‑
vided into two types, generative pre‑training and contrastive pre‑training, each of which
mines its own supervised information from large‑scale unlabeled data through different
auxiliary tasks. Among them, the agent task of generative pre‑training is mainly masked
image reconstruction, and the main process is to randomly mask some regions of the origi‑
nal image and then send it to themodel for image reconstruction. The operation ofmasking
can increase the learning difficulty for the model, so that the model can learn better feature
representation, typical methods are BEiT [7], MAE [9], SimMIM [10], etc. While the agent
task of contrastive pre‑training is mainly individual discrimination, and the core idea is
to reduce the distance between positive samples and to increase the distance between dif‑
ferent negative samples by contrast learning, and the main methods are MoCo [11], Sim‑
CLR [12], SwAV [13], BYOL [14], DINO [15], etc. All these pre‑training methods even
outperform the supervised pre‑trained models in some downstream tasks, such as target
detection and semantic segmentation tasks.

For PCB CT images, the contrastive pre‑training method is difficult to be effective be‑
cause of the small number of element categories, the basically fixed size and the single im‑
age containing almost all categories of elements, so we believe that generative pre‑training
is more suitable for our task. At the same time, due to the limitations of the cone‑beam CT
imaging method, PCB CT images are of low quality, there exist some phenomena such as
metal artifacts, grayscale non‑uniformity and translucency, as shown in Figure 1, where
metal artifacts refer to deformation or distortion around some elements, grayscale non‑
uniformity refers to slight differences in the grayscale values of the same elements, and
translucency refers to the occurrence of results between different layers of the printed cir‑
cuit board. The appearance of these problems tends to limit the learning efficiency of the
model. Therefore, our pre‑trained model needs to have better robustness and be able to
learn more core features in the PCB CT images. Through the above analysis, we propose a
contrastive dual‑masked PCB CT images pre‑training method, which adds the idea of con‑
trast learning to the original masked autoencoder [9], and can enable the model to learn
more robust feature representation capabilities by pulling closer the features obtained by
encoding the same image after masking in different regions. The specific implementation
details will be presented in Section 3.

Our proposed method introduces the idea of contrastive learning to the process of
masked image reconstruction. Compared with the contrastive pre‑training method, We
still use image reconstruction as the implementation of pre‑training, because for PCB CT
images, the difference between positive and negative samples is small, it is difficult to learn
effective features simply by the operation of pulling the positive samples closer and pulling
the negative samples farther, while the model can be ensured to learn relatively more use‑
ful feature information by means of image reconstruction. The comparative experiments
can demonstrate that our pre‑training method extracts features more robustly for PCB CT
images and achieves a very satisfactory performance in downstream tasks.



Electronics 2024, 13, 1006 3 of 14
Electronics 2024, 13, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. PCB CT images with low image quality. 

Our proposed method introduces the idea of contrastive learning to the process of 
masked image reconstruction. Compared with the contrastive pre-training method, We 
still use image reconstruction as the implementation of pre-training, because for PCB CT 
images, the difference between positive and negative samples is small, it is difficult to 
learn effective features simply by the operation of pulling the positive samples closer and 
pulling the negative samples farther, while the model can be ensured to learn relatively 
more useful feature information by means of image reconstruction. The comparative ex-
periments can demonstrate that our pre-training method extracts features more robustly 
for PCB CT images and achieves a very satisfactory performance in downstream tasks. 

To summarize, our main contributions are: 
1. We proposed a PCB CT image pre-training method based on contrastive dual-masked 

image reconstruction, in which the features obtained by masking different regions of 
the same image are pulled closer to improve the robustness of the features. 

2. We introduced the paradigm of “Pre-training ＆ Fine-tuning” to the PCB CT image 
element segmentation task, in which the model is first pre-trained on a large amount 
of unlabeled data to make the model have good feature representation capability, and 
then the pre-trained model is supervised and fine-tuned on a small amount of labeled 
data to achieve the final element segmentation downstream task. This paradigm can 
effectively reduce the labeling cost and shows great performance in downstream ele-
ment segmentation task. 

3. We experimentally demonstrated that our approach outperforms original MAE and 
outperforms fully supervised models based on CNN architecture. 

2. Related Works 
Unsupervised Pre-training has developed rapidly in computer vision, and a number 

of methods are now showing powerful capabilities in various tasks and even surpassing 
some supervised training models. Unsupervised pre-training in computer vision mainly 
has two approaches, where generative pre-training mainly refers to masked image mod-
eling, such as MAE [9], BEiT [7], etc. Inspired by the field of natural language processing, 
these methods divide the image into equal-sized patches and analogize them to words in 
a sentence, by masking random parts of the input patches and then reconstructing the 
missing pixels to achieve the purpose of understanding the image. A certain percentage 
of masking increases the learning difficulty but also effectively improves the performance 
of the model in downstream tasks. In addition to generative pre-training methods, con-
trastive pre-training models also play a very important role in this field, which focus on 
learning the common features among similar samples and distinguishing the differences 
between non-similar samples. Unlike generative pre-training methods, contrastive pre-
training does not need to focus on the very tedious details of the samples, but simply 
learns the features that will distinguish them from other samples. Examples include 
InsDisc [16] and InvaSpread [17], which used individual discrimination tasks early as 
proxy tasks, and CPC [18], which used generative contrastive learning to learn the future 
output or other negative samples in contrast to the predicted output, and CMC [19], which 

Figure 1. PCB CT images with low image quality.

