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Abstract: In this paper, we focus on designing a model reference adaptive control-based distributed
control law to drive a set of agents with double-integrator dynamics in a leader–follower fashion in
the presence of system anomalies such as agent-based uncertainties, unknown control effectiveness,
and actuator dynamics. In particular, we introduce a novel hedging-based reference model with
second-order dynamics to allow an adaptation in the presence of actuator dynamics. We show the
stability of the overall closed-loop multi-agent system by utilizing the Lyapunov Stability Theory,
where we analyze the stability condition by using the Linear Matrix Inequalities method to show
the boundedness of the reference model and actuator states. Finally, we illustrate the efficacy of the
proposed distributed adaptive controller on an undirected and connected line graph in five cases.

Keywords: multi-agent systems; double-integrator dynamics; adaptive control; uncertainty;
unknown control effectiveness; actuator dynamics; model reference adaptive control

1. Introduction

Thanks to the gradually increasing efficiency of off-shelf electro-mechanical com-
ponents and recent advances in robust algorithms, multi-agent systems create highly
promising opportunities to complete complex tasks using several low-level agents instead
of just one high-level and non-replaceable platform. Together with many others, new
mission definitions and capabilities in aerospace (e.g., swarm aerial vehicles and satellite
formations), ground (e.g., automated agriculture), and marine (e.g., patrol boats) are being
developed by researchers and engineers in both academia and industry.

In the literature, many algorithms exist to provide collaborative behavior with mul-
tiple robots [1–6]. Note that consensus-based approaches are one of the superior ap-
proaches due to reduced network usage, simplicity in application, and experimentally
validated results [7]. Researchers studied consensus-based approaches for systems with
scalar dynamics [8–11], second-order dynamics [12–15], or systems with non-holonomic
constraints [16–19] to provide a variety of purposes, such as consensus, leader–follower,
and formation control. On the one hand, the analysis in [20] studies the behavior of dis-
tributed Riccati recursions for a multi-agent system, providing the required conditions for
their convergence to a singular set of stabilizing matrices. Specifically, the class of algebraic
Riccati equations is considered such that their results can be generalized for a wide range
of control purposes. On the other hand, in [21], the authors studied the conditions for
designing static distributed controllers for deterministic and stochastic systems. These
conditions are then translated into an optimization problem to quantify the closeness of the
designed distributed control systems. Note that none of the above papers are designed to
suppress the effect of system anomalies.
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Considering ideal multi-agent systems, classical control algorithms work with high
performance in the absence of system anomalies. However, real physical systems are not
ideal and are affected by different types of anomalies due to their nature. In the scope of this
research, we collect these anomalies as uncertainty, unknown control effectiveness, and ac-
tuator dynamics. Hence, controllers designed in the studies referenced above cannot obtain
control algorithms that provide stability guarantees and satisfactory transient responses in
the presence of uncertainty and actuator dynamics, as well as unknown actuation ineffi-
ciencies. To guarantee overall stability, the researchers in [22–27] provide adaptive control
of multi-agent systems with single-integrator dynamics subject to suppress the undesired
effects of such anomalies. Note that multi-agent systems with single-integrator dynamics
may not fully represent the real physical systems since most of them have higher-order (i.e.,
double-integrator) dynamics. Moreover, using single-integrator dynamics yields unsatis-
factory and mostly oscillatory performance, which can be seen in the recent experimental
results provided in [28]. The main reason for this is the absence of internal damping, to-
gether with a limited control authority for the single-integrator control system. In addition,
the single-integrator system has a limited dynamic response (i.e., slower response to any
change) that yields limited tracking response, lack of robustness, and less design flexibility.

To this end, one of the latest research results in [29] provides leader–follower-based
integral sliding-mode control for multi-agent systems with nonlinear double-integrator
dynamics in the presence of uncertain parameters and external disturbances with unknown
upper bounds. Since upper bounds on disturbances are unknown in most of the practical
applications, they improve existing controllers in an adaptive scheme to provide robustness.
However, their study does not cover actuator dynamics and actuation efficiency problems.
In [30,31], the high-order multi-agent system with uncertainty and actuator dynamics is
controlled by utilizing distributed adaptive controllers. In addition, neither [30] nor [31]
consider if the actuator effectiveness is unknown. Moreover, Refs. [30,31] require integral
state vector usage in their control design. This approach can cause a slow response/update
such that the control response cannot be updated directly. In addition, when an integral
state approach is applied to a system, it requires some time for the integral terms to
accumulate and reach a significant value, which may cause a poor transient response
such as oscillations. Also, robustness issues may exist since integral terms can amplify
high-frequency noise or measurement errors between the output of the agents and the
reference command, which can even yield instability.

