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Abstract: Pedestrian trajectory prediction is extremely challenging due to the complex social attributes
of pedestrians. Introducing latent vectors to model trajectory multimodality has become the latest
mainstream solution idea. However, previous approaches have overlooked the effects of redundancy
that arise from the introduction of latent vectors. Additionally, they often fail to consider the inherent
interference of pedestrians with no trajectory history during model training. This results in the
model’s inability to fully utilize the training data. Therefore, we propose a two-stage motion pattern
de-perturbation strategy, which is a plug-and-play approach that introduces optimization features
to model the redundancy effect caused by latent vectors, which helps to eliminate the redundancy
effects in the trajectory prediction phase. We also propose loss masks to reduce the interference of
invalid data during training to accurately model pedestrian motion patterns with strong physical
interpretability. Our comparative experiments on the publicly available ETH and UCY pedestrian
trajectory datasets, as well as the Stanford UAV dataset, show that our optimization strategy achieves
better pedestrian trajectory prediction accuracies than a range of state-of-the-art baseline models; in
particular, our optimization strategy effectively absorbs the training data to assist the baseline models
in achieving optimal modeling accuracy.

Keywords: pedestrian trajectory prediction; motion pattern de-perturbation strategy; optimization
features; loss masks

1. Introduction

The task of pedestrian trajectory prediction is to predict the future trajectories of
pedestrians by modeling their movement patterns on the basis of historical trajectories
in real-world scenarios. This task is used in various automated scenarios, such as traffic,
service, and video surveillance. Accurately predicting the future trajectories of pedestrians
can help avoid collisions between driverless devices and pedestrians. Additionally, it can
identify abnormal behaviours and assess crowd density in public places, particularly in
dense urban scenarios.

For trajectory prediction tasks, it is still challenging to accurately model the movement
patterns of pedestrians. This is due to the complex social interactions involved and the
fact that pedestrian movements are easily influenced by surrounding pedestrians and
the environment.

In previous methods [1–6], historical pedestrian behavioral characteristics, such as
trajectory characteristics and interaction characteristics, were mainly derived from his-
torical trajectory information and subsequently combined with the introduction of latent
vectors (tensors of random numbers obeying a standard normal distribution) to predict the
multimodal future trajectories of the pedestrians. These approaches focus on improving
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pedestrian interactions and modeling pedestrian multimodality. However, they consis-
tently ignore the fact that the latent vectors are composed of random numbers unrelated to
the historical behavioral characteristics of pedestrians. We believe that using latent vectors
to model the randomness of pedestrian motion has a redundancy effect on the accurate
modeling of pedestrian motion patterns. This redundancy effect will be explored through
the experiments in Table A1 of Appendix A.1. Furthermore, these methods do not take into
account the inherent interference that exists during model training, which we define as the
perturbations of pedestrians without historical trajectories for model training. As a result,
these methods are ineffective in optimizing the performance of the constructed models.

In Figure 1, panel (a) shows a schematic diagram for constructing pedestrian motion
patterns, modeling the time domain of historical trajectories to obtain trajectory features,
modeling the spatial domain of historical trajectories to obtain interaction features, and
sampling latent vectors from a normal distribution to characterize the multimodality of
pedestrian motion. Most of the methods are based on this idea to establish the motion
patterns of pedestrians. Latent vectors are introduced to predict multimodal trajectories
(i.e., multiple possibilities of trajectories), but the latent vectors themselves are random
numbers that are completely unrelated to the trajectory features and interaction features;
thus, the introduction of latent vectors will inevitably interfere with the expression of
the trajectory features and interaction features, thus introducing unnecessary redundancy
effects in the subsequent trajectory prediction. Moreover, there are still inherent interference
factors in network training for learning pedestrian motion patterns, i.e., the presence of
pedestrians with no history of trajectories. In panel (b) of Figure 1, the model training
phase calculates the predicted loss for pedestrians with and without historical track infor-
mation. In panel (c), the predicted loss is calculated only for pedestrians with historical
track information. It should be noted that in panel (c), the predicted trajectory error for
pedestrians with no historical trajectories is simply disregarded in the loss calculation. This
does not affect the interaction between pedestrians in the model of panel (a). The right
half of panel (b) demonstrates that pedestrians without historical trajectory information
have multiple possible future trajectories that are entirely random. As a result, there is no
correlation between their future and historical trajectories.