To summarize, our main contributions are:
1. We proposed a PCBCT image pre‑trainingmethod based on contrastive dual‑masked

image reconstruction, in which the features obtained by masking different regions of
the same image are pulled closer to improve the robustness of the features.

2. We introduced the paradigm of “Pre‑training＆ Fine‑tuning” to the PCB CT image
element segmentation task, in which the model is first pre‑trained on a large amount
of unlabeled data tomake themodel have good feature representation capability, and
then the pre‑trainedmodel is supervised and fine‑tuned on a small amount of labeled
data to achieve the final element segmentation downstream task. This paradigm can
effectively reduce the labeling cost and shows great performance in downstream ele‑
ment segmentation task.

3. We experimentally demonstrated that our approach outperforms original MAE and
outperforms fully supervised models based on CNN architecture.

2. Related Works
Unsupervised Pre‑training has developed rapidly in computer vision, and a number

of methods are now showing powerful capabilities in various tasks and even surpassing
some supervised training models. Unsupervised pre‑training in computer vision mainly
has two approaches, where generative pre‑training mainly refers to masked image mod‑
eling, such as MAE [9], BEiT [7], etc. Inspired by the field of natural language processing,
these methods divide the image into equal‑sized patches and analogize them to words
in a sentence, by masking random parts of the input patches and then reconstructing the
missing pixels to achieve the purpose of understanding the image. A certain percentage
of masking increases the learning difficulty but also effectively improves the performance
of the model in downstream tasks. In addition to generative pre‑training methods, con‑
trastive pre‑training models also play a very important role in this field, which focus on
learning the common features among similar samples and distinguishing the differences
between non‑similar samples. Unlike generative pre‑training methods, contrastive pre‑
training does not need to focus on the very tedious details of the samples, but simply learns
the features that will distinguish them from other samples. Examples include InsDisc [16]
and InvaSpread [17], which used individual discrimination tasks early as proxy tasks, and
CPC [18], which used generative contrastive learning to learn the future output or other
negative samples in contrast to the predicted output, and CMC [19], which increased mu‑
tual information by increasing different perspectives. With further research, some studies
found that the size of the batch in the training process has a great impact on the perfor‑
mance of the contrastive pre‑training model, so based on InvaSpread, Chen et al. [12] pro‑
posed SimCLR, which treats the augmented data as positive samples and all other images
as negative samples, and itmeans that a positive sample needs to bematchedwithmultiple
negative samples, otherwise it is difficult for the model to converge. To address this prob‑
lem, He et al. proposed the MoCo [11] based on the momentum approach. According to
the further improvement of thesemodels, SimCLR v2 [20], MoCo v2 [21] andMoCo v3 [22]
were subsequently proposed.
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Furthermore, somemethods have emerged that do not require negative samples, such
as SwAV [13] which combines contrastive learning and clustering methods and does not
directly perform the comparison between two samples, but first clusters the samples and
then performs contrastive learning between classes. In addition, there are a series of meth‑
ods such as BYOL [14], SimSiam [23], Barlow Twins [24], and DINO [15]. In summary,
there is no doubt that both generative and contrastive pre‑training methods have con‑
tributed to the further development of the computer vision.

In the PCB CT image element segmentation task, for the characteristics of the CT im‑
ages of printed circuit boards, we believe that the generative pre‑trainingmethod is simpler
to realize andmore effective, Therefore, we chose themasked auto‑encoder as our baseline
and proposed an improved contrastive dual‑masked autoencoder pre‑training model for
PCB CT Images.

Image Segmentation is one of the mainstream tasks in the field of computer vision,
which iswidely used inmany aspects such as intelligent keying, autonomous driving,med‑
ical image diagnosis and human–computer interaction. As more and more application
scenarios require accurate and efficient segmentation techniques, image semantic segmen‑
tation has receivedmore attention and importance. Image segmentation can be considered
as a pixel‑level understanding of an image, which is essentially the classification of each
pixel point in an image and ultimately the representation of objects of a certain class using
the same class label. The full convolutional network [25], as the pioneer of deep learning in
image semantic segmentation, also laid down the basic structural form of encoder–decoder
for image segmentation models. After that, a series of improved methods based on FCNs
were born. For example, the U‑Net [26] with the addition of skip connection, which differs
from the fusion operation of FCN summation, uses a concatenation approach to fuse deep
and shallow features. This model can achieve better segmentation results with little train‑
ing data and is widely used in medical image segmentation tasks. Qin et al. [27] proposed
a two‑layer nested U‑shaped model based on the U‑net, which can train the model from
scratch without relying on the pre‑trained model, and the feature extraction is as good as
the pre‑trained model.

In addition to this, attention has started to be paid to the importance of contextual
information for image understanding, due to the limitation of the convolutional structure,
the receptive field of models based on CNNs is always limited and therefore cannot make
good use of global contextual information. In order to overcome this problem and enable
the model to focus on the global information of the input image more effectively, some
methods based on dilated convolution and image pyramid structure are proposed, such
as PSPNet [28], Deeplabv3+ [29], etc. Moreover, for allowing the model to highlight cer‑
tain important features of the object, some methods incorporate attention mechanisms to
ignore irrelevant information and better focus on the key information, such as DANet [30],
EMANet [31], etc. Besides the above methods, there are many other CNN‑based image
semantic segmentation methods that show satisfactory results.