Hence, there is a fundamental gap in the analysis of distributed controllers on the
uncertain multi-agent system in the presence of unknown control effectiveness and actuator
dynamics. To close this gap and therefore improve the performance of the distributed
adaptive control algorithms on real physical systems with such anomalies, in this paper, we
design a distributed adaptive controller for double-integrator systems (that can be easily
extended for higher-orders such as acceleration, jerk, and so on). This extension enables us
to increase transient performance, obtain a faster response, and decrease required minimum
actuator bandwidths for agents that increase the overall robustness of the system. This is
due to the fact that the proposed controller does not require additional distributed signals
that need to be integrated when you compare with current related results [30,31]. Note
that the additional integrated distributed signals result in a slow response, a poor transient
response, or a non-robust behavior in an overall multi-agent system. To summarize, in this
paper, there are four main contributions to the literature in particular:

(1) Designing a novel distributed adaptive control algorithm and a novel hedging-
based reference model for multi-agent systems with double-integrator dynamics
that uses position and velocities in the control law, which highly increases transient
performance since it yields a faster update and enlarges the feasible actuator bandwidth
set that increases the overall system performance and robustness.

(2) Provides the first result for distributed adaptive control with double-integrator type
multi-agent systems to deal with uncertainty, unknown control effectiveness, and
actuator dynamics altogether. The proposed controller also yields a faster response,
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and hence, better performance while providing a level of robustness due to not needing
a distributed signal integration. To show these advantages, we compare our per-
formance results with the control algorithm developed in [31] in Section 4 of this
paper.

(3) Utilizing a compact form for both system dynamics and controller for all agents for
investigating stability via Lyapunov Stability Theory and Linear Matrix Inequalities.
This compact form enables extending controller design and stability analysis for sys-
tems with even higher than second-order dynamics (which can include acceleration,
jerk, etc.) without any changes in Lyapunov-based stability analysis. For detailed
information on this item, please see Remark 3 in Section 3.

(4) Avoiding one of the assumptions that current high-order multi-agent distributed
adaptive control literature is required for the boundedness of the reference model
(see, for example, Assumption 3.1. of [31]).

The outline of this paper is as follows. In Section 2, we provide the general notation that
is used in this paper and provide mathematical preliminaries on Graph Theory together
with the definition and properties of the Projection operator. In Section 3, we provide
dynamical equations for a multi-agent system with double-integrator dynamics in the
presence of uncertainty, unknown control effectiveness, and actuator dynamics. We then
introduce the novel hedging-based reference model with double-integrator dynamics to
allow an adaptation that is not affected by the actuator dynamics. We design a novel
distributed adaptive control law that enables tracking of the reference model even though
the aforementioned system anomalies exist. We end this section by investigating the
stability result of the overall closed-loop multi-agent system via Lyapunov Stability Theory
and show the boundedness of the reference model and actuator dynamics by utilizing
Linear Matrix Inequalities. In Section 4, we illustrate the performance of the designed
controller with five cases for an undirected and connected line graph in a leader–follower
setting. Finally, in Section 5, we summarize the results presented in the paper and mention
future research directions.

2. Notation and Mathematical Preliminaries

The general notation of this paper can be seen in Table 1. In addition, since we
utilize Graph Theory, for the results of this paper, we start with defining graph-theoretical
notations that are standard in the literature [5]. In particular, for an undirected graph G,
which includes a set VG = {1, . . . , n} of nodes and a set EG ⊂ VG × VG of edges, nodes i
and j are said to be neighbors if (i, j) ∈ EG , which is denoted by with i ∼ j. Each node’s
degree is the number of neighbors of the regarding node. In other words, for a node i with
degree di, the degree matrix of a graph G can be given by a diagonalized matrix of number
of neighbors denoted by D(G) ≜ diag(d1, . . . , dn) ∈ Dn×n. Regarding the definition of a
path, a graph G is said to be connected if there is a path, i0i1 · · · iL, that is a finite sequence
of nodes between two consecutive nodes ik−1 ∼ i where k = 1, . . . , L between any pair
of distinct nodes. For a graph G, the adjacency matrix A(G) ∈ Dn×n is the matrix that
represents the neighbors’ relation of agent i, where its elements are A[(G)]ij = 1 if the i’th
and j’th nodes are neighbors, and, if not, A[(G)]ij = 0.
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Table 1. Notation.

R− Set of negative definite real numbers.
R+ Set of positive definite real numbers.
R Set of real numbers.
Rn Set of n × 1 real column vectors.
Rn×n
+ Set of n × n positive definite real matrices.

Rn×n
+ Set of n × n nonnegative definite real matrices.

Dn×n Set of n × n diagonal matrices.
Dn×n
+ Set of n × n positive definite diagonal matrices.

(·)T Transpose of a matrix.
(·)−1 Inverse of a matrix.
In×n n × n identity matrix.
0n n × 1 zero vector.
1n n × 1 vector with all entries are 1.
Proj Projection operator.
diag(·) Diagonalized vector.
≜ Equality from the definition.
coli(·) ith column operator.

