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Abstract: Diffusion models have achieved tremendous success in modeling continuous data modali-
ties, such as images, audio, and video, yet their application in discrete data domains (e.g., natural
language) has been limited. Existing methods primarily represent discrete text in a continuous
diffusion space, incurring significant computational overhead during training and resulting in slow
sampling speeds. This paper introduces LaDiffuSeq, a latent diffusion-based text generation model
incorporating an encoder–decoder structure. Specifically, it first employs a pretrained encoder to
map sequences composed of attributes and corresponding text into a low-dimensional latent vector
space. Then, without the guidance of a classifier, it performs the diffusion process for the sequence’s
corresponding latent space. Finally, a pretrained decoder is used to decode the newly generated latent
vectors, producing target texts that are relevant to themes and possess multiple emotional granulari-
ties. Compared to the benchmark model, DiffuSeq, this model achieves BERTScore improvements of
0.105 and 0.009 on two public real-world datasets (ChnSentiCorp and a debate dataset), respectively;
perplexity falls by 3.333 and 4.562; and it effectively quadruples the text generation sampling speed.

Keywords: diffusion model; sequence diffusion; pretrained models; prompt; text generation;
controllable emotion generation; fine-grained emotion

1. Introduction

Artificial Intelligence Generated Content (AIGC) is a method that utilizes artificial
intelligence technology to automatically create articles, audio, and video. In recent years,
with the continuous development and application of artificial intelligence technology, an
increasing number of institutions and companies have started to experiment with AIGC to
generate a large amount of content quickly and at a low cost, thereby meeting the needs
across different fields. Against this backdrop, utilizing user emotional characteristics and
stance attributes to guide the generation process, with the goal of automatically generating
social text that adapts to specific attributes, has become one of the hot research topics in text
generation technology. It also holds a broad range of application prospects [1]. Additionally,
generating large-scale category-attribute text can also significantly alleviate the difficulty of
obtaining large-scale labeled training datasets.

Therefore, a good, controllable text generation system is crucial and can be used to
generate directive texts for various complex social scenarios. Currently, there are primarily
two types of controllable text generation: one is template-based automated generation, and
the other is deep learning-based automated generation. In the context of deep learning,
methods such as Seq2Seq (sequence-to-sequence) [2] and the attention mechanism [3] have
been widely applied in text generation systems and have achieved commendable success.
However, they still have some shortcomings, such as generating sentence structures that
may not be smooth or emotions that are not rich enough. With the emergence of some large-
scale pretrained models, such as BART (Bidirectional and Auto-Regressive Transformers) [4]
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and GPT-2 (Generative Pretrained Transformer) [5], it has become possible to generate
high-quality text content in bulk with a relatively low barrier to entry. However, the
uncontrollability of these models limits their application scope. As illustrated in Figure 1,
if we need some negative reviews about books and we use pretrained models like GPT-2,
BART, or ChatGPT for generation, it can be seen that the results are fluent but do not
meet our specific requirements. This failure arises because the generated texts need to fit
into particular applications, requiring the narration of events, the expression of specific
viewpoints and emotions, etc. Thus, these texts need to be not only coherent and fluent
but also encompass specific content, stance, and emotional attributes. Controllable text
generation models can exert attribute control over generated texts, broadening the potential
application scope. The aim of controllable text generation is to produce texts with specific
semantics. By generating texts of varying categories and emotions, machine-generated
content can become more humanized [6,7].

Figure 1. Controllable generation results of various models.

Addressing the aforementioned issues, we propose a novel diffusion sequence model
for low-dimensional latent spaces called LaDiffuSeq. By treating control attributes and
prompted text sequences [8] as sequences, the model employs a pretrained encoder to
encode the sequences into a low-dimensional latent space and designs a sequence diffusion
process without classifier guidance. This process fosters connections between sequences
in the latent space, thereby achieving controllable generation [9,10]. Theme attributes can
guide the content of the generated text, while emotional attributes can guide the emotional
tone [11]. Experiments show that this model achieves high-quality text generation that is
multi-attribute controllable while ensuring textual fluency. The main contributions of this
paper are as follows:

1. Enriching the ChnSentiCorp dataset by adding topic attributes and expanding the
binary emotion classification into seven finer-grained emotions.

2. Leveraging the capabilities of a pretrained decoder-encoder to encode text into a
lower-dimensional latent vector space, solving the embedding conversion process
from discrete text to a continuous space, and circumventing rounding loss problems
inherent in traditional methods.

3. Designing a sequence diffusion process without classifier guidance, mapping the
controllable text generation to a Seq2Seq task, and directly performing the diffusion
process on low-dimensional vectors in latent space. This avoids the generation quality
degradation problems associated with the introduction of classifiers.

4. Incorporating theme and emotion information, the generated texts become closer to
the intended topics with fine-grained emotional expression.

2. Related Works

As a subfield of natural language processing, automatic text generation has advanced
rapidly with the advent of pretrained language models, which are capable of generating
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highly readable text. Language models that are improvements based on the transformer [12]
architecture stand out in the field of text generation. For instance, pretrained models such as
GPT-2 and BART, which are trained with extensive web text data, achieve excellent results
in text generation due to their autoregressive properties. However, these general-purpose
models have been challenging to apply in actual industry settings due to their lack of
controllability, prompting many researchers to shift focus toward the technical study of
controlled language models.