With good scalability and powerful global information acquisition capability, trans‑
formers based on the self‑attention mechanism have started to gain much attention in the
field of computer vision. With the introduction of vision transformer [6], transformer‑
based methods began to gradually replace CNNs as the main architecture for various vi‑
sion tasks. For image segmentation tasks, some transformer‑based methods [32–34] are
proposed and showed a good result. Recently, some basic largemodels dedicated to image
segmentation have started to appear and attract much attention. For example, SAM [35]
proposed by Meta is a model based on a massive data training of 11 million images and
1.1 billion masks and has a strong zero‑shot performance to segment unseen images very
effectively. Importantly, the model pioneers the combination of image segmentation and
prompt which include points, boxes, and text, so it can realize the segmentation of dif‑
ferent images with the help of prompt. After that, there are similar works such as Seg‑
GPT [36] proposed by BAAI and SEEM [37] proposed by Microsoft. The presentation of
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these models also opens a new era of generalized large models in computer vision, and
further promotes the rapid advancement of the image segmentation.

There are various methods for image semantic segmentation, but for the difference
between PCB CT images and natural images, we needed to choose a suitable method for
our task, so we have conducted experiments using several typical methods, such as U‑Net,
PSPNet, EMANet, Deeplabv3+, etc. The specific experimental results are shown in Table 1.
Although these methods can achieve end‑to‑end element segmentation, the results are not
very satisfactory. These models need more labeled data to perform better, which will lead
to a large training cost. In view of this, we first apply the “Pre‑training ＆ Fine‑tuning”
paradigm to PCBCT element segmentation task, and verify the effectiveness of ourmethod
through experiments, which can reduce the reliance of the model on labeled data, improve
the utilization of unlabeled data, and accelerate the training and deployment of the model.

Table 1. Performance comparison between CD‑MAE and other methods on PCB CT image element
segmentation task.

Method Pre‑Trained Backbone MIoU(%) #Param.

SegNet [38] — 77.8 29.45 M
U‑Net — 79.1 31.04 M
U‑2‑Net — 84.6 44.05 M

PSPNet ResNet152 82.6 71.44 M
EMANet ResNet152 79.8 69.41 M

Deeplabv3+ ResNet152 84.3 72.33 M

SETR ViT‑L 76.1 317.3 M
SegFormer SegFormer‑B4 82.2 60.89 M

MAE ViT‑L 77.6 458.24 M
MAE

√
ViT‑L 86.5 458.24 M

SimMIM
√

Swin‑L [39] 78.5 175.52 M

CD‑MAE
√

ViT‑B 86.9 172.98 M
CD‑MAE

√
ViT‑L 87.5 458.32 M

CD‑MAE
√

ViT‑H 88.3 872.98 M

PCB Nondestructive Testing refers to the use of cone beam CT to image the printed
circuit boards in electronic equipment, and then use certain technicalmeans to analyze and
diagnose the PCB CT images to achieve the purpose of nondestructive maintenance and
analysis of important electronic equipment. Since the elements of printed circuit boards
such as vias, pads, and wires connect various components and thus achieve different func‑
tions, the inspection of these elements is a key step in the whole process. With the develop‑
ment of deep learning, some element detection methods based on deep neural networks
provided a new approach for element detection, such as the wire segmentation method
using deep convolutional neural networks combined with graphical cut models [3], the
component segmentation method [40] that constructs a random forest pixel classifier, and
the use of Mask R‑CNN [41] implementation of vias detection [4]. These methods have
not been very maturely applied in the actual nondestructive testing process, but they have
validated the great potential of image semantic segmentation based on deep learning in
element detection.

Wemademany attempts to better promote the application of image semantic segmen‑
tation in the element detection task. Aiming at the characteristics of PCB CT images and
the cost of data annotation, we finally adopted the route of unsupervised pre‑training be‑
fore supervised fine‑tuning. We first put CD‑MAE on a large amount of unlabeled data to
adequately learn the feature representation of elements in PCB CT images. After the pre‑
training, we select the encoder as the feature extraction module and adopt UperNet [42] as
the segmentation head, and then the whole segmentation network is fine‑tuned on a small
amount of labeled data to finally achieve PCB CT image element segmentation, where the
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parameters of the pre‑trained encoder part will be frozen in this stage. Through exper‑
iments, we demonstrate that our pre‑training method outperforms MAE and surpasses
some classical supervised models.

3. Method
Our proposed pre‑training method for PCB CT images is an improvement on the

masked autoencoder model. So, as with the original MAE, we continue to follow the
original basic steps of masking, encoding and decoding. However, the difference is that
our method incorporates contrast learning, that is, we first perform two random mask‑
ing operations on the same sample in different regions and apply a pulling operation to
the encoded features. In the whole process, image reconstruction can ensure the effective‑
ness of feature extraction, while the feature pulling operation can ensure the robustness of
feature extraction.

3.1. Network Structure
The structure of our method is shown in Figure 2, which mainly consists of an image

masking part, a parameter‑shared encoder, and a reconstruction decoder. CD‑MAE has
no major difference in the process with MAE, which basically follows the operation of
masking the image randomly, encoding the non‑masked patches, and adding the masked
tokens for image reconstruction. The biggest difference is that our proposed method is
to mask different regions of the same image and then pass the visible patches through a
parameter‑shared encoder, respectively to obtain the features, and then the two groups of
features are compared and pulled closer to ensure robustness to feature extraction.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 15 
 

 

We made many attempts to better promote the application of image semantic segmen-
tation in the element detection task. Aiming at the characteristics of PCB CT images and the 
cost of data annotation, we finally adopted the route of unsupervised pre-training before 
supervised fine-tuning. We first put CD-MAE on a large amount of unlabeled data to ade-
quately learn the feature representation of elements in PCB CT images. After the pre-train-
ing, we select the encoder as the feature extraction module and adopt UperNet [42] as the 
segmentation head, and then the whole segmentation network is fine-tuned on a small 
amount of labeled data to finally achieve PCB CT image element segmentation, where the 
parameters of the pre-trained encoder part will be frozen in this stage. Through experi-
ments, we demonstrate that our pre-training method outperforms MAE and surpasses some 
classical supervised models. 