In addition, the Laplacian matrix of the graph G, L(G) ∈ Rn×n
+ is the main tool to

represent the network characteristics of a graph based on the graph-theoretic approach.
The relation for the Laplacian matrix is given by L(G) ≜ D(G) − A(G), and, for an
undirected and connected graph, the spectrum of this Laplacian matrix G is ordered as
0 = λ1

(
L(G)

)
< λ2

(
L(G)

)
≤ . . . ≤ λn

(
L(G)

)
. Also, 1n is the eigenvector corresponding

to the zero eigenvalue λ1
(
L(G)

)
satisfying

(
L(G)

)
1n = 0n, as referenced in [5,32]. We note

that, in this paper, the proposed approach is based on a leader–follower setting. For this
purpose, we provide the following lemma.

Lemma 1. Let K = diag([k1, . . . , kn]) ∈ Dn×n with ki ∈ {0, 1}, where ki = 1 for a leader
agent(s) and ki = 0 for follower agent(s), for all i = 1, . . . , n, and assume that at least one element
ki is nonzero. Then, for the Laplacian of a connected, undirected graph, F (G) ≜ L(G) +K ∈
Rn×n
+ [5].

In addition, the Projection operator is utilized for the adaptive update laws in the
distributed adaptive controller designed in this paper. Specifically, Proj : R×R → R with
y ∈ R is utilized in adaptive update laws (8) and (9) as

Proj(θ, y)


(

θmax−θ
ϵ

)
y, if θ > θmax − ϵ and y > 0,(

θ−θmin

ϵ

)
y, if θ < θmin + ϵ and y < 0,

y, otherwise,

where θmin stands for the minimum and θmax denotes the maximum bounds for the parameter
θ ∈ R, ϵ ∈ R+ denotes a sufficiently small constant [33] and (Exercise 11.3, [34]) .

This is valid by letting Ω =
{

θ ∈ R : (θmin ≤ θ ≤ θmax)
}

, where Ω ∈ R is a convex func-
tion. For the simulation and Linear Matrix Inequalities results of this paper, we consider θmin =
−θmax without loss of generality, and letting Ωϵ =

{
θ ∈ R : (θmin + ϵ ≤ θ ≤ θmax − ϵ)

}
be

another convex function (i.e., Ωϵ ⊂ Ω). This definition results in the following property
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that is (θ − θ∗)(Proj(θ, y)− y) ≤ 0, where θ∗ ∈ Ω [34]. Moreover, one can generalize this
definition and the property to matrices by

Projm(Θ, Y) = (Proj(col1(Θ), col1(Y)), . . . , Proj(colm(Θ), colm(Y))

tr [(Θ − Θ∗)T(Projm(Θ, Y)− Y)] =
m

∑
i=1

[coli(Θ − Θ∗)T(Proj(coli(Θ), coli(Y))− coli(Y))]

≤ 0

with matrices Y, Θ, and Θ∗, which are needed for the stability analysis of this paper [34].

3. Main Results
3.1. Proposed Control Design

In this section, we first provide double-integrator type dynamical equations for a
multi-agent system in the presence of uncertainty, unknown control effectiveness, and
actuator dynamics. We then design a novel distributed adaptive control law that allows
us to drive the actual system states with anomalies to the states of the hedging-based
reference model.

In the literature, the dynamics of an ideal multi-agent with second-order dynamics
(in the absence of anomalies) is represented in a double-integrator form [14]. Hence, the
dynamics of an agent with double-integrator dynamics in the presence of uncertainty,
unknown control effectiveness, and actuator dynamics can be represented as

ẋi,1(t) = xi,2(t), xi,1(0) = xi,10 , (1)

ẋi,2(t) = (1 + δi)vi(t) + ωixi,2(t), xi,2(0) = xi,20 , i = 1, 2, . . . , n. (2)

Here, n agents are considered for an undirected and connected graph G, xi,1(t) ∈ R;xi,2(t) ∈
R are the first and second states of agent i = 1, . . . , n, representing position and velocity,
respectively; δi > −1 ∈ R represents the unknown part of the control effectiveness; ωi ∈ R
represents the agent-based uncertainty; and vi(t) ∈ R is the actuator output with the
dynamics provided in [26] as

ẋci (t) = −mixci (t) + ui(t), xci (0) = xci0 , i = 1, 2, . . . , n, (3)

vi(t) = mixci (t), i = 1, 2, . . . , n, (4)

where xci (t) ∈ R is the actuator state, ui(t) ∈ R is the control input, and mi ∈ R+ is the
actuator bandwidth of each agent.

Remark 1. For the case of xi,1(t) being the position and xi,2(t) being the velocity of agent i,
the uncertainty considered in (2) is velocity based; hence, this also affects the position indirectly.
Furthermore, the unknown control effectiveness is added in front of the actuator output in (2), since
there is a direct effect on the control degradation (i.e., δi = 0 for the ideal case when there is no
control degradation).