2.1. Text Generation Based on Pretrained Models

Keskar et al. [13] observed that although pretrained models like GPT-2 and BART pos-
sess the capability to generate high-quality text, the lack of integration with rules controlling
the content of the generated text means that existing technologies struggle to automatically
generate task-specific content. In response, they proposed the CTRL model, capable of
controlled content generation. The core idea behind CTRL is the inclusion of control codes
in the language model, classifying the data in the corpus, and appending a type descriptor
before each specific sequence, thereby linking the corpus with its type. Dathathri et al. [14]
introduced a plug-and-play model training framework known as Plug and Play Language
Models (PPLM). This approach embeds one or multiple attribute classifiers within the
language model training, guiding the output distribution of the language model to control
textual attributes. This method significantly reduces dependency on data and hardware
configurations for text generation tasks. However, PPLM still requires updating the pa-
rameters of large models, which results in slower inference speeds. As an improvement
over PPLM, FUDGE (Controlled Text Generation With Future Discriminators) [15] does not
update any parameters within the model but rather introduces a discriminator to predict
whether the ongoing generated text conforms to the desired attributes. FUDGE theoretically
decomposes conditional generation probabilities using Bayes’ theorem, creates predictors
by learning attributes of a portion of the sequence, and then uses the predictor’s output
to adjust the original language model’s probability distribution, thus producing text with
specific attributes.

2.2. Text Generation Based on Diffusion Models

Inspired by non-equilibrium thermodynamics, diffusion models introduce noise to
the data distribution during the forward process and learn a reverse denoising process [16].
Song et al. [17] further applied this to high-quality image generation, and due to their
iterative diffusion characteristics, they offer a more stable training and generation process,
surpassing Generative Adversarial Networks (GANs) [18–20] in image generation. The
denoising diffusion probabilistic model (DDPM) [21] has gained attention for having the
ability to generate high-quality samples without adversarial training, and its quality of
generation far exceeds that of other generative models. Song et al. [22] have realized faster
sampling through the denoising diffusion implicit model. Successful image generation
models like CLIP [23], Stable Diffusion [24], and Midijourney [25] have utilized these
diffusion-based techniques [26].

The Gaussian noise addition process in diffusion models [27] mainly targets the
continuous states of images [28] or waveforms [29], and clearly is not suitable for text
tasks. To meet this challenge, in 2022, Jacob et al. [30] introduced the diffusion process into
discrete variables, defined a series of transition matrices, and conducted diffusion directly
on discrete texts. They used transition matrices to probabilistically convert a discrete word
into a mask or leave it unchanged over different time steps, constructing a diffusion model
for discrete texts. Although this approach didn’t produce high-quality texts or enable
controllable generation, it represented an attempt to apply the diffusion model to the
field of text generation. To address issues with the non-differentiability of discrete text, Li
et al. [31] proposed a non-autoregressive language model based on continuous diffusion
models, named Diffusion-LM. The authors defined a word embedding method that unifies
the discrete-to-continuous states in the diffusion process. By denoising a sequence of
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Gaussian vectors into word vectors, they generated intermediate latent variables whose
continuous and hierarchical nature allowed a simple gradient-based algorithm to perform
complex and controllable generation tasks. This model achieved good results, especially
in terms of text diversity, but it falls short in sentence fluency. DiffuSeq [32] used an
end-to-end training method without needing to train an additional classifier to control
the denoising process, avoiding degradation issues due to decoding strategies, and thus
improving sentence diversity without sacrificing quality.

With the rise of large-scale pretrained language models, text generation technology
has become more sophisticated. Thanks to the inherent autoregressive decoding advan-
tages of transformer-based models [33], large pretrained models like those in the GPT
series have become a new paradigm for text generation [13]. However, the generative
capabilities of non-autoregressive decoding models should not be overlooked. Although
current pretrained models are already capable of producing fluent text, and controlled text
generation and increased text diversity can be achieved through methods such as PPLM
and FUDGE, this is done at the expense of text fluency [34,35].

3. Materials and Methods

The problem addressed in this paper can be defined as follows: given a control
attribute wx and the real text wy, train a language model such that when wx is inputted, the
language model can output a high-quality target text wy ′ that conforms to wx. Therefore,
the controlled text generation task can be formalized as:

p(wy ′
∣∣∣wx) ∝ p

(
wy ′

)
·p(wx

∣∣∣wy ′) (1)

This involves sampling from the conditional distribution p(wy ′∣∣wx) , where wx represents
the control attribute, p

(
wy ′) represents the output target text. The optimization of this

ensures fluency, and p(wx
∣∣wy ′) is used to complete the attribute control process. Its

optimization ensures effective control of the attributes while maintaining fluid output text.
In this chapter, we mainly introduce the proposed sequence-controllable generation

model based on latent space diffusion. As shown in Figure 2, the control attribute and the
real text after the prompt [36] are represented by wx and wy, respectively, which constitute
the sequence represented by w. Initially, a pretrained encoder is employed to encode the
sequence w, and the sequence of encoded latent space is represented by z. z0 − zt represent
the state of z at time steps 0 to t. During the forward process, only the zy part is noised,
and like the calculation method of the traditional diffusion models, the state of each time
step can be obtained by computing q

(
zy

t

∣∣∣zy
t−1

)
. In the reverse process, only the zy part is

denoised to ensure consistency during training and prediction phases, to avoid reducing
the fluency of the generated text. Meanwhile, wx acts as a prompt to guide each step of
the denoising process to ensure that each newly generated text conforms to zx. At this
point, the calculation method for each time step state is no longer the traditional diffusion
pθ