3. Method 
Our proposed pre-training method for PCB CT images is an improvement on the 

masked autoencoder model. So, as with the original MAE, we continue to follow the original 
basic steps of masking, encoding and decoding. However, the difference is that our method 
incorporates contrast learning, that is, we first perform two random masking operations on 
the same sample in different regions and apply a pulling operation to the encoded features. 
In the whole process, image reconstruction can ensure the effectiveness of feature extraction, 
while the feature pulling operation can ensure the robustness of feature extraction. 

3.1. Network Structure 
The structure of our method is shown in Figure 2, which mainly consists of an image 

masking part, a parameter-shared encoder, and a reconstruction decoder. CD-MAE has no 
major difference in the process with MAE, which basically follows the operation of masking 
the image randomly, encoding the non-masked patches, and adding the masked tokens for 
image reconstruction. The biggest difference is that our proposed method is to mask differ-
ent regions of the same image and then pass the visible patches through a parameter-shared 
encoder, respectively to obtain the features, and then the two groups of features are com-
pared and pulled closer to ensure robustness to feature extraction. 

 
Figure 2. Overview of our proposed CD-MAE. 

The first step in masked image modeling is to randomly mask a certain ratio of the 
image patches, and as explained in the paper of masked autoencoder [9], the model still 
performs well after randomly masking, probably because some degree of masking largely 
eliminates information redundancy while a highly sparse input also helps train an efficient 
encoder. At the same time, the masking operation makes the image reconstruction difficult 
and allows the model to learn the higher dimensional feature representation of the image 
rather than staying at the underlying information such as pixels. Different from the usual 
masking processing, CD-MAE not only masks a certain percentage of image patches, but 
also performs the random masking of the same image twice in different regions. This oper-
ation is designed to be able to subsequently compare the features obtained from different 
areas of the same image. 

Figure 2. Overview of our proposed CD‑MAE.

The first step in masked image modeling is to randomly mask a certain ratio of the
image patches, and as explained in the paper of masked autoencoder [9], the model still
performs well after randomly masking, probably because some degree of masking largely
eliminates information redundancywhile a highly sparse input also helps train an efficient
encoder. At the same time, themasking operationmakes the image reconstruction difficult
and allows the model to learn the higher dimensional feature representation of the image
rather than staying at the underlying information such as pixels. Different from the usual
masking processing, CD‑MAE not only masks a certain percentage of image patches, but
also performs the randommasking of the same image twice in different regions. This oper‑
ation is designed to be able to subsequently compare the features obtained from different
areas of the same image.

The encoder still uses ViT, and the input is the unmasked image patches. After mask‑
ing the same image twice in different regions, the two groups of visible image patches are
used as input, through linear projection, adding positional embeddings, and then a series
of transformer blocks with shared parameters to, respectively obtain the corresponding
intermediate features. We believe that for the same PCB CT image, the semantic informa‑
tion in the image should be fixed due to the relatively fixed elements and the connection
relationship between them, so the features obtained by the encoder should be consistent
even if different regions are masked. Such operation will allow the model to learn a more
robust and core semantic representation. In order to optimize the encoder towards this
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goal, we use the mean squared error (MSE) loss to pull the two groups of features closer
together, as shown in Equation (1).

LFC = MSELoss(g( f (PatchUM1)), g( f (PatchUM2))) (1)

where LFC represents the loss of the contrast learning loss between the two sets of features,
and PatchUMi (i = 1, 2) represents the visible image patches obtained bymasking different
areas of the same image. f (·) indicates that patches are passed through the encoder, while
g(·) indicates adding masked tokens to the encoded visual image patches to restore to the
length of the original sequence.

The proxy task of masked image modeling is image reconstruction, so after encod‑
ing the image patches, it is also necessary to decode and reconstruct the features. In this
part, we feed the entire sequence of image patches with mask tokens to the decoder for
reconstruction. The loss in this part is calculated between the reconstructed image and the
original image using mean squared error loss. The details are as in Equation (2).

LReconi = MSELoss(IOrg, IReconi ) i = 1, 2 (2)

IOrg represents the original image, while IReconi represents the reconstructed image.
The loss function of the whole network is shown in Equation (3), where λ is a hyper‑

parameter that represents the weight of the loss.

L = LRecon1 + LRecon2 + λ ∗ LFC (3)