Note that driving the actual system states to the desired states in the presence of the
aforementioned system anomalies by using a classical distributed reference model yields
conservative results due to using an integrator state in the control design. See the second
contribution of this paper in Section 1. To overcome this conservativeness, one can utilize a
novel hedging-based reference model with double-integrator dynamics given by

ẋri,1(t) = xri,2(t), xri,1(0) = xri,10 , (5)

ẋri,2(t) = −∑
i∼j

(
xri,1(t)− xrj,1(t)

)
− ki

(
xri,1(t)− c(t)

)
− ∑

i∼j

(
xri,2(t)− xrj,2(t)

)
−kdi

xri,2(t) + vi(t)− ui(t), xri,2(0) = xri,20 , i = 1, . . . , n. (6)
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Here, xri,1(t) ∈ R, and xri,2(t) ∈ R are the first and second reference states, respectively;
kdi

∈ R+ is the damping gain (as with a derivative gain in well-known PID controllers, a
damping gain in this context provides similar flexibility in adjusting the response, and it is
an important term for reducing possible overshoot and oscillations, which highly increase
the transient performance of the closed-loop multi-agent system.); and c(t) ∈ R is the user
position command that is only available for the leader agent.

3.2. Proposed Distributed Control

To deal with the multi-agent system anomalies for leader–follower tracking, we pro-
pose the distributed adaptive control input law given by

ui(t) = −∑
i∼j

(
xi,1(t)− xj,1(t)

)
− ki(xi,1(t)− c(t))

−∑
i∼j

(
xi,2(t)− xj,2(t)

)
− kdi

xi,2(t)− δ̂i(t)vi(t)− ω̂i(t)xi,2(t), (7)

where δ̂i(t) ∈ R is the estimated unknown part of the control effectiveness, ω̂i(t) ∈ R is
the estimated unknown part of the uncertainty, and they are updated according to the
Projection operator-based update laws, respectively, given by

˙̂δi(t) = γ1iProj
[
δ̂i(t), x̃i,2(t)vi(t)

]
, (8)

˙̂ωi(t) = γ2iProj
[
ω̂i(t), x̃i,2(t)xi,2(t)

]
, (9)

where γ1i ∈ R+ and γ2i ∈ R+ are the learning rates for the estimation algorithms and
x̃i,2(t) = xi,2(t)− xri,2(t) ∈ R is the tracking error for the second state (i.e., velocity) of
agent i. In (7), the first and second state terms are used following the literature on double-
integrator multi-agent systems [14]. The adaptive parts of the controller are designed
to make the multi-agent system dynamics given by (1) and (2) track the hedging-based
reference model dynamics given by (3) and (4) asymptotically, while dealing with agent-
based uncertainties and unknown control effectiveness. Please see Figure 1 for the structure
of the proposed closed-loop system.

Figure 1. Illustration of the structure of the closed-loop system.
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Note that we use the Projection operator in both update laws given by (8) and (9),
and these update laws are obtained as a result of Lyapunov analysis (see next Section 3.3).
Note that we used the Projection operator to keep the estimated values bounded for
theoretical and practical reasons. Specifically, the boundedness of ω̂i(t) is required for the
Linear Matrix Inequalities analysis, and the boundedness of δ̂i(t) is important to keep the
control signal bounded for a practical reason (i.e., the measurement error can yield a large
adaptive input).

Before analyzing the stability of an overall networked multi-agent system, one can
rewrite the agent dynamics given in (1) and (2) in the compact state-space form that is
given by

ẋ(t) =

[
0n×n In×n
0n×n 0n×n

]
︸ ︷︷ ︸

A

x(t) +
[

0n×n
In×n

]
︸ ︷︷ ︸

B

(
(In×n + ∆)v(t) + W

[
0n×n In×n

]︸ ︷︷ ︸
G

x(t)
)

. (10)

Here, x(t) =
[
x1,1(t), . . . , xn,1(t), x1,2(t), . . . , xn,2(t)

]T ∈ R2n is the combined state vector
that consists of both states of all agents, ∆ = diag(δ1, . . . , δn) ∈ Dn×n is the diagonal
matrix that represents the combined unknown part of the control effectiveness values, W =
diag(ω1, . . . , ωn) ∈ Dn×n is the diagonal matrix that represents the combined uncertainties,
and v(t) =

[
v1(t), . . . , vn(t)

]T ∈ Rn is the combined actuator output vector with the
combined actuator dynamics

ẋc(t) = −Mxc(t) + u(t), (11)

v(t) = Mxc(t), (12)

where xc(t) = [xc1(t), · · · , xcn(t)]
T ∈ Rn is the vector that represents combined actuator

states, u(t) =
[
u1(t), . . . , un(t)

]T ∈ Rn is the vector that represents combined distributed
control inputs, and M = diag(m1, . . . , mn) ∈ Dn×n is the diagonal matrix that represents
combined actuator bandwidths.