(
zy

t−1

∣∣∣zy
t

)
but has changes to pθ

(
zy

t−1

∣∣∣zy
t , zx

)
. zx serves as a latent vector representation

of the control attribute and does not directly participate in the noising and denoising
processes of the diffusion model, hence zx remains unchanged at each time step. During
the forward noising process, the objective is to establish a connection between the two
different feature space vectors zx and zy in order to model the feature relation between the
latent vector of the control attribute zx and the latent vector of the text zy. In the reverse
denoising process, the main role of zx is to act as a prompt to guide the diffusion model
for conditional generation. Ultimately, the diffusion model can generate the latent vector
zy ′ of target texts that conform to the control attribute latent vector zx, which compose the
new sequence of latent space represented by z′. Finally, a pretrained decoder combines
the sequence in the latent space with attention information to decode it into a new text,
represented as w′.
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Figure 2. Sequence-controllable generation models with latent space diffusion.

3.1. Using BART for Text Sequence Encoding and Decoding

During the diffusion process, since text is discrete, it cannot be directly noised with
Gaussian noise. Currently, there are two solutions: the first is to map the discrete text
into a continuous representation space and apply noise as if it were an image, and the
second is to generalize the diffusion process to text by introducing noise that is not just
Gaussian noise but also includes insertion, editing, and deletion operations on the discrete
text, and consider such processes as noising and denoising within the diffusion model [37].
As shown in Figure 3, we adopted a continuous diffusion model similar to the first method,
but unlike previous methods, we attempted to use a pretrained model for encoding,
mapping the input sequence into a continuous, latent, low-dimensional vector space.
Since current sentence embeddings are mainly trained through contrastive learning (like
Reimers and Gurevych) [38] rather than reconstruction, this makes sentence reconstruction
challenging [39]. In simple terms, in the learned embedding vector space, similar sentences
are distributed close to each other. We choose to use an encoder–decoder model because
it can retain key information during the encoding process. Specifically, the pretrained
encoder–decoder method encapsulates key information in the final hidden state of the
encoder. We can then compress this final hidden state to create our embedding [40,41].

Figure 3. The encoding and decoding process of BART.

In theory, any transformer architecture that employs a pretrained encoder–decoder,
such as Bart or T5, can be utilized, requiring only appropriate code adjustments to be
adapted into our framework. However, upon examining in detail the parameters of the
bart-base-Chinese and T5-base-Chinese models, it was discovered that the latter had almost
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double the parameters of the former. Further online studies also showed that, compared to
the T5-base-chinese model, the bart-base-Chinese model pretrained by Fudan University’s
Natural Language Processing team demonstrated a slight advantage in handling various
kinds of Chinese tasks. This may be due to the use of high-quality datasets during the pre-
training process. Therefore, choosing bart-base-Chinese as part of our model is a superior
decision. For simplification, any mentions of BART hereafter refer to bart-base-Chinese.
BART’s vocabulary size is about 50k, indicating that the input vector dimension after one-
hot encoding is 50k, which can be transformed into a 768-dimensional low-dimensional
vector by the encoder. Due to the introduction of the attention mechanism, the encoding
process not only retains the complete text feature information but also obtains attention
values. These attention values indicate the degree of attention each word has to other
words. During encoding and decoding, the attention mechanism typically connects the
output of the encoder with the hidden states of the decoder, i.e., the keys (K) and values (V)
in the encoder’s attention values interact with the queries (Q) in the decoder, forming new
attention values to ensure that the vector of the text latent space can be correctly decoded.

BART is a transformer that has both bidirectional language modeling and an autore-
gressive mechanism. Architecturally, BART adopts the standard transformer configuration
with a 6-layer encoder and a 6-layer decoder structure. In our method, we freeze the en-
coder and decoder parameters of the pretrained BART model, using it solely to perform the
encoding and decoding of sequences, while the actual training is dedicated exclusively to
the diffusion process. Given a sequence composed of control attributes and corresponding
texts, the control attributes and texts are separated by [SEP] and can be represented as
one-hot vectors in the vocabulary. BART’s encoding process includes three main com-
ponents: word embeddings, the self-attention mechanism, and the feed-forward neural
network. Firstly, the input words are converted into word embeddings with positional
encoding. Then, a multi-head attention mechanism is utilized to compute the associations
among the words in the sequence to better model the dependencies within. After the
attention mechanism, the hidden representation at each position is used as input and
processed through a fully connected-layer neural network to linearly transform and extract
features from the hidden representation. The encoder is able to map the sequence into a
continuous, low-dimensional latent vector space while retaining the information of the
original sequence. At this point, the diffusion process acts like a black box, and after
undergoing the diffusion process, the generated new vectors can be decoded back into new
sequences by BART’s decoder. The decoder’s process is similar to the encoder’s, producing
a probability distribution for each word through the softmax function after processing by
the feed-forward neural network.