3.2. Pre‑Training
The purpose of the pre‑training is to adequately model on a large‑scale dataset to ob‑

tain a generic model, and subsequently fine‑tune or migrate it in different downstream
tasks to accomplish different target tasks. For the PCB CT image element segmentation
task, although our downstream task is relatively single, we believe that unsupervised
pre‑training on a large amount of unlabeled data is also necessary considering the cost
of data labeling. Therefore, our proposed model, CD‑MAE, is fully pre‑trained on unla‑
beled PCB CT images to obtain an encoder with excellent feature representation capabil‑
ity. The encoder can learn deeper features of the image with better robustness. Figure 3
shows the image reconstruction results of our method andMAEwith different mask ratios
after pre‑training.
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Figure 3. The results recovered by the model after pre‑training with different methods. Where the
first column is the original PCB CT image, and the second column is the masked image, in which the
first two rows have a mask ratio of 0.5 and the last two rows have a mask ratio of 0.7.
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From the global view of the image, the two methods have little difference in recon‑
struction ability. In local and detail terms, the reconstructed images from CD‑MAE are
a bit finer. For example, we can see from the first two rows of the reconstructed image
that the gray scale of images reconstructed by MAEwill have some differences in adjacent
patches, so we can observe obvious patch shapes in the reconstructed images, while ours is
more uniform. From the last two rows of the reconstructed image, it can be concluded that
our method can learn deeper semantic information under the condition of a high masking
ratio. Even though most of the image is covered, the model pre‑trained by CD‑MAE can
still recover some invisible patches. All of the above are benefits of using dual‑masked con‑
trastive learning that the features aremore robust. However, the performance of themodel
on downstream tasks cannot be seen from the reconstruction results alone, so fine‑tuning
is also needed to verify the effectiveness of the pre‑trained model.

3.3. Fine‑Tuning
After pre‑training, we can obtain an encoder with strong feature representation. Ac‑

cording to the classical “encoder–decoder” structure of image semantic segmentation
model, the decoder of pre‑trained model needs to be replaced by a segmentation head.
After replacement, the overall network is trained with supervised fine‑tuning on the la‑
beled data to achieve the downstream element segmentation task. At present, there are
several well‑performed semantic segmentation networks. Here we chose UperNet [39], a
unified perceptual parsing network for scene understanding, which is based on the tradi‑
tional convolutional network architecture and is designed with the idea that the network
parses visual concepts at different perceptual levels, such as scene, object, texture, and ma‑
terial, all at once. The principle of UperNet is to construct a feature pyramid network by
using the feature map output from the last layer of the feature extraction network to ex‑
tract multi‑scale feature information and use it for target identification and localization at
different levels. Most importantly, it performs better in semantic segmentation tasks due
to the use of multiple semantic levels of features.

As shown in Figure 4, we combine the pre‑trained encoder with the part of UperNet
used for segmentation to construct thewhole element segmentation network. For the train‑
ing of the overall network, we freeze all parameters of the pre‑trained encoder and only
train the segmentation head with cross‑entropy loss as in Equation (4).

Lseg = CrossEntropyLoss(ypred, ygt) =
1
N ∑

i
Li =− 1

N ∑
i

K

∑
c=1

yic log(pic) (4)

ypred represents the segmentation results of themodel, ygt represents the ground truth.
N represents the number of pixels, K represents the number of categories, pic indicates that
the model predicts pixels i as categories c. yic is a symbolic function, taking 1 if the true
category i is equal to c, and 0 otherwise.

The pre‑trained weights are used for encoder, and the decoder is replaced with Uper‑
Net for element segmentation. For the encoder using ViT‑L as the backbone, the outputs
of layers 6, 12, 18, and 24 are selected as the multi‑scale input of UperNet. Then, the final
element segmentation results are generated through a series of operations such as pyramid
pooling module, feature pyramid network, and feature fusion. Where B is the batch size,
H and W are the dimensions of the image, p is the size of the image patch, and C is the
number of channels.
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4. Experiment
4.1. Preliminaries

Evaluation Metrics. In image semantic segmentation tasks, a commonly used model
performance evaluation metric is the intersection over union (IoU), which is calculated
between the ground truth and the prediction results by dividing the overlapping region of
the same category by their union, so it can be used to evaluate the similarity between the
segmentation result and the ground truth of a category. In this case, the intersection over
union for a single category is calculated as in Equation (5).

IoU =
GT ∩ Pred
GT ∪ Pred

=
TP

TP + FP + FN
(5)

where GT ∩ Pred represents the intersection between the ground truth and the prediction
result, and GT ∪ Pred represents the union of them. TP denotes the probability of correctly
predicting a positive sample, FP denotes the probability of incorrectly predicting a positive
sample, and FN denotes the probability of incorrectly predicting a negative sample.

To obtain the segmentation effect for all elements, the mean intersection over union
(MIoU) is obtained by summing the IoU of each category in the dataset and averaging them
to represent the predictive effect of the model for all categories.

MIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

=
1

k + 1

k

∑
i=0

IoU (6)

where k represents the number of categories.
Dataset. The number of unlabeled data in our PCB CT image dataset reaches 400,000

with a resolution of 500 × 500. The total number of labeled datasets is 3584 with a resolu‑
tion of 500 × 500, of which there are 2366 samples in the training set, 718 samples in the
validation set, and 500 samples in the test set. The dataset contains mainly 3 categories of
elements, which are pads, wires and vias. Some of the data samples are shown in Figure 5.
The unlabeled dataset is used for the training of CD‑MAE in the pre‑training phase, and
the labeled dataset is used for fine‑tuning training of the element segmentation network
based on the pre‑training encoder.
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Figure 5. Partial unlabeled data and labeled data.

The left half contains some unlabeled data. The right half contains labeled data pairs,
where two columns are in a tuple, one on the left for the original image and one on the
right for the ground truth. In the ground truth, red represents the wire, green represents
the pad, and blue represents the vias.

4.2. Results on PCB CT Image Element Segmentation
Experimental Setup. In the pre‑training phase of our proposed model, we adopted

ViT‑L as the backbone, which contains 24 transformer blocks of size 1024, and the decoder
part consisting of eight transformer blocks of size 512 and a linear prediction layer. The
input size of the image is 224 × 224 and the patch size is 16 × 16. Our experiments were
conducted on 4 Tesla V100 DGXS with the pre‑training epoch set to 100 and the batch size
to 64. We employed an AdamW optimizer, and a cosine learning rate scheduler with a
40 epoch warm‑up, where the base learning rate was set to 10−3, the weight decay was
0.05, and the weight of feature contrast loss was set to 0.25. In the basic experiment, we
used 100,000 unlabeled data for pre‑training, in which the data enhancement strategy used
random resize cropping with a scale range of [0.9, 1], and random horizontal flip and nor‑
malization steps.