Similar to the combined system dynamics written in the state-space form as given
in (10), one can write the combined hedging-based reference model system dynamics given
in (5) and (6) for all agents in the state-space form such as

ẋr(t) =

[
0n×n In×n

−F (G) −L(G)− Kd

]
︸ ︷︷ ︸

Ar

xr(t) +
[

0n×n
K

]
︸ ︷︷ ︸

Br

c(t) +
[

0n×n
In×n

]
︸ ︷︷ ︸

B

(
v(t)− u(t)

)︸ ︷︷ ︸
hedging term

, (13)

where xr(t) =
[
xr1,1(t), . . . , xrn,1(t), xr1,2(t), . . . , xrn,2(t)

]T ∈ R2n is the combined reference
model state vector that consists of states of all agents, Kd = diag(kd1 , . . . , kdn) ∈ Dn×n is
the diagonal matrix for the combined damping gains, Ar ∈ R2n×2n is the reference model
state matrix that is Hurwitz, and Br ∈ R2n×n is the reference model input matrix. Since Ar
is Hurwitz, 0 = Ar

TP + PAr
T + I is satisfied with a positive definite matrix P ∈ R2n×2n

+ .
For the designed distributed adaptive control law regarding a single agent in (7), the

combined control input can be written as

u(t) = −
[
F (G) L(G) + Kd

]︸ ︷︷ ︸
K1

x(t) + K︸︷︷︸
K2

c(t)− ∆̂(t)v(t)− Ŵ(t)Gx(t), (14)

where ∆̂(t) = diag
(
δ̂1(t), · · · , δ̂n(t)

)
∈ Dn×n is the diagonal matrix for the combined

estimated unknown control effectiveness and Ŵ(t) = diag(ω̂1(t), · · · , ω̂n(t)) ∈ Dn×n is
the diagonal matrix for the combined uncertainty estimation. K1 ∈ Rn×2n is the control
gain that satisfies Ar ≜ A − BK1 such that Ar is Hurwitz, and K2 ∈ Rn×n is the control
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gain that satisfies Br ≜ BK2. In addition, unknown control effectiveness and uncertainty
estimates are updated according with the combined update laws

˙̂∆(t) = Γ1Proj
[
∆̂(t), BTPx̃(t)vT(t)

]
, (15)

˙̂W(t) = Γ2Proj
[
Ŵ(t), BTPx̃(t)xT(t)GT] (16)

where x̃(t) =
[
x̃1,1(t), . . . , x̃n,1(t), x̃1,2(t), . . . , x̃n,2(t)

]T ∈ R2n is the combined tracking error
vector, Γ1 = diag(γ1,1, . . . , γ1,n) ∈ Dn×n is a positive definite combined learning rate matrix
for the unknown control effectiveness update law, and Γ2 = diag(γ2,1, . . . , γ2,n) ∈ Dn×n is
a positive definite combined learning rate matrix for the uncertainty update law.

Adding to and subtracting “Bu(t)” from the combined system dynamics given in (10)
and inserting the combined distributed adaptive controller designed in (14) yields

ẋ(t) = Ax(t) + B
(
u(t) + ∆v(t) + WGx(t) + v(t)− u(t)

)
= Ax(t) + B

(
− K1x(t) + K2c(t)− ∆̂(t)v(t)− Ŵ(t)Gx(t) + ∆v(t) + WGx(t)

+v(t)− u(t)
)

= A − BK1︸ ︷︷ ︸
Ar

x(t) + BK2︸︷︷︸
Br

c(t)− B∆̃(t)v(t)− BW̃(t)Gx(t) + B
(
v(t)− u(t)

)
. (17)

Here, ∆̃(t) = ∆̂(t)− ∆ ∈ Dn×n is the estimation error of the combined control effectiveness,
and W̃(t) = Ŵ(t)− W ∈ Dn×n is the estimation error for agent-based uncertainty.

In this context, by subtracting the reference model dynamics in (13) from the modified
system dynamics in (17), one can write the combined tracking error dynamics in the form

˙̃x(t) = Arx(t) + Brc(t)− B∆̃(t)v(t)− BW̃(t)Gx(t) + B
(
v(t)− u(t)

)
−
(

Arxr(t) + Brc(t) + B
(
v(t)− u(t)

))
= Ar x̃(t)− B∆̃(t)v(t)− BW̃(t)Gx(t). (18)

Remark 2. In the literature, a classical reference model is stable as long as Ar and Br are selected
appropriately, and an assumption is satisfied when a combined reference state matrix is Hurwitz
(see, Assumption 3.1 of [31]), i.e., in the absence of a hedging-based reference model. In this paper,
we removed the first assumption. However, utilizing a hedging-based reference model brings an
additional stability condition due to using an additional hedging term that consists of a control
input and actuator output, as is the case in [31] for another version of the hedging-based reference
model.