For the BART model, the transformer architecture is commonly used for encoding and
decoding, with the specific computation formulas as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2)

ht = Decoder(yt−1, Encoder(x)) (3)

P(yt|yt−1, x) = softmax
(

htWV
)

(4)

Formula (2) is the core calculation mechanism of the attention operation, where Q, K,
and V represent the matrix representations of queries, keys, and values, respectively. By
taking the dot product of queries with keys, dividing by

√
dk, and applying the softmax

function, we obtain the attention weights for each query over all keys. These weights
are then used to perform a weighted summation over the values, resulting in the final
attention output. This attention mechanism is employed in both the encoder and the
decoder components. Encoder(x) indicates the encoder of the BART model that transforms
the input sequence x into a contextual vector representation. Decoder(yt−1, Encoder(x))
denotes the input to the decoder, which includes the first t − 1 words of the generated
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sequence y and the encoded context vector representation. ht represents the hidden state of
the decoder at time step t, and WV is the output weight matrix of the decoder. The hidden
state ht of the decoder at time t is calculated from the previous time step’s hidden state ht−1
and the output of the previous time step yt−1 (the word generated at the previous time
step). Eventually, by computing the probability of the generated sequence y, the sequence
with the highest probability is selected as the model’s output.

Since we do not train an embedding model end-to-end, like Diffusion-LM, to map
discrete text to a continuous representation space but instead utilize the encoding capa-
bilities of a pretrained model to encode discrete text into a low-dimensional latent vector
space, we avoid additional operations for gradient calculations on the generated distribu-
tion. Moreover, using a pretrained model as the initialization model allows the model to
converge more rapidly.

3.2. Sequence Diffusion Process in Latent Space

The current Diffusion-LM first trains a language model capable of unconditional gen-
eration using a diffusion model and then separately trains attribute classifiers to guide
the language model’s output. While this approach enhances output diversity, it undoubt-
edly reduces the quality of language model generation. Therefore, we designed a latent
sequence diffusion process without classifier guidance. Under the condition of guided
control attributes, we directly diffuse the low-dimensional vectors in the latent space to
achieve controlled generation of these low-dimensional vectors.

During the forward noise-adding process, from time step t0 onwards, random noise
is randomly applied to parts of the vectors in the sequence at each time step. Similar
to the traditional diffusion model’s noise-adding process, the amount of random noise
added increases progressively with each time step, resulting in the sequence being in a
state of complete Gaussian noise at the final moment. In the reverse denoising process,
the vectors with added noise are gradually denoised. As illustrated in Figure 2, for the
control attributes and text in the dataset, they are considered a sequence and encoded into
a low-dimensional latent vector sequence. During forward diffusion, unlike traditional
diffusion models that add noise to the entire latent vector sequence, the latent vectors
corresponding to the control attributes part remain unchanged. Starting from z0, noise is
gradually added only to the latent vectors corresponding to the textual part, until the noise
is advanced to the target space zy

t , at which point zy
t is in a state of complete Gaussian noise.

In the reverse denoising process, the latent vectors corresponding to the control attributes
part also remain unchanged, and only the latent vectors corresponding to the textual part
are gradually denoised. The denoising at each step must conform to the control attribute’s
latent vector zx. The reverse denoising computation process is changed from pθ

(
zy

t−1

∣∣∣zy
t

)
to pθ

(
zy

t−1

∣∣∣zy
t , zx

)
, indicating that the output at each moment is not only related to the

output of the previous moment but also related to the control attribute’s latent vector zx.
This is done with the objective that the spatial features of control attributes and text content
can be combined, allowing them to establish a connection during the diffusion process,
ultimately leading to the generation of new latent sequences controlled by the latent vectors
of attributes zx. This approach effectively treats text generation as a Seq2Seq task, training
in pairs and essentially considering the control attributes as the input for text generation,
akin to freezing the control attributes to predict the text [42].

During the diffusion process, controlling z0:T is equivalent to sampling from the
posterior distribution in Equation (5):

p( z0:T |zx ) = ∏T
t=1 p( zt−1|zt, zx ) (5)

Specifically, at each step of diffusion:

p(zt−1|zt, zx) ∝ p(zt−1|zt)·p(zx|zt−1, zt) (6)
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The optimization objective at step t is:

∇xt−1 log p(zt−1|zt, zx) = ∇zt−1 log p(zt−1|zt) +∇zt−1 log p(zx|zt−1) (7)

The fluency regularization objective is:

λ log p(zt−1|zt) + log p(zx|zt−1) (8)

The regularization optimization objective for attribute control is:

λ log p(zt−1|zt, zx) + log p(zx|zt−1, zx) (9)

As shown in Equation (9), we combine the optimization of text fluency and control
attributes into a single optimization objective, which serves as the basis for calculating
gradients and optimizing parameters. By treating the control attributes and text as a
sequence, we diffuse the sequence without classifier guidance to generate high-quality,
emotion-controllable text. Compared to previous work, there is no need to train attribute
classifiers separately, which ensures that the controllability of multiple attributes does not
reduce the fluency of the text [22]. This also avoids the errors and training time associated
with classifiers, making model training easier.