Electronics 2024, 13, x FOR PEER REVIEW 2 of 15 
 

 

In previous methods [1–6], historical pedestrian behavioral characteristics, such as 
trajectory characteristics and interaction characteristics, were mainly derived from histor-
ical trajectory information and subsequently combined with the introduction of latent vec-
tors (tensors of random numbers obeying a standard normal distribution) to predict the 
multimodal future trajectories of the pedestrians. These approaches focus on improving 
pedestrian interactions and modeling pedestrian multimodality. However, they consist-
ently ignore the fact that the latent vectors are composed of random numbers unrelated 
to the historical behavioral characteristics of pedestrians. We believe that using latent vec-
tors to model the randomness of pedestrian motion has a redundancy effect on the accu-
rate modeling of pedestrian motion patterns. This redundancy effect will be explored 
through the experiments in Table A1 of Appendix A.1. Furthermore, these methods do not 
take into account the inherent interference that exists during model training, which we 
define as the perturbations of pedestrians without historical trajectories for model train-
ing. As a result, these methods are ineffective in optimizing the performance of the con-
structed models. 

In Figure 1, panel (a) shows a schematic diagram for constructing pedestrian motion 
patterns, modeling the time domain of historical trajectories to obtain trajectory features, 
modeling the spatial domain of historical trajectories to obtain interaction features, and 
sampling latent vectors from a normal distribution to characterize the multimodality of 
pedestrian motion. Most of the methods are based on this idea to establish the motion 
patterns of pedestrians. Latent vectors are introduced to predict multimodal trajectories 
(i.e., multiple possibilities of trajectories), but the latent vectors themselves are random 
numbers that are completely unrelated to the trajectory features and interaction features; 
thus, the introduction of latent vectors will inevitably interfere with the expression of the 
trajectory features and interaction features, thus introducing unnecessary redundancy ef-
fects in the subsequent trajectory prediction. Moreover, there are still inherent interference 
factors in network training for learning pedestrian motion patterns, i.e., the presence of 
pedestrians with no history of trajectories. In panel (b) of Figure 1, the model training 
phase calculates the predicted loss for pedestrians with and without historical track infor-
mation. In panel (c), the predicted loss is calculated only for pedestrians with historical 
track information. It should be noted that in panel (c), the predicted trajectory error for 
pedestrians with no historical trajectories is simply disregarded in the loss calculation. 
This does not affect the interaction between pedestrians in the model of panel (a). The 
right half of panel (b) demonstrates that pedestrians without historical trajectory infor-
mation have multiple possible future trajectories that are entirely random. As a result, 
there is no correlation between their future and historical trajectories. 

 

Figure 1. Interference in pedestrian motion pattern construction and learning stages should be
eliminated. (a) Constructing pedestrian motion patterns; (b) No loss mask; (c) Use of loss mask.

To solve these problems and model more accurate and reliable pedestrian motion pat-
terns, we propose a two-stage motion pattern de-perturbation strategy. Stage 1—Constructing
the pedestrian motion pattern, the baseline model utilizes latent vectors to introduce ran-
domness. Inspired by the counterfactual analysis paper [7], they use counterfactual features
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to replace trajectory features to eliminate training and deployment environment biases. We
replace trajectory and interaction features with optimization features to eliminate redun-
dant effects of introducing latent vectors. Stage 2—The training model iteration phase is
a new loss mask design for shielding pedestrians with no history of trajectories to more
accurately model pedestrian motion patterns and accurately capture the correspondence
between learned historical trajectories and future trajectories. Notably, we do not interfere
with the interaction between pedestrians with no history track and other pedestrians. Our
proposed two-stage motion pattern de-perturbation strategy is a plug-and-play module.
It can be applied to any benchmark method for pedestrian trajectory prediction that in-
troduces latent vectors. We conducted experiments on three baseline approaches, namely,
STGAT [3], which is based on an RNN (Recurrent Neural Network) and a GAT (Graph
Attention Network); SGAN [2], which is based on an RNN and a GAN (Generative Ad-
versarial Network); and SocialVAE [6], which is based on an RNN and a VAE (Variational
Auto-Encoder).

In summary, this paper contributes the following:

1. The introduction of latent vectors inevitably introduces redundancy effects; there-
fore, we propose the use of optimization features to replace trajectory features and
interaction features to eliminate these redundant effects.

2. Pedestrians without historical trajectories during model training can interfere with
the accurate iteration of pedestrian motion patterns; thus, we propose loss masks to
eliminate this interference to reduce the uncertainty of the training process.

3. Our method, as a migratable module, can effectively eliminate the interference factor
of pedestrian motion pattern modeling in two stages, maximizing the performance of
the baseline models.

2. Related Work

Expert-based models generally set the relevant rules manually, and some approaches
base their motion planning on dynamics equations and obstacles in the scene [8,9], while
others are based on heuristic methods that use human-formulated motion functions to
avoid collisions [10,11]. There are also methods [12,13] that use pedestrian interaction
simulation software, such as Legion, to simulate complex interactions between pedestrians
and analyze group motion behaviors more effectively.