To reveal this condition, one can derive the augmented dynamics for the combined
reference model and the combined actuator states after inserting the distributed adaptive
control law introduced in (14) into the combined reference model in (13) and the combined
actuator dynamics in (11). As a result, we obtain:

ẋr(t) =
(

A + BŴ(t)G
)
xr(t) + B

(
I + ∆̂(t)

)
Mxc(t) + B

(
K1 + Ŵ(t)G

)
x̃(t) (19)

ẋc(t) = −
(
K1 + Ŵ(t)G

)
xr(t)−

(
I + ∆̂(t)

)
Mxc(t)−

(
K1 + Ŵ(t)G

)
x̃(t) + K2c(t). (20)

Then, reorganizing these two equations, one can write
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[
ẋr(t)
ẋc(t)

]
=

[
A + BŴ(t)G B

(
I + ∆̂(t)

)
M

−K1 − Ŵ(t)G −
(

I + ∆̂(t)
)

M

]
︸ ︷︷ ︸

A
(

∆̂(t),Ŵ(t),M
)

[
xr(t)
xc(t)

]

+

[
B
(
K1 + Ŵ(t)G

)
x̃(t)

−
(
K1 + Ŵ(t)G

)
x̃(t) + K2c(t)

]
︸ ︷︷ ︸

ν(·)

, (21)

and, in compact form, (21) follows as

ξ̇(t) = A
(
∆̂(t), Ŵ(t), M

)
ξ(t) + ν(·), (22)

where ξ(t) = [xT
r (t), xT

c (t)]T ∈ R3n stands for the combined state and ν(·) stands for the
perturbation term.

3.3. Theoretical Results

In this section, we investigate the stability of the closed-loop multi-agent system
dynamics controlled by the novel distributed adaptive control law given in (7)–(9) utilizing
the Lyapunov Stability Theory. We also support the stability results by analyzing the
boundedness of the novel hedging-based reference model and actuator dynamics utilizing
a Linear Matrix Inequalities approach.

The following assumption is required for the stability analysis of this paper.

Assumption 1. The matrix given by

A
(
∆̂(t), Ŵ(t), M

)
=

[
A + BŴ(t)G B

(
I + ∆̂(t)

)
M

−K1 − Ŵ(t)G −
(

I + ∆̂(t)
)

M

]
, (23)

is quadratically stable.

This assumption implies that there exists a P ∈ R3n×3n that satisfies

AT(∆̂(t), Ŵ(t), M
)
P + PA

(
∆̂(t), Ŵ(t), M

)
< 0. (24)

Thus, one can use a Linear Matrix Inequalities method to find a positive definite matrix
P that satisfies (24). More specifically, one can define the corners of the hypercube as

A
(
∆̂, Ŵ, M

)
i1,··· ,il =

[
A + BWi1,··· ,ilG B(I + ∆i1,··· ,il)M
−K1 − Wi1,··· ,ilG −(I + ∆i1,··· ,il)M

]
(25)

which is constructed from the permutations of the bounds of Ŵ(t) and ∆̂(t) (i.e., the
minimum and maximum bounds for the Projection operator). Finally, one can show that

AT(∆̂, Ŵ, M
)

i1,··· ,ilP + PA
(
∆̂, Ŵ, M

)
i1,··· ,il < 0 (26)

implies that there exists a positive definite matrix P that also satisfies the inequality given
by (24) (i.e., yields a feasible solution [35]).

Theorem 1. Consider the undirected and connected graph G with n agents. Also, consider
the uncertain multi-agent system in the presence of actuator dynamics, and unknown control
effectiveness with the state dynamics given by (10), the combined hedging-based reference model
state dynamics given by (13), and the combined heterogeneous actuator dynamics given by (11)
and (12). Then, the distributed adaptive control law given by (14) together with update laws
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(15) and (16) guarantees the stability of the triple-boundedness
(
x̃(t), ∆̃(t), W̃(t)

)
of the solution(

xr(t), xc(t)
)

when Assumption 1 holds, and

limt→∞ x̃(t) = 0. (27)

Proof. To prove this theorem, one can select the Lyapunov function candidate given by

V
(
x̃, ∆̃, W̃

)
=

1
2

x̃TPx̃ +
1
2

tr
(
∆̃Γ−1

1 ∆̃T)+ 1
2

tr
(
W̃Γ−1

2 W̃T). (28)

Here, note that, V(0, 0, 0) = 0 and V
(
x̃, ∆̃, W̃

)
> 0 when

(
x̃, ∆̃, W̃

)
̸= (0, 0, 0), and

V
(

x̃, ∆̃, W̃
)

is radially unbounded. Now, taking the derivative of the Lyapunov function
candidate in (28) with respect to time and using the trace operator property tr(aTb) = baT

yields

V̇
(
x̃(t), ∆̃(t), W̃(t)