3.3. Context-Guided Strategy Based on Prompt

In the field of artificial intelligence, a prompt refers to a piece of text or instruction
provided to the model to guide it to produce specific outputs. In text generation tasks, the
application of the prompt method can help the model generate coherent and fluent text
more effectively. Hence, when processing datasets, a prompt strategy is introduced. Upon
loading the control attributes for the data, the process involves more than merely loading
the attributes; it also includes appending prompt phrases before and after the control
attributes to ensure that the concatenated sequence of control attributes and text is more
fluid. For example, if the control attribute is “computer” (theme) and “like” (emotion), and
the corresponding text content is “The appearance is stylish and atmospheric, and the price
is acceptable. No overheating has been detected. Having used it for a few days, the quality
seems good, and it’s worth having.” Then, after adding the prompt template, the control
attribute becomes: “Favorable comment on computers.” The final sequence content is:
“Favorable comment on computers [SEP] The appearance is stylish and atmospheric, and
the price is acceptable. No overheating has been detected. Having used it for a few days, the
quality seems good, and it’s worth having.” When generating text, the model will attempt
to interpret the prompt and produce a response based on that understanding. During model
fine-tuning, it’s the pretrained language models that accommodate various downstream
tasks, which is evidenced by introducing auxiliary task losses into the pretrained model
for fine-tuning to better adapt to downstream tasks. In this process, the pretrained model
makes more compromises. However, a prompt represents the downstream tasks catering to
the pretrained model. Specifically, this requires the reconstruction of different tasks to make
them compatible with pretrained language models, which means that the downstream
tasks are the ones making more sacrifices. A prompt can be seen as a way to retrieve
knowledge already memorized in the pretrained language model. When a prompt is used
to feed samples into the model, the model receives more cues during prediction; thus, it
uses more information, which enables the language model to better understand the context
and task requirements, leading to more accurate and fluent text generation. This is one
of the advantages of pretrained models; the knowledge within a pretrained model can be
mined with prompts, which may not be as readily achievable with models trained from
scratch [23].
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4. Experiment and Result Analysis
4.1. Dataset

Compared to English datasets, Chinese datasets pose more challenges in sentiment
classification tasks. Firstly, Chinese is a very complex language, with rich and intricate
semantics, grammar, and word structures. Unlike English, which has clear word bound-
aries, Chinese adds extra complexity to word segmentation. Furthermore, the polysemy
phenomenon in Chinese is relatively prominent, adding additional difficulty to sentiment
analysis. Therefore, this article chose the Chinese dataset for experimentation.

The target dataset for this controllable generation task is a review dataset containing
multiple attributes, such as themes. However, current publicly available review datasets
are based on sentiment classification tasks, which do not include theme attributes and only
have two polarities of positive and negative, that is, only one attribute. These datasets are
obviously not suitable for multi-attribute, controllable review generation. To validate the
effectiveness of their method, the authors of this paper conducted experiments using two
public Chinese datasets: the ChnSentiCorp review dataset and a debate dataset.

Fine-grained sentiment aims to categorize sentiment in text in a more nuanced and
detailed manner. As opposed to traditional sentiment analysis (positive, negative), fine-
grained sentiment analysis partitions sentiment into a broader range of categories; for
instance, negative sentiment can be further refined into categories such as anger and
sadness, etc., to capture the slight differences in sentiment within a text more accurately.
The ChnSentiCorp dataset was introduced around 2014, when the research spotlight was on
the polarity of positive and negative sentiment. As explorations into sentiment computation
continue, the uncomplicated positive and negative sentiment categorization no longer
meets the researchers’ needs in sentiment computation studies, hence the emergence of
the more detailed sentiment categorization approach we see today. However, there is
currently a scarcity of publicly available Chinese sentiment datasets, and most researchers
resort to using privately held data crawled from the web. This has led to ChnSentiCorp,
a classic binary sentiment classification dataset, still being used to this day; moreover,
this dataset’s data quality is relatively high as it contains real examples. Therefore, based
on the current state of research, using merely the positive and negative sentiment of the
original ChnSentiCorp dataset for experimentation is far from sufficient. In our analysis
of the ChnSentiCorp dataset, we discovered that each text within the dataset contains
more detailed sentiment, and it may be misleading to assume that because the dataset
only had positive and negative labels upon release, they only fall into the two polarities
of positive and negative, when in fact, the positive and negative sentiment were only
the research spotlight at the time of the dataset’s release. Simultaneously, we found that
the dataset comprises three themes: hotels, books, and computers, none of which were
notated. Annotating this dataset with sentiment and theme attributes makes it align more
closely with our task of multi-attribute controlled generation. In addition, expanding the
binary classification into seven kinds of sentiments not only increases the difficulty of the
experiment but also validates the robustness of the model, further proving whether our
model can effectively generate text with even more controlled attributes.

For the sentiment classification task-based ChnSentiCorp dataset, it contains
12,000 review entries, each corresponding to a single positive or negative attribute. After
removing duplicates and irrelevant data, a total of 9090 review entries were retained. The
authors observed that this dataset covers three themes: Ctrip Hotel, Dangdang Book, and
JD Computer. To perform multi-attribute expansion on this dataset, they first annotated
the corresponding theme attributes, as shown in Table 1. To implement multi-granularity
sentiment classification for this dataset, they first trained a seven-category fine-grained
sentiment classification model using the OCEMOTION dataset, which has achieved a
99% accuracy rate on its test set and can predict seven emotions, including anger, disgust,
sadness, fear, surprise, liking, and happiness. This analysis model was then used to predict
sentiment granularity [43] for the ChnSentiCorp dataset, as shown in Table 2. Ultimately,
the target dataset included three themes and seven sentimental control attributes. To verify
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that the seven-category fine-grained sentiment classification model could also achieve high
accuracy on the ChnSentiCorp dataset, the authors randomly selected 300 review entries
for manual annotation and compared the results with the model predictions, achieving
an accuracy rate of over 98%. It is worth noting that because the ChnSentiCorp dataset
mainly includes product reviews, it is theoretically assumed that there will be few reviews
related to the emotion of “fear.” Therefore, in the subsequent model prediction, only 13
reviews were predicted to have the emotion of “fear,” which is consistent with the actual
data distribution.