In recent years, many methods have been applied to learning pedestrian movement
patterns from data. The data-driven models mainly include Bayesian network-based, rein-
forcement learning-based, and deep learning-based models. Among them, deep learning-
based models are the focus of this paper.

Bayesian networks were used in [14] to model an agent’s state and predict the agent’s
intention and trajectory. Several approaches [15,16] also use deep reinforcement learning
models to predict pedestrian trajectories in human–vehicle conflict scenarios.

Deep models have recently achieved good results in pedestrian trajectory prediction
tasks due to the powerful characterization capabilities of deep learning.

Regarding recurrent neural networks, speech sequence recognition and machine trans-
lation [17,18] have demonstrated that RNNs and their variants, such as long short-term
memory networks (LSTMs), are well suited for processing sequence information and
predicting sequence data problems. Social-LSTM [1] uses the hidden states extracted by
an RNN as the trajectory features of pedestrians and introduces a local “social” pooling
module by considering the social attributes of pedestrians to weight the hidden states of
pedestrians within a certain spatial distance to simulate pedestrian interactions in real
scenes. Social-GAN [2] uses a GAN as the overall model architecture and uses an RNN to
model pedestrian trajectory features in the generator but uses a global pooling module to
improve the pooling mechanism based on the relative distance between pedestrians, mak-
ing the generated trajectories more in line with social norms. TPHT [19] introduces a soft
attention mechanism to model the interaction between pedestrians based on RNN-extracted
trajectory features. Several works [6,20–24] further refine the extraction of pedestrian inter-
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action features using scene information and the physical parameters of pedestrian motion
(motion direction angle, shortest distance, etc.).

Graph neural networks have been widely used in the field of deep learning in recent
years. Previous methods have been based on designing pooling modules to aggregate
interactions between pedestrians; this pooling method aggregates only different pedestrian
states based on simple features such as the spatial distance between pedestrians, which has
certain limitations, while graph neural networks essentially combine graph data with neural
networks to effectively aggregate information between nodes, which is highly relevant to
pedestrian trajectory prediction tasks. STGAT [3] introduces GAT to design spatio-temporal
graphical attention networks. RNN is used to encode pedestrian trajectories, while GAT is
used to capture the spatial correlation between different pedestrian trajectories to extract
social interactions between pedestrians. Social-BiGAT [25] applied a GAT-based generative
adversarial network to better model pedestrian social interactions in scenarios, while
adversarial training based on the GAN framework was used to model the multimodality
of pedestrian trajectories. STGCNN [26] and SGCN [27] model the movement patterns of
pedestrians directly and explicitly on a spatiotemporal graph, modeling interactions as
graphs to replace traditional aggregation methods. Some work [28,29] combines rule-based
or optimized physical models with deep learning models to improve model accuracy.

Numerous methods [1–6,20,22,25] rely on the randomness of latent vectors to create
the multimodality of pedestrian trajectories. However, they often overlook the redundancy
effects caused by the latent vectors being unrelated to pedestrian movement patterns.
Moreover, these methods often overlook the impact of pedestrians without historical
trajectories on the accurate iterative motion patterns during the training model stage.
Given this, our two-stage de-disturbance strategy incorporates optimized features and
loss masks to eliminate redundant disturbances. This enables the baseline models to
demonstrate even better performance.

3. Methods

This section outlines the construction of a two-stage motion pattern de-perturbation
strategy and its implementation in the baseline models. Table 1 provides a summary of the
main notations used in this paper.

Table 1. Summary of main notations.

Notation Description

Xi Past trajectory of agent i
Yi Future trajectory of agent i
mi Trajectory features of agent i
gi Interaction features of agent i
z Latent vectors sampled from a Gaussian distribution

Wd Weight parameter in the baseline model decoder
|| Concatenation operation
hi Pedestrian motion patterns output by the baseline model decoder
ξi Optimization factor utilized to construct optimization features

OF Optimization features
hi

′
Decoder output using optimization features

Wo Weight parameter of the output module in the baseline model
Ŷi Final predicted trajectory obtained using optimization features

∆xt1
i , ∆yt1

i Coordinate component of the displacement of agent i at time t1

Vi
A Average speed of agent i over historical observation frames

LB Loss function defined by the baseline model
Li

Mask Loss mask for agent i
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3.1. Problem Definition

The goal of pedestrian trajectory prediction is to take all pedestrian historical coor-
dinate points at a specified time t1 = 1, 2, . . . , tobs as input X = X1, X2, . . . , Xn and to
predict the future coordinate points Ŷ = Ŷ1, Ŷ2, . . . , Ŷn of all pedestrians at a subsequent
time t2 = tobs + 1, tobs + 2, . . . , tpred by constructing a model. For pedestrian i, its input
historical coordinates and true future coordinates can be defined as follows:

Xi =
{
{(xt1

i , yt1
i ) ∈ R2}

∣∣∣t1 = 1, 2, . . . , tobs

}
(1)

Yi =
{
{(xt2

i , yt2
i ) ∈ R2}

∣∣∣t2 = tobs + 1, tobs + 2, . . . , tpred

}
(2)

Notably, previous methods mainly used the relative position of pedestrians, i.e., the
historical displacement, instead of absolute position coordinates as input information.