In the fine‑tuning stage, we replaced the decoder part with the UperNet to achieve the
downstream element segmentation task. The batch size of the fine‑tuning stage was eight,
and the number of fine‑tuning epochs was 40. And we still used the AdamW optimizer
with a cosine learning rate scheduler, where the warm‑upwas five epochs, the initial learn‑
ing rate was 10−3, and the weight decay was 0.05. In order to obtain the input of UperNet
at different scales, we selected the outputs of six, twelve, eighteen, and twenty four trans‑
former blocks in the encoder and sent them to UperNet after reshaping and up‑sampling
at different scales.

Different imagemasking ratios. In order to test the effectiveness of our proposed pre‑
training method in the PCB CT image element segmentation task, we conducted compara‑
tive experiments with MAE at different mask ratios, and the experiment results are shown
in Figure 6, from which we can see that the unsupervised pre‑training approach based on
masked image reconstruction can indeed play a certain role in element segmentation by
using a large amount of unlabeled data. In the pre‑training stage, the information redun‑
dancy is largely eliminated by randomlymasking the image patches at a certain ratio, thus
making the image reconstruction difficult, so that themodel learns higher dimensional fea‑
ture expressions of the data instead of staying at the underlying information such as pixels,
the specific effect of which will be further explained in Section 4.3. The experimental re‑
sults also show that a reasonably high mask ratio can increase the training difficulty of the
model. Although themodel in a lowmask ratio can also learn certain knowledge, the effect
is far less than that in a high mask ratio. It is obvious from the experiment results that the
model pre‑trained by CD‑MAE performs better than MAE in the element segmentation
task at any mask ratio, and all of them exceed the best performance of MAE in the mask
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ratio range of 0.4 to 0.8, which can also illustrate the superior robustness of our proposed
pre‑training method for feature extraction.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 15 
 

 

four transformer blocks in the encoder and sent them to UperNet after reshaping and up-
sampling at different scales. 

Different image masking ratios. In order to test the effectiveness of our proposed 
pre-training method in the PCB CT image element segmentation task, we conducted com-
parative experiments with MAE at different mask ratios, and the experiment results are 
shown in Figure 6, from which we can see that the unsupervised pre-training approach 
based on masked image reconstruction can indeed play a certain role in element segmen-
tation by using a large amount of unlabeled data. In the pre-training stage, the information 
redundancy is largely eliminated by randomly masking the image patches at a certain 
ratio, thus making the image reconstruction difficult, so that the model learns higher di-
mensional feature expressions of the data instead of staying at the underlying information 
such as pixels, the specific effect of which will be further explained in Section 4.3. The 
experimental results also show that a reasonably high mask ratio can increase the training 
difficulty of the model. Although the model in a low mask ratio can also learn certain 
knowledge, the effect is far less than that in a high mask ratio. It is obvious from the ex-
periment results that the model pre-trained by CD-MAE performs better than MAE in the 
element segmentation task at any mask ratio, and all of them exceed the best performance 
of MAE in the mask ratio range of 0.4 to 0.8, which can also illustrate the superior robust-
ness of our proposed pre-training method for feature extraction. 

 
Figure 6. Comparison of fine-tuning results of CD-MAE and MAE with different masking ratios. 

Different sizes of pre-training datasets. To further validate the effectiveness of our 
proposed method, we conducted further experiments, such as changing the dataset size, 
changing the model size, and comparing with other methods including supervised mod-
els. Figure 7 shows the experiments conducted under different dataset sizes, and it can be 
seen from the experimental results that our method always outperforms MAE with vary-
ing dataset sizes. In particular, the effect is more obvious with a small amount of unlabeled 
data, and the performance of our pre-training method with 50 k unlabeled data already 
exceeds the performance of MAE with 100 k unlabeled data. However, it is worth noting 
that with more data, the performance improvement of both MAE and CD-MAE starts to 
slow down, and the gap between them decreases to a certain extent. We speculate that this 
is mainly due to the characteristics of PCB CT images, including the small number of clas-
ses and the relatively fixed size and shape, thus in the case of particularly large amounts 
of data, the model is already proficient in the feature information of the elements in PCB 
CT images, so that adding additional data does not cause too significant a change in per-
formance. 

Figure 6. Comparison of fine‑tuning results of CD‑MAE and MAE with different masking ratios.

Different sizes of pre‑training datasets. To further validate the effectiveness of our
proposed method, we conducted further experiments, such as changing the dataset size,
changing themodel size, and comparingwith othermethods including supervisedmodels.
Figure 7 shows the experiments conducted under different dataset sizes, and it can be seen
from the experimental results that our method always outperforms MAE with varying
dataset sizes. In particular, the effect is more obvious with a small amount of unlabeled
data, and the performance of our pre‑training method with 50 k unlabeled data already
exceeds the performance of MAE with 100 k unlabeled data. However, it is worth noting
that with more data, the performance improvement of both MAE and CD‑MAE starts to
slow down, and the gap between them decreases to a certain extent. We speculate that
this is mainly due to the characteristics of PCB CT images, including the small number
of classes and the relatively fixed size and shape, thus in the case of particularly large
amounts of data, the model is already proficient in the feature information of the elements
in PCB CT images, so that adding additional data does not cause too significant a change
in performance.
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Visualization of the segmentation results. We show some of the prediction results
from the model based on the encoder pre‑trained by CD‑MAE in Figure 8. As with the
original labeled data, the different colors in the segmentation results represent different
PCB elements, for example, red represents wires, green represents pads, and blue repre‑
sents vias. The element segmentation model based on our proposed pre‑training method
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has better results for all types of elements in PCB CT images, both in terms of the overall
and details such as edges and connections of each element.
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4.3. Comparative Experiments
At the same time, we also conducted experiments on the size of the backbone, includ‑