Table 1. Distribution of topic attributes in dataset A.

Computer Hotel Books Total

2741 3910 2773 9090

Table 2. Distribution of fine-grained sentiment attributes in dataset A.

Anger Disgust Sadness Fear Surprise Liking Happiness Total

824 749 2741 13 228 2435 2100 9090

The debate dataset [44] originates from dozens of famous Chinese-language debate
competitions in recent years. The text for each single section and single-party statement of
each competition was obtained through speech-to-text conversion and manual verification
and was further annotated by annotators for proposition sentences and interactive proposi-
tion pairs. This dataset comprises 16 debate topics, each containing multiple statements
from both the affirmative and negative sides, totaling 3716 data entries. Eventually, this
dataset included 16 debate topics and two positional control attributes.

Although these two datasets only comprise a few thousand entries and are not con-
sidered large relative to text generation tasks, they offer the opportunity to conduct ex-
periments on controllable review generation using multi-attribute datasets in different
domains. The ChnSentiCorp dataset provides review data with two attributes: theme and
emotion, enabling experiments on different themes and emotional attributes to verify the
multi-controllable nature of the generation model. At the same time, the debate dataset
provides debate topics and stance attributes, enabling experiments on review generation
under different debate topics and stances to further verify the performance of the method in
multi-attribute control. Therefore, these two datasets provide a wide range of experimental
scenarios to test and evaluate the effectiveness and robustness of controllable review gener-
ation methods. To ensure naming consistency, the ChnSentiCorp dataset will be referred to
as Dataset A and the debate dataset as Dataset B in subsequent discussions.

4.2. Evaluation Metrics

In the field of automatic text generation, unlike text classification, there are no system-
atic automatic evaluation metrics. Assessing the quality of a text generation task requires
considering multiple aspects, including semantic accuracy, diversity, consistency, and flu-
ency of language [45]. First, BLEU [46] metrics are used to evaluate semantic accuracy
and text diversity. Both BLEU and self-BLEU scores range from 0 to 1. A higher BLEU
score indicates that the generated text meets requirements more closely and can convey
the correct meaning, representing semantic accuracy. Conversely, self-BLEU represents
diversity; a lower self-BLEU score indicates higher diversity and more creativity in the
generated text [47,48]. However, traditional machine evaluation metrics like BLEU-N are
more suitable for machine translation and text summarization tasks. Therefore, a new text
quality evaluation metric, BERTScore [49,50], is introduced. Compared to the traditional
BLEU evaluation method, BERTScore can better assess the semantic similarity and gram-
matical correctness of the generated text. Since the above metrics rely on reference texts to
calculate similarity, a measure known as perplexity (PPL) [51] is introduced. This evaluates
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the fluency of the generated text using a language model, comparing the probabilities of
the generated text to those produced by GPT-2. A lower PPL value implies a better fit to
GPT-2’s output, indicating that the generated text is more in line with language norms
and easier for people to comprehend. However, the aforementioned metrics only assess if
sentences are fluent. As the task at hand is controlled generation, it is essential to ensure
that the generated sentences are not only fluent but also adhere to the given control at-
tributes. Therefore, various attribute classifiers are trained to assess whether the generated
text complies with the preset attributes. Accuracy is used as a quantitative measure of the
degree of control.

4.3. Experimental Results Analysis

The D3PM employs a discrete diffusion approach, which treats the masking of words
as a noise addition process during diffusion and the decoding of masks back to text as a
denoising step in the diffusion model [52]. When conducting diffusion on discrete text,
there are not as many opportunities to add noise to the discrete text as there are pixels in
images. With fewer timesteps available for adding noise, the language model learns less,
leading to less fluent text generation. Through experimentation, it has been found that at 32
diffusion steps, the proposed method exceeds the performance of D3PM at 512 timesteps,
and with even more diffusion steps, it achieves better results.

Similar to D3PM, continuous diffusion methods like Diffusion-LM, DiffuSeq, and
SeqDiffuSeq [53] first map discrete text onto continuous representation vectors, then treat
these vectors as if they were images to be noised. However, these methods use end-to-end
word embeddings, meaning that the embedding models are trained simultaneously with the
diffusion models. In experiments, it has been found that these models need 2000 diffusion
steps to converge. Since the proposed approach diffuses low-dimensional vectors in latent
space, which retains all the textual feature information, the diffusion process for low-
dimensional feature vectors involves orders of magnitude fewer diffusion steps compared
to other continuous diffusion methods. Setting the number of diffusion steps to 512 is
sufficient for the language models to converge, meaning that LaDiffuSeq is four times faster
than other continuous diffusion models in terms of sampling speed. Intuitively, diffusing
in the continuous space of discrete text, the more timesteps available for noise addition,
the more the language model can learn, and the more fluent the generated text [54]. As
shown in Experiment Table 3, it was found that LaDiffuSeq achieved far better results at
512 diffusion timesteps than the continuous diffusion model DiffuSeq at 2000 timesteps.
This is because DiffuSeq involves rounding errors during the mapping of continuous
space vectors to discrete text. These errors accumulate during the text generation process,
leading to a degradation in the quality of the generated text. The present study, which
uses BART as both the encoder and decoder, only requires training the diffusion model
and avoids the concurrent training of the embedding model, therefore eliminating these
errors. At 512 timesteps, it also demonstrates performance that can compete with GPT-2.
This performance is attributed to the powerful encoding and decoding capabilities of the
pretrained model BART.