3.2. Method Overview

Encoder–Decoder framework: Pedestrian trajectory prediction is a sequence prediction
task. Many methods use coding and decoding frameworks, with encoding and decoding
modules typically designed as RNN or LSTM structures. The process can be summarized
as follows:

1. The encoding module encodes the input historical pedestrian trajectory to obtain the
trajectory features of the pedestrians.

2. The portrayal of interactions between pedestrians is generally based on factors such
as their distance from each other or the risk of collision. This is performed to obtain
the encoding of the interaction feature.

3. The complete motion pattern encoding of the pedestrians is obtained by splicing
together the trajectory features, interaction features, and introduced latent vectors.

4. To decode the high-dimensional features of the predicted trajectory, input the complete
motion pattern encoding of pedestrians into the decoding module.

5. The predicted trajectory’s high-dimensional features are passed through the output
module, typically a linear layer, to obtain the mapped future trajectory.

Overview: As shown in Figure 2, where the encoder and decoder represent the
encoding and decoding modules of a baseline model, respectively, the de-perturbation
strategy consists of two main stages. In the first stage, optimization features are used to
replace pedestrian trajectory and interaction features in the baseline model, eliminating
the redundancy effects of introducing latent vectors; in the second stage, the designed
loss mask is used to optimize the model training process, eliminating the interference of
irrelevant training data for loss computation.

3.3. Stage 1: Pedestrian Motion Pattern Construction Optimization

As shown in panel (a) of Figure 1, the baseline model introduces randomness of latent
vectors to model the multimodality of trajectories. However, according to our experimental
results in Table A1 in Appendix A.1, latent vectors cause redundant effects on the motion
patterns constructed by the baseline model. Therefore, as shown in Figure 2, we propose
to use optimization features to replace the pedestrian trajectory features and interaction
features connected to the latent vectors, and the same are input to the decoding module
of the baseline model to replicate the redundancy effect caused by the introduction of
latent vectors.

For pedestrian i, we assume that the trajectory features and interaction features mod-
eled by the baseline model are mi and gi, respectively, so that the pedestrian motion
pattern hi modeled by the baseline model can be given by the following equation:

hi = Decoder(mi∥gi ∥z ; Wd) (3)
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where || denotes the concatenation operation and z is the latent vector introduced by
the baseline model to construct the multimodality of the pedestrian trajectory, i.e., to
introduce randomness into the deterministic trajectory. Wd is the weight parameter in the
decoder module.
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The additional optimization features we introduce are defined as OF = (mi∥gi ) ∗ ξi,
where ξi is the optimization factor (set to zero in our approach); moreover, we present
our exploratory experiments using different forms of ξi in Section 4. OF is used to replace
the trajectory features (mi) and interaction features (gi) in the pedestrian movement pat-
tern constructed by the baseline model to replicate the redundancy effects (hi

′
) from the

introduction of latent vectors:

h
′
i = Decoder(OF∥z ; Wd) (4)

hi and h
′
i are finally input to the output module of the baseline model to eliminate

redundancy effects to obtain the final predicted trajectory:

Ŷi = Output(hi − h
′
i; Wo) (5)

where Wo is the weight parameter in the output module of the baseline model and Ŷi is the
predicted trajectory of the final model output.

3.4. Stage 2: Loss Mask Optimization

We first use the historical coordinates Xi of pedestrian i to calculate the displacement
of the current time frame relative to the previous time frame:

∆xt1
i = xt1

i − xt1−1
i , ∆yt1

i = yt1
i − yt1−1

i (6)

We calculate the average velocity (Vi
A) of pedestrian i based on its displacement in

the historical observation frames. The Vi
A in the historical observation frame is described

as follows:

Vi
A =

1
tobs

∑tobs
t1=1

√(
∆xt1

i

)2
+

(
∆yt1

i

)2
(7)
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For pedestrian i with zero average velocity Vi
A, the displacement in historical time is

also zero, and it is impossible to model its motion pattern to catch the relationship between
historical and future trajectories. For this reason, we propose the loss mask (Li

Mask) for
training to ensure that the gradient backpropagation of loss is not used for pedestrian i, so
that the network no longer focuses on pedestrian i during training and more accurately
models pedestrians with definite motion patterns. We define Li

Mask below:

Li
Mask =

{
ones, Vi

A ̸= 0
zeros, Vi

A = 0
(8)

The final loss function is defined as follows:

L = L
(
Yi, Ŷi

)
∗ Li

Mask (9)

where LB is the loss function defined by the baseline model and the training loss mask
Li

Mask enables the network to target weight updates to exclude the interference of irrelevant
data to more accurately map the relationship between historical and future trajectories,
ensuring the accuracy of modeled pedestrian movement patterns and making the network
model more effectively absorb training data and improving learning efficiency. In Section 4,
we conducted experiments to investigate the model’s learning efficiency with varying
dataset sizes.