ing the application of ViT‑B, ViT‑L, and ViT‑H models on 400 k unlabeled data, and the
results are shown in the last three rows of Table 1. The differences between the three mod‑
els mainly lie in the number of layers of the transformer block, the embedding dimension,
and the size of the patches. It can be seen that the performance of the pre‑trained model in
the downstream task is further improved as themodel size increases, but the improvement
is not particularly obvious, which is also related to the characteristics of PCB CT images as
we analyzed. In Table 1, we also conducted experiments with other models, which include
some CNN‑based and transformer‑based models. In terms of experiment consistency, for
methods that also require unsupervised pre‑training, we ensured that the models were all
performed on a 400 k unlabeled dataset and used the same segmentation head for fine‑
tuning. For both the supervised methods and methods based on pre‑trained models, the
labeled data we used were identical. From the results, we can see that some methods with
simple structures can achieve good results in PCB CT image element segmentation tasks,
such as U‑2‑Net, DeepLabv3+, etc. In contrast, the results of some methods with complex
structures that perform well on natural images are rather poor. Most importantly, the
model pre‑trained by CD‑MAE significantly outperforms other methods, which fully il‑
lustrates the effectiveness of our proposed method and also shows that our application of
unsupervised pre‑training to the PCBCT image element segmentation task is very effective
and necessary.

4.4. Discussion and Further Work
Masked imagemodeling, as a trainingmethod in unsupervised pre‑training, relies on

the ambiguity brought by the mask. Moreover, for PCB CT images, the elements are small
and numerous, so masking the images by a certain ratio can produce serious semantic am‑
biguity, which means that the model trained with a high masking ratio will misidentify
when two categories are visually close, and when one category is much more dominant
than the other. From the experimental results, we argue that it is this semantic ambiguity
that forces the feature extraction network to learn high‑level semantic information in im‑
ages. This high‑level semantic informationmay be the rules of arrangement of the elements
in the PCB, high‑level features, or others. Therefore, a certain semantic ambiguity is the
key to improving the generalization performance of the model. Regarding the paradigm
of “Pre‑training & Fine‑tuning” on the element segmentation task, our subsequent work
will also focus more on fine‑tuning, so that the pre‑trained models can play a better role in
the downstream task and further improve the performance of the model after fine‑tuning.

5. Conclusions
In this paper, we propose an improved contrastive dual‑masked pre‑training model

based on MAE, which can improve the robustness of feature extraction by narrowing the
distance between features in different mask regions of the same image, and thus play a
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better role in the PCB CT images element segmentation task. Moreover, our model pre‑
trained on a large amount of unlabeled data performs significantly better than the purely
supervised training model in the downstream task, which further demonstrates the effec‑
tiveness and necessity of pre‑training in elements segmentation task.

Author Contributions: B.S. and K.Q. put forward the corresponding ideas and methods. J.C., B.S.
and K.Q. wrote the main manuscript text. C.C., J.Y. and S.S. participated in the discussion and val‑
idation of the method. B.Y. and J.C. were responsible for the co‑ordination and supervision of the
whole process. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The PCB CT image data used in current study are all scanned and
annotated by us. Because the printed circuit boards involve some intellectual property rights and
trade secrets, the datasets are not publicly available but are available from the corresponding author
on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Asadizanjani, N.; Shahbazmohamadi, S.; Tehranipoor, M.; Forte, D. Non‑destructive PCB reverse engineering using X‑ray micro

computed tomography. In Proceedings of the 41st International Symposium for Testing and Failure Analysis 2015, Portland,
OR, USA, 1–5 November 2015; ASM International: Almere, The Netherlands, 2015; pp. 164–172.

2. Asadizanjani, N.; Tehranipoor, M.; Forte, D. PCB reverse engineering using nondestructive X‑ray tomography and advanced
image processing. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 292–299. [CrossRef]

3. Qiao, K.; Zeng, L.; Chen, J.; Hai, J.; Yan, B. Wire segmentation for printed circuit board using deep convolutional neural network
and graph cut model. IET Image Process. 2018, 12, 793–800. [CrossRef]

4. Botero, U.J.; Koblah, D.; Capecci, D.E.; Ganji, F.; Asadizanjani, N.; Woodard, D.L.; Forte, D. Automated via detection for PCB
reverse engineering. In Proceedings of the 46th International Symposium for Testing and Failure Analysis 2020, Pasadena, CA,
USA, 15–19 November 2020; ASM International: Almere, The Netherlands, 2020; pp. 157–171.

5. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Advances. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA,
4–9 December 2017.

6. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

7. Bao, H.; Dong, L.; Piao, S.; Wei, F. BEIT: BERT pre‑training of image transformers. arXiv 2021, arXiv:2106.08254.
8. Chen, M.; Radford, A.; Child, R.; Wu, J.; Jun, H.; Luan, D.; Sutskever, I. Generative pretraining from pixels. In Proceedings of

the 37th International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 1691–1703.
9. He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked autoencoders are scalable vision learners. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16000–16009.
10. Xie, Z.; Zhang, Z.; Cao, Y.; Lin, Y.; Bao, J.; Yao, Z.; Dai, Q.; Hu, H. SimMIM: A simple framework for masked image modeling.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June
2022; pp. 9653–9663.

11. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9729–9738.

12. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In
Proceedings of the International Conference on Machine Learning, Vitrtual, 13–18 July 2020; pp. 1597–1607.

13. Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; Joulin, A. Unsupervised learning of visual features by contrasting
cluster assignments. Adv. Neural Inf. Process. Syst. 2020, 33, 9912–9924.

14. Grill, J.‑B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.H.; Buchatskaya, E.; Doersch, C.; Pires, B.A.; Guo, Z.D.; Azar, M.G.; et al.
Bootstrap your own latent‑a new approach to self‑supervised learning. Adv. Neural Inf. Process. Syst. 2020, 33, 21271–21284.

15. Caron, M.; Touvron, H.; Misra, I.; Jégou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging properties in self‑supervised vision
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17
October 2021; pp. 9650–9660.

16. Wu, Z.; Xiong, Y.; Yu, S.X.; Lin, D. Unsupervised feature learning via non‑parametric instance discrimination. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3733–3742.

17. Ye, M.; Zhang, X.; Yuen, P.C.; Chang, S.F. Unsupervised embedding learning via invariant and spreading instance feature. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019;
pp. 6210–6219.

18. Oord, A.V.D.; Li, Y.; Vinyals, O. Representation learning with contrastive predictive coding. arXiv 2018, arXiv:1807.03748.

https://doi.org/10.1109/TCPMT.2016.2642824
https://doi.org/10.1049/iet-ipr.2017.1208


Electronics 2024, 13, 1006 14 of 14

19. Tian, Y.; Krishnan, D.; Isola, P. Contrastive multiview coding. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, 23–28 August 2020, Proceedings, Part XI 16; Springer International Publishing: Cham, Switzerland, 2020; pp. 776–794.

20. Chen, T.; Kornblith, S.; Swersky, K.; Norouzi, M.; Hinton, G.E. Big self‑supervised models are strong semi‑supervised learners.
Adv. Neural Inf. Process. Syst. 2020, 33, 22243–22255.

21. Chen, X.; Fan, H.; Girshick, R.; He, K. Improved baselines with momentum contrastive learning. arXiv 2020, arXiv:2003.04297.
22. Chen, X.; Xie, S.; He, K. An empirical study of training self‑supervised vision transformers. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 9640–9649.
23. Chen, X.; He, K. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 15750–15758.
24. Zbontar, J.; Jing, L.; Misra, I.; LeCun, Y.; Deny, S. Barlow twins: Self‑supervised learning via redundancy reduction. In Proceed‑

ings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 12310–12320.
25. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Confer‑

ence on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
26. Ronneberger, O.; Fischer, P.; Brox, T. U‑net: Convolutional networks for biomedical image segmentation. In Medical Image

Computing and Computer‑Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015,
Proceedings, Part III 18; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

27. Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2‑Net: Going deeper with nested U‑structure for
salient object detection. Pattern Recognit. 2020, 106, 107404. [CrossRef]

28. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

29. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder‑decoder with atrous separable convolution for semantic im‑
age segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 801–818.

30. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 3146–3154.

31. Li, X.; Zhong, Z.; Wu, J.; Yang, Y.; Lin, Z.; Liu, H. Expectation‑maximization attention networks for semantic segmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 9167–9176.

32. Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.S.; et al. Rethinking semantic segmen‑
tation from a sequence‑to‑sequence perspective with transformers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6881–6890.

33. Jain, J.; Singh, A.; Orlov, N.; Huang, Z.; Li, J.; Walton, S.; Shi, H. Semask: Semantically masked transformers for semantic
segmentation. arXiv 2021, arXiv:2112.12782.

34. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmen‑
tation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090.

35. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo,W.‑Y.; et al. Segment
anything. arXiv 2023, arXiv:2304.02643.

36. Wang, X.; Zhang, X.; Cao, Y.; Wang, W.; Shen, C.; Huang, T. SegGPT: Segmenting everything in context. arXiv 2023,
arXiv:2304.03284.

37. Zou, X.; Yang, J.; Zhang, H.; Li, F.; Li, L.; Gao, J.; Lee, Y.J. Segment everything everywhere all at once. arXiv 2023,
arXiv:2304.06718.

38. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder‑decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

39. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17
October 2021; pp. 10012–10022.

40. Li, D.; Li, C.; Chen, C.; Zhao, Z. Semantic segmentation of a printed circuit board for component recognition based on depth
images. Sensors 2020, 20, 5318. [CrossRef] [PubMed]

41. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R‑CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

42. Xiao, T.; Liu, Y.; Zhou, B.; Jiang, Y.; Sun, J. Unified perceptual parsing for scene understanding. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 418–434.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.patcog.2020.107404
https://doi.org/10.1109/TPAMI.2016.2644615
https://www.ncbi.nlm.nih.gov/pubmed/28060704
https://doi.org/10.3390/s20185318
https://www.ncbi.nlm.nih.gov/pubmed/32957535

	Introduction 
	Related Works 
	Method 
	Network Structure 
	Pre-Training 
	Fine-Tuning 

	Experiment 
	Preliminaries 
	Results on PCB CT Image Element Segmentation 
	Comparative Experiments 
	Discussion and Further Work 

	Conclusions 
	References