To illustrate the advantages of diffusion without classifier guidance, the LaDiffuSeq
method is compared to a baseline model that employs classifier-guided diffusion, specifi-
cally Diffusion-LM. As shown in Table 4, LaDiffuSeq outperforms Diffusion-LM in both text
fluency and quality. This is because Diffusion-LM uses a controllable generation method
similar to PPLM, which necessarily alters the probability output of the original language
model when introducing classifier guidance. In the process of fitting the controllable at-
tributes of the classifier, the language model selects words that are less fluent but align with
classifier attributes for output. This results in text that meets the control conditions but has
significantly reduced fluency. Since the sequence diffusion model in this study does not
use a classifier for secondary guidance, it completely avoids this problem.
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Table 3. PPL scores of various models at different time steps (↓ indicates that smaller values are
better, while ↑ indicates that larger values are better).

Method Text Embedding Method Time Steps
Dataset A Dataset B

ppl↓ ppl↓

LaDiffuSeq BART

32 223.57 145.93

64 97.88 83.65

256 43.525 44.59

512 31.085 38.635

D3PM none 512 225.15 152.75

Diffusion-LM end-to-end 2000 196.164 130.145

DiffuSeq end-to-end 2000 34.418 43.197

SeqDiffuSeq end-to-end 2000 67.877 47.917

GPT-2 GPT 1 38.7 35.78

Table 4. Comparison of evaluation metrics for various models.

Method
Dataset A Dataset B

bleu↑ self_bleu↓ BERTScore↑ ppl↓ bleu↑ self_bleu↓ BERTScore↑ ppl↓
Diffusion-LM 0.256 0.402 0.547 196.164 0.268 0.451 0.587 130.145

DiffuSeq 0.478 0.499 0.567 34.418 0.875 0.917 0.930 43.197

SeqDiffuSeq 0.476 0.571 0.589 67.877 0.501 0.627 0.711 47.917

LaDiffuSeq
(no prompt) 0.493 0.481 0.670 33.332 0.882 0.485 0.932 39.733

LaDiffuSeq 0.501 0.476 0.672 31.085 0.899 0.473 0.939 38.635

Also shown in Table 4, aside from the self_bleu metric where Diffusion-LM performs
better than this model, LaDiffuSeq outperforms other continuous diffusion models like
DiffuSeq and SeqDiffuSeq in various indicators. Unlike other continuous diffusion models
that use end-to-end embeddings to map discrete text to a continuous space and then
add noise, this method uses BART to decode discrete text into a low-dimensional latent
space. This avoids the conversion losses that continuous diffusion models suffer during the
mapping process from discrete text to a continuous space or from a continuous space back
to discrete text, thereby resulting in higher text generation quality than other continuous
diffusion models. Typically, language models struggle to balance the quality and diversity
of generated content—improving text quality often comes at the expense of diversity. To
increase the diversity of text generation in this study, a Beam Search decoding strategy [55]
is applied when decoding the sampled latent vectors, thus expanding the search space.
Different from a greedy search strategy that only considers the currently optimal result,
this approach considers the top-k optimal results, aiding in generating more diverse text
content. The research model achieves not only high-quality text but also good diversity [56].

In order to verify the effectiveness of the prompt method, the study conducted com-
parative experiments with and without the addition of prompts. As shown in Table 4, it
was found that the adoption of prompt strategies led to significant improvements in all
evaluation metrics. This comparison experiment affirmed that prompting can enhance the
model’s performance and provide critical reference and guidance for further optimization
of the model.

To validate whether the language model affects the quality of the generated text under
controlled conditions, experiments comparing unconditional and conditional generations
were conducted. As demonstrated by Tables 5 and 6, by comparing the quality of text
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generated under various attribute condition combinations, it was found that there were
only minor changes in the various evaluation metrics, which could be attributed to the
randomness inherent in the language model’s outputs. Despite the imposition of multiple
control attributes, the output quality of the language model remained virtually unaffected.
This indicates that the diffusion sequence model designed in this study has excellent
text generation capabilities and is able to maintain high-quality outputs under controlled
conditions. It also suggests that the model is not only suitable for unconditional genera-
tion but is better suited for diverse and controllable generation under multiple attribute
control conditions.

Table 5. Comparison of evaluation metrics for various control attribute combinations in dataset A.

Control Attributes bleu↑ self_bleu↓ BERTScore↑ ppl↓
unconditional 0.505 0.469 0.675 31.069

3 themes 0.503 0.469 0.677 31.372

2 emotions 0.502 0.472 0.677 31.493

7 emotions 0.499 0.478 0.676 31.037

3 themes+2 emotions 0.503 0.473 0.673 31.100

3 themes+7emotions 0.501 0.476 0.672 31.085

Table 6. Comparison of evaluation metrics for various control attribute combinations in dataset B.