4. Experimental Section
4.1. Experimental Settings

Dataset: We evaluated our method on two publicly available trajectory prediction
datasets, ETH [30] and UCY [31], which contain five different real scenarios, namely, ETH,
Hotel, Zara1, Zara2, and Univ. These scenarios involve different social environments and
different crowd densities. The dataset was obtained by sampling data from a real scene
at 0.4 s intervals, and the training idea was the same as that used by the current mainstream
methods; that is, 3.2 s (tobs = 8) trajectory data were used as the historical trajectory
data, and 4.8 s (tpred = 12) trajectory data were used as the real values of the predicted
trajectories while maintaining a cross-validation evaluation strategy that is consistent with
the baseline models [2,3,6].

Evaluation metrics: To specifically evaluate the accuracy of the predicted trajectory, we
used the same evaluation metrics as those used by the baseline methods, the average dis-
placement error (ADE) [32] and the final displacement error (FDE) [1], which are calculated
as follows:

ADE =
∑i∈N ∑

tpred
t=tobs

∥∥Ŷt
n − Yt

n
∥∥

2

N ∗ (tpred − tobs).
(10)

FDE =
∑i∈N

∥∥∥Ŷ
t=tpred
i − Y

t=tpred
i

∥∥∥
2

N
(11)

Baseline models: We used three representative baseline models for trajectory prediction
to evaluate our approach: (1) an SGAN based on an RNN and a GAN, (2) an STGAT based
on an RNN and a GNN, and (3) a SocialVAE based on an RNN and VAE.

4.2. Experimental Evaluation

In this section, we show how the experiments demonstrated the effectiveness of the
proposed two-stage motion pattern de-perturbation strategy.

Experimental evaluation of the pedestrian motion pattern de-perturbation strategy:
To evaluate the effectiveness of our designed method in improving prediction accuracy, we
conducted comparison experiments on the official source codes provided by STGAT [3],
Social-GAN [2], and SocialVAE [6], as shown in Table 2, where * in Table 2 indicates the
results we directly replicated with the official source codes; for fairness of comparison, we
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kept the same hyperparameters as the replicated baseline model source codes. When evalu-
ating Ours–STGAT, Ours–SGAN, and Ours–SocialVAE, we kept the same hyperparameters
as the reproduced baseline model source codes, and we set the same random number seed
for all subsequent experimental evaluations to make the experimental results reproducible.
The results in Table 2 show that our proposed two-stage motion pattern de-perturbation
strategy can improve the prediction accuracy of the different baseline models, where
Ours–STGAT achieves an improvement of 0.06/0.09 on the average ADE/FDE on five
different scenario datasets compared to the baseline STGAT* model, Ours–SGAN achieves
an improvement of 0.02/0.06 compared to the baseline SGAN* model, and Ours–SocialVAE
achieves an improvement of 0.02 on the average FDE compared to the baseline model. No-
tably, our strategy results in all baseline models achieving significant increases in both the
ETH and HOTEL dataset scenarios, with the increases being more pronounced in the ETH
scenario. We attribute this to the fact that pedestrians in motion in the ETH and HOTEL
scenarios are more sparsely located; thus, pedestrian motion is more influenced by their
own motion patterns. In the ETH and HOTEL datasets, our strategy removes the redun-
dancy effects of the randomness of latent vectors on the construction of pedestrian motion
patterns, while the use of loss masks shields the inherent interference of pedestrians with
no history of trajectories, allowing for the maximization of baseline model performance.

Table 2. Evaluation results of several advanced baseline models. Our two-stage optimization strategy
improved the predictive efficacy of all three baseline methods. For both the ADE and FDE metrics,
the lower the value is, the better the result. The table highlights the best results for ADE/FDE in bold.