)
= x̃T(t)P ˙̃x(t) + tr

(
∆̃(t)Γ−1

1
˙̃∆T(t)

)
+ tr

(
W̃(t)Γ−1

2
˙̃WT(t)

)
= x̃T(t)P

(
Ar x̃(t)− B∆̃(t)v(t)− BW̃(t)Gx(t)

)
+tr

(
∆̃(t)Γ−1

1
˙̃∆T(t)

)
+ tr

(
W̃(t)Γ−1

2
˙̃WT(t)

)
= x̃T(t)PAr x̃(t)− x̃T(t)PB∆̃(t)v(t)− x̃T(t)PBW̃(t)Gx(t)

+tr
(
∆̃(t)Γ−1

1
˙̃∆T(t)

)
+ tr

(
W̃(t)Γ−1

2
˙̃WT(t)

)
= −1

2
x̃T(t)x̃(t)− vT(t)∆̃T(t)BTPx̃(t)− xT(t)GTW̃T(t)BTPx̃(t)

+tr
(
∆̃(t)Γ−1

1
˙̃∆T(t)

)
+ tr

(
W̃(t)Γ−1

2
˙̃WT(t)

)
= −1

2
x̃T(t)x̃(t)− tr

(
∆̃(t)v(t)x̃T(t)PB

)
− tr

(
W̃(t)Gx(t)x̃T(t)PB

)
+tr

(
∆̃(t)Γ−1

1
˙̃∆T(t)

)
+ tr

(
W̃(t)Γ−1

2
˙̃WT(t)

)
= −1

2
x̃T(t)x̃(t) + tr

(
∆̃(t)

(
Γ−1

1
˙̃∆T(t)− v(t)x̃T(t)PB

))
+tr

(
W̃(t)

(
Γ−1

2
˙̃WT(t)− Gx(t)x̃T(t)PB

))
= −1

2
x̃T(t)x̃(t) + tr

(
∆̃(t)

(
Γ−1

1
˙̂∆T(t)− v(t)x̃T(t)PB

))
+tr

(
W̃(t)

(
Γ−1

2
˙̂WT(t)− Gx(t)x̃T(t)PB

))
. (29)

Use of the adaptive update laws given in (15) and (16) together with the property of
the Projection operator (see Section 2 for details on the Projection operator property) yields

V̇
(
x̃(t), ∆̃(t), W̃(t)

)
≤ −1

2
x̃T(t)x̃(t) ≤ 0. (30)

Now, from the Lyapunov stability analysis, one can conclude that x̃(t) is bounded.
Note that Assumption 1 holds such that A

(
∆̂(t), Ŵ(t), M

)
is quadratically stable and the

perturbation term ν(·), given in (21), is bounded since x̃(t) is bounded, and the bounded-
ness of Ŵ(t) is satisfied by the Projection operator, which concludes that both xr(t) and
v(t) are bounded. Since both x̃(t) and xr(t) are bounded then x(t) is also bounded. It then
follows that ˙̃x(t) is bounded since all the terms in (18) are bounded, which results in the
boundedness of V̈

(
x̃(t), ∆̃(t), W̃(t)

)
. Finally, by Barbalat’s lemma [36], one can show that

limt→∞ V̇
(
x̃(t), ∆̃(t), W̃(t)

)
= 0, which yields limt→∞ x̃(t) = 0.

The above proof shows the asymptotic convergence of the tracking error between the
networked multi-agent system states and the modified hedging-based reference model states.
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Remark 3. Using higher than second-order systems is possible and increases the size of the compact
tracking error vector x̃(t) and the compact reference model matrix Ar. However, as long as Ar is
Hurwitz, which requires an appropriate selection of compact control gain K1, regardless of the order
of the system, it yields the same stability result. This condition enables obtaining the same stability
result for systems with higher than second-order dynamics that can include acceleration and jerk
when full-state feedback is available. Furthermore, changing the scalar actuator dynamics to high-
order actuator dynamics is also possible. This change, along with increasing the dimension of the
system, will affect the control input given by (7), update laws given by (8) and (9), and the hedging-
based reference model dynamics given by (5) and (6). This will consequently require modifying the
stability condition; thus, the Linear Matrix Inequalities analysis of the A

(
∆̂(t), Ŵ(t), M

)
matrix

is given by (21) in Assumption 1. However, as long as the stability condition holds, that is, the
quadratic stability of the A

(
∆̂(t), Ŵ(t), M

)
is satisfied, the asymptotic stability result will still

hold owing to the hedging-based reference model structure.

4. Illustrative Numerical Example

In this section, we provide the performance results of the novel distributed adaptive
control algorithm for a group of four agents with an undirected and fully connected line
graph; see Figure 2 for the considered graph. In the simulation, for each agent, double-
integrator state dynamics as given by (1) and (2) are selected, which are subject to the
actuator dynamics given in (3) and (4). The hedging-based reference model given by (5)
and (6) is used, where agents are controlled by the distributed adaptive controller given by
(7) along with the adaptive update laws given by (8) and (9).