Control Attributes bleu↑ self_bleu↓ BERTScore↑ ppl↓
unconditional 0.892 0. 473 0. 939 38.352

debate topic 0.895 0. 472 0. 933 38.424

stance 0.899 0. 476 0. 931 38.550

debate topic stance 0.899 0.473 0.939 38.635

To verify whether the text generated using the ChnSentiCorp dataset aligns with
the given themes and sentiments, an assessment of themes was first conducted. The lan-
guage model produced 100 comments each for three different themes: hotels, computers,
and books, which were then evaluated using a topic classifier. The results indicated that
all 300 texts conformed to their corresponding themes. For the assessment of sentiment
granularity, initially, it was only required to distinguish between positive and negative
sentiments. The language model generated 100 positive and 100 negative reviews, respec-
tively, and these texts were evaluated using a sentiment classifier. It was found that all
200 reviews corresponded to the appropriate sentiments. In order to avoid the language
model potentially generating texts that can be easily classified by attribute classifiers, we
further annotate these test data manually to verify the accuracy of the topic classifiers and
sentiment classifier predictions. During the annotation process, we found that a few texts
were hard to manually distinguish (for example, it’s hard for an annotator to definitively
determine whether the sentence “The price is a bit expensive, bought it for a friend” belongs
to the computer or book theme). After excluding these texts that are hard to distinguish
manually, the accuracy rate of manual annotation for the topic is 99%, and that for sentiment
is 97%. Although there are minor differences between the tags marked manually and those
predicted by the classifier, this difference is acceptable. This also fully demonstrates that our
attribute classifiers can temporarily represent manual annotation for predictions. Through
this verification, it further indicates that, under the controllable generation circumstances
of three themes and two sentiments, the method in this paper can achieve an accuracy rate
close to 100%.
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Subsequently, positive and negative sentiments were further differentiated into seven
more granular emotions. The language model created 100 comments for each emotion
type, which were then assessed using a sentiment classifier. According to the results in
Figure 4, the prediction accuracy for the emotions of sadness, anger, liking, happiness,
and disgust was very high. However, the accuracy for fear and surprise was lower. The
lower performance for these two emotions was because there were fewer instances of these
emotions in the training set, resulting in the language model learning less about these
specific emotions. Therefore, the accuracy of emotion generation is positively correlated
with the number of instances of each emotion in the training set. These results further verify
the characteristics of the distribution of sentiment categories in the ChnSentiCorp dataset;
that is, certain emotional categories may occur less frequently. Despite fewer accurate
predictions in the “fear” sentiment category, the model as described in the paper still
performed well in predicting other sentiment categories. Additionally, the same method
was used to evaluate arguments and stances in a debate dataset, and the end results were
also consistent with their corresponding attributes.

Figure 4. Number and predictive accuracy of each corresponding emotion.

As illustrated in Figures 5 and 6, by randomly selecting and displaying some of the
generated results, it can be seen that the model is capable of generating target texts in two
datasets through the control of two attribute dimensions. Additionally, the majority of
the generated texts adhere to the target attributes, encompass more fine-grained emotions,
have higher readability, and conform to the characteristics of real texts within the datasets.
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Figure 5. Showcase of controllable generation results in dataset A (In the figure, ✓ indicates compli-
ance, while ✗ indicates non-compliance).

Figure 6. Showcase of controllable generation results in dataset B.

5. Conclusions

In this paper, a more granular division of themes and sentiment attributes was con-
ducted on the ChnSentiCorp dataset, covering three themes: hotels, computers, and books,
along with seven emotions: anger, disgust, sadness, fear, surprise, liking, and happiness.
Our experiments have demonstrated that the continuous diffusion model can effectively
model within the latent space of a pretrained encoder–decoder language model. We have
also designed a latent diffusion model structure without classifier guidance, which ensures
the generation of target texts that are highly consistent with theme attributes, diverse, and
clusterable. This method has significantly enhanced the text generation capabilities of
pretrained language models, enabling them to generate high-quality and controllable texts
from specific data distributions.

The approach described in this paper allows users to design personalized genera-
tion characteristics according to their business needs. The outstanding performance of
this task stems not only from the application of the diffusion model but also from its
effective integration with pretrained models. The entire model architecture is complete
and interpretable, allowing for easy transfer to various fields within text generation, and
holds promising practical applications. Future work will continue to explore the following
aspects: in personalized review generation, incorporating more controllable information,
such as personal preferences, intentions, etc. At the same time, we plan to extend our
method to other generative tasks, such as text summarization and question generation.
In terms of the model, due to the sequential structure of the diffusion model, which re-
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sults in a prediction sampling speed several times slower than other generation models,
Song et al. [22] proposed a denoising diffusion implicit model (DDIM) and redefined the
sampling function to accelerate the generation process. Jolicoeur-Martineau et al. [57]
designed a faster SDE solver for the reverse diffusion process, and in 2021, Salimans and
Ho [58] refined a trained deterministic diffusion sampler into a new diffusion model that
requires only half the sampling steps to generate a complete image. The latest research also
introduced an orthogonal method called Denoising MCMC [59] to accelerate fraction-based
sampling processes for diffusion models. Nevertheless, all the mentioned methods were
designed for the field of computer vision, and methods for accelerating diffusion inference
specifically for text generation remain to be explored. Evidently, diffusion models are more
suitable for handling continuous data types such as videos, images, and audio. Due to the
discrete nature of text data, this presents significant challenges for the application of diffu-
sion models in natural language processing. This also explains why current large image
generation models (such as Midijourney) opt for diffusion models, while large language
models (like ChatGPT) do not employ this approach. Therefore, I believe that applying
diffusion models to the field of natural language processing is still a novel method awaiting
full exploration.
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