Baseline 1
Performance (ADE/FDE)

ETH HOTEL ZARA1 ZARA2 UNIV AVG

Social LSTM [1] 1.09/2.35 0.86/1.91 0.41/0.88 0.52/1.11 0.61/1.31 0.70/1.52
SoPhie [20] 0.70/1.43 0.76/1.67 0.30/0.63 0.38/0.78 0.54/1.24 0.54/1.15

SR-LSTM [33] 0.63/1.25 0.37/0.74 0.41/0.90 0.32/0.70 0.51/1.10 0.45/0.94
STSGN [34] 0.75/1.63 0.63/1.01 0.30/0.65 0.26/0.57 0.48/1.08 0.48/0.99
MATF [35] 1.33/2.49 0.51/0.95 0.44/0.93 0.34/0.73 0.56/1.19 0.64/1.26

MATF GAN [35] 1.01/1.75 0.43/0.80 0.26/0.45 0.26/0.57 0.44/0.91 0.48/0.90
PITF [21] 0.73/1.65 0.30/0.59 0.38/0.81 0.31/0.68 0.60/1.27 0.46/1.00

Social-BiGAT [25] 0.69/1.29 0.49/1.01 0.30/0.62 0.36/0.75 0.55/1.32 0.48/1.00
STGCNN [26]

STGAT [3]
0.64/1.11
0.65/1.12

0.49/0.85
0.35/0.66

0.34/0.53
0.34/0.69

0.30/0.48
0.29/0.60

0.44/0.79
0.52/1.10

0.44/0.75
0.43/0.83

STGAT * 0.80/1.42 0.37/0.70 0.33/0.66 0.29/0.61 0.55/1.17 0.47/0.91

Ours–STGAT 0.59/1.02 0.34/0.61 0.32/0.65 0.30/0.62 0.52/1.12 0.41/0.80

Baseline 2
Performance (ADE/FDE)

ETH HOTEL ZARA1 ZARA2 UNIV AVG

SGAN [2] 0.71/1.29 0.48/1.02 0.34/0.69 0.31/0.64 0.56/1.18 0.48/0.96

SGAN * 0.75/1.36 0.41/0.82 0.33/0.68 0.30/0.64 0.53/1.13 0.46/0.93

Ours–SGAN 0.64/1.15 0.39/0.75 0.33/0.67 0.29/0.62 0.53/1.15 0.44/0.87

Baseline 3
Performance (ADE/FDE)

ETH HOTEL ZARA1 ZARA2 UNIV AVG

PECNet [36] 0.54/0.87 0.18/0.24 0.22/0.39 0.17/0.30 0.35/0.60 0.29/0.48

Trajectron++ [37] 0.54/0.94 0.16/0.28 0.21/0.42 0.16/0.31 0.28/0.55 0.27/0.50
SGCN [27] 0.63/1.03 0.32/0.55 0.29/0.53 0.25/0.45 0.37/0.70 0.37/0.65

Social-Implicit [38] 0.66/1.44 0.20/0.36 0.25/0.50 0.22/0.43 0.31/0.60 0.33/0.67
SocialVAE [6] 0.49/0.77 0.15/0.24 0.19/0.37 0.15/0.28 0.25/0.47 0.25/0.43

SocialVAE * 0.50/0.85 0.15/0.23 0.20/0.37 0.16/0.29 0.25/0.48 0.25/0.44

Ours–SocialVAE 0.48/0.77 0.15/0.21 0.21/0.37 0.15/0.28 0.26/0.49 0.25/0.42
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Evaluating the use of different forms of ξi to construct the optimization features: To
determine the final form of the optimization features introduced in Section 3.2, as shown
in Table 3, we designed experiments to evaluate the effect of using different forms of ξi to
construct the optimization features to obtain the final experimental results. The experiments
involved using ξi with all-zero values, ξi with all-0.5 values, ξi with values sampled from
a uniform distribution, and ξi with values sampled from a standard normal distribution.
The experimental results in Table 3 show that the baseline model is improved under every
form of ξi, which indicates that our method has some universality. Using ξi with all-zero
vectors achieves the best results, which is consistent with our design philosophy that the
optimization features are introduced to eliminate the redundancy of latent vectors, and
the use of all-zero vectors can directly reflect the influence of latent vectors on trajectory
features and interaction features.

Table 3. The results were evaluated when using different forms of ξi to construct the optimized features,
where STGAT is the baseline model. The table highlights the best results for ADE/FDE in bold.

Performance (ADE/FDE)

ETH HOTEL ZARA1 ZARA2 UNIV AVG

STGAT* (Baseline) 0.80/1.42 0.37/0.70 0.33/0.66 0.29/0.61 0.55/1.17 0.47/0.91

STGAT 1 0.59/1.02 0.34/0.61 0.32/0.65 0.30/0.62 0.52/1.12 0.41/0.80
STGAT 2 0.61/1.04 0.37/0.73 0.32/0.66 0.30/0.60 0.52/1.11 0.42/0.83
STGAT 3 0.71/1.25 0.35/0.64 0.33/0.65 0.30/0.61 0.56/1.17 0.45/0.86
STGAT 4 0.67/1.24 0.33/0.62 0.33/0.67 0.31/0.63 0.55/1.15 0.44/0.86

Note: 1 indicates that ξi used zero vectors, 2 indicates that all the values in ξi were 0.5, 3 indicates that ξi was
obtained by sampling from a uniform distribution, and 4 indicates that ξi was obtained by sampling from a
standard normal distribution.