Specifically, five cases are considered to show the efficacy of the proposed method
step by step with position consensus, position and velocity consensus, position consensus
and damping, position and velocity consensus together with damping, and, finally, a
comparison with the controller in [31] is performed with the same parameters selected
for the results of this paper to show the advantages of the proposed controller on the
recent results. Uncertainties in the actuator effectiveness and uncertainties in agents are
chosen heterogeneously as δ1 = δ3 = −0.1, δ2 = δ4 = −0.2, ω1 = ω3 = 0.5, and
ω2 = ω4 = 0.25. The adaptive learning rates for the update laws are selected identically as
γ1i = γ2i = 10, for all agents. Projection operator bounds are selected as |δ̂1,2,3,4(t)| ≤ 0.5
and |ω̂1,2,3,4(t)| ≤ 1. The selected projection bounds are used in finding the feasible
region of applicable actuator bandwidth limit values to show the quadratic stability of
A
(
∆̂(t), Ŵ(t), M

)
given in (23) and its versions for each case via Linear Matrix Inequalities

(LMI) method. For the LMI analysis, the MATLAB 2021a for parsing LMI’s (namely,
YaLMiP [37]) and the MATLAB tool for solving LMI’s (namely, MOSEK [38]) are used.
For the simulation results of all cases, actuator bandwidths for agents are selected as
m1 = m2 = 20 rad/s and m3 = m4 = 50 rad/s, which are in the feasible sets for all cases
except the first case, where the feasibility is not possible (details below). The user position
command, which is available only for the leader, is selected to be c(t) = 1 for all cases, and
the damping gain for all agents is chosen to be kd1,2,3,4 = 0.5 for cases 3, 4, and 5. The initial
conditions of all states (i.e., system states, hedging-based reference model states, actuator
states, and adaptive estimations) are set to zero.

1* 2 3 4

Figure 2. Illustration of an undirected and connected line graph with four agents where the first
agent is the leader and others are followers. Here, the asterisk (*) denotes that the first agent is the
leader agent.

4.1. Case 1—Position Consensus (Motivational Example)

In this case, we investigate the results for applying the controller given in (7) by
using only position consensus. More specifically, the hedging-based reference model and
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distributed adaptive control algorithm with the same update laws given in (8) and (9) for
the ith agent are given as

ẋri,1(t) = xri,2(t),

ẋri,2(t) = −∑
i∼j

(
xri,1(t)− xrj,1(t)

)
− ki

(
xri,1(t)− c(t)

)
+ vi(t)− ui(t),

ui(t) = −∑
i∼j

(
xi,1(t)− xj,1(t)

)
− ki(xi,1(t)− c(t))− δ̂i(t)vi(t)− ω̂i(t)xi,2(t).

Here, the above reference model dynamics and controller yields change in the analysis of the
quadratic stability of A

(
∆̂(t), Ŵ(t), M

)
, given in (23). Through the result in the controller

gain matrix, for this case, we set K1 as K1 = [F (G), 0n×n]. As seen in Figures 3a,b and 4,
the actual system is able to track the reference model, but tracking the user command is
not possible for agents. This results in an overall system that is unstable for the selected
actuator bandwidths. Oscillatory behavior also can be seen in Figure 5a,b for the estimated
unknown control effectiveness and uncertainty. It is important to note that, here, Projection
bounds are not employed to show that stability is not valid regardless of the adaptation
performance. This is because the quadratic stability condition for the reference model is
not satisfied with the selected actuator bandwidths. Basically, due to the lack of the second
state in the related control gain K1, it is not possible to find any set of feasible actuator
bandwidth after conducting LMI analysis even with the high actuator bandwidth values
(i.e., fast actuators). This is a motivational example to show the importance of the velocity
terms for the control applications of multi-agent systems.

(a) (b)

Figure 3. State trajectories xi(t) for Case 1: (a) position trajectories for each agent and (b) velocity
trajectories for each agent.
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Figure 4. Distributed adaptive control inputs ui(t) and actuator outputs vi(t) for Case 1.
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Figure 5. Adaptive estimates δ̂i(t) and ω̂i(t) for Case 1: (a) adaptive control effectiveness estimates
δ̂i(t) and (b) adaptive uncertainty estimates ω̂i(t).

4.2. Case 2—Position and Velocity Consensus

In this case, we investigate the results of applying the controller given in (7) by using
position consensus without the damping term (i.e., kdi

= 0). Hence, the hedging-based
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reference model dynamics and distributed control algorithm with the same update laws
given in (8) and (9) for the ith agent become

ẋri,1(t) = xri,2(t),

ẋri,2(t) = −∑
i∼j

(
xri,1(t)− xrj,1(t)

)
− ki

(
xri,1(t)− c(t)

)
− ∑

i∼j

(
xri,2(t)− xrj