Contributions of different optimization designs: In this subsection, we discuss the
design of experiments to evaluate the separate contributions of the optimization features
and the loss mask, as shown in Table 4, where (1) STGAT w/o OF indicates no optimization
features and that only the loss mask was used and (2) STGAT w/o LM indicates no loss
mask and that only the optimization features were used. The results show that the use
of the loss mask and the optimization features alone can both improve the prediction
effectiveness of the baseline models, with the effect of using the optimization features being
more obvious. Moreover, Ours–STGAT using a loss mask and optimized feature at the
same time has advantages on individual datasets but does not improve on the average
performance compared to STGAT w/o LM. This is because we introduce the loss mask aims
to eliminate the influence of pedestrians without historical trajectories on the construction
of deterministic motion patterns during network training. This improves the network’s
ability to absorb and discriminate the training data, enhances its stability, and steadily
improves the model prediction performance. The effect of the loss mask will be illustrated
through the experiment shown in Figure 3.

Table 4. The separate contributions of the optimized features and loss masks were evaluated using
STGAT as a baseline model. The table highlights the best results for ADE/FDE in bold.

Performance (ADE/FDE)

ETH HOTEL ZARA1 ZARA2 UNIV AVG

STGAT* (Baseline) 0.80/1.42 0.37/0.70 0.33/0.66 0.29/0.61 0.55/1.17 0.47/0.91

STGAT w/o OF 0.77/1.33 0.36/0.67 0.33/0.68 0.30/0.60 0.54/1.17 0.46/0.89
STGAT w/o LM 0.61/1.05 0.32/0.61 0.33/0.66 0.28/0.58 0.52/1.11 0.41/0.80

Ours–STGAT 0.59/1.02 0.34/0.61 0.32/0.65 0.30/0.62 0.52/1.12 0.41/0.80
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Figure 3. Performance of the model with different training dataset data volumes. (a) Comparison on
ADE; (b) Comparison on FDE.

Data efficiency: The size of the dataset has an impact on the effectiveness of the
model. An increase in the training data tends to improve the effectiveness of the model,
but a large amount of training data implies a large computational cost; therefore, in this
subsection, we explore the relationship between the size of the training dataset and the
learning efficiency. We conducted a series of experiments in which different percentages of
training data were randomly sampled from the original training data. The training data
were randomly selected and divided into 5%, 25%, and 50% samples, and the same data
were input to train different models. The experiments used STGAT as a baseline model to
compare two of our methods, Ours–STGAT and STGAT w/o LM, and the experimental
results of the data learning efficiency with average ADE and FDE values are shown in
Figure 3a and 3b, respectively. (1) It is clear that the predictive efficacy of Ours–STGAT
exceeds that of the baseline model, STGAT, when using different proportions of train-
ing data; (2) STGAT w/o LM clearly exhibits the same instability as the baseline, while
Ours–STGAT, with both a loss mask and an optimization feature (OF), exhibits the ideal
of stable absorption of training data. It should be noted that as the amount of training
data increases, both the baseline model and STGAT w/o LM exhibit unstable learning
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efficiency compared to Ours–STGAT. This suggests that they are not able to absorb the
additional training data efficiently. We consider that this instability is precisely due to
inherent interference, where the training data cannot properly and effectively guide model
learning. Our proposed two-stage motion pattern de-perturbation strategy eliminates the
redundant effects of introducing latent vectors and the inherent disturbances that exist
when training the model. This ensures that the baseline model can effectively utilize the
training data to establish accurate pedestrian motion patterns, allowing it to perform as
intended and demonstrate improved results.

4.3. Visualization Presentation

To better visualize the improvement in trajectory prediction achieved by our two-stage
motion pattern de-perturbation strategy compared with that achieved by the baseline
models, in Figures 4 and 5 we visualize the predicted trajectories of Ours–STGAT and
Ours–SGAN with their corresponding baseline models in five different real-world scenarios.
The overall accuracy of trajectory prediction using our method is significantly better than
that of the baseline models, and the generated trajectories are more reliable. It should
be noted that the visualization results for multiple scenarios indicate that the baseline
models predict shorter trajectories for pedestrians who continue walking straight. Even
for pedestrians with variable trajectories, the predicted trajectories tend to be closer to the
actual trajectories after implementing our strategy. The reason for this is that the stochastic
nature of latent vectors is not related to the pedestrians’ own motion characteristics. The
introduction of latent vectors to construct trajectory multimodality in a crude and simple
manner can have a redundant effect on the pedestrian’s motion pattern. This can result in
irrational trajectories, as shown in the visualization figure.
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5. Conclusions

In this paper, we propose a two-stage motion pattern de-perturbation strategy, in-
troduce optimization features for eliminating the redundancy effects caused by latent
vectors when constructing pedestrian motion patterns, design loss masks to decrease the
interference of invalid training data, and model trajectory prediction models efficiently and
accurately. Our approach is a plug-and-play module that maximizes the actual effective-
ness of the baseline models and improves the trajectory prediction accuracy. Experimental
results from multiple real-scene datasets demonstrate that our method significantly reduces
the average trajectory prediction error across different baseline models, achieving superior
prediction accuracy compared to advanced baseline models. In addition, a comparison
of the experimental results with different training data confirms the universality of our
method and shows that our method can indeed eliminate interference in modeling motion
patterns and effectively guide a model to absorb additional training data. However, the use
of latent vectors to model multimodal trajectories has limitations, as they are random num-
bers independent of pedestrian movement characteristics, resulting in the poor robustness
of the modelled motion patterns. Future research should explore more efficient ways of
modeling multimodal trajectories, such as incorporating scene information or combining
multiple pedestrian motion features.
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Appendix A

Appendix A.1. Exploration of the Effects of Redundancy in Latent Vectors

We experimentally explored whether there is a redundancy effect in introducing latent
vectors in modeling. We used STGAT as the baseline model, and to ensure a fair com-
parison with STGAT w/o LZ, deterministic prediction (prediction of only one trajectory)
was employed. As depicted in Table A1, the results for STGAT w/o LZ were significantly
superior to those for STGAT, suggesting the occurrence of redundancy effects in the intro-
duction of latent vectors. Furthermore, the results show that STGAT with OF outperformed
STGAT, indicating that our proposed optimization feature can mitigate the redundancy
effects caused by latent vectors. It is important to note the anomaly observed in the HOTEL
dataset, which was attributable to the stochastic nature of the latent vectors. While the
randomness of latent vectors has the potential to improve prediction accuracy, it does not
mean that the introduction of latent vectors has no redundancy effect, as the results on the
HOTEL dataset show that STGAT with OF achieves better prediction accuracy than STGAT.

Table A1. Redundancy effect exploration experiment (STGAT w/o LZ means no latent vectors;
STGAT with OF means that our optimization features were added).

Method
Performance (ADE/FDE)

ETH HOTEL ZARA1 ZARA2 UNIV AVG

STGAT 0.90/1.76 0.48/0.99 0.43/0.92 0.33/0.72 0.55/1.18 0.54/1.11
STGAT w/o LZ 0.84/1.74 0.50/1.05 0.41/0.88 0.32/0.71 0.52/1.12 0.52/1.10
STGAT with OF 0.89/1.75 0.47/0.95 0.42/0.90 0.32/0.70 0.53/1.13 0.53/1.09

Appendix A.2. Evaluation Experiments on the SDD Dataset

The Stanford UAV dataset [39] is a benchmark dataset for trajectory prediction for
multiple target classes; it contains trajectory information for six different intelligences in
eight different real-world scenarios, with coordinates in pixels. Consistent with the work
tested on SDD [36–38,40], we used eight frames of trajectories as input to predict twelve
frames of future trajectories and used a dataset segmentation setup consistent with [40].

The * denotes the result of our direct training using the official code provided by
SocialVAE. We conducted evaluation experiments on the SDD dataset using SocialVAE
as the baseline model to complement the trajectory prediction efficacy of our strategy in
more diverse real-world scenarios. We compared Ours–SocialVAE, which uses our method
(optimized features and loss masks), with the baseline model SocialVAE*.

The trajectory prediction efficacy results of the baseline models SocialVAE* and
Ours–SocialVAE on the SDD dataset for the multitarget category are reported in Table A2.
Our approach achieves an effective improvement in average prediction performance over
the baseline SocialVAE* on the SDD dataset. Our method also achieves performance im-
provements in most categories, not only for pedestrians. These results demonstrate the
effectiveness of our method for different scenarios.

Table A2. Multicategory evaluation experiments on the SDD dataset. The table highlights the best
results for ADE/FDE in bold.

Method
Performance (ADE/FDE)

Pedestrian Skater Biker Car Bus Cart AVG

SocialVAE * 9.41/15.82 34.23/62.08 28.79/53.49 41.45/64.47 25.84/50.51 13.12/25.04 25.47/45.24
Ours–SocialVAE 9.26/14.86 29.32/50.83 25.97/48.90 41.63/65.08 24.64/49.33 11.41/19.40 23.71/41.40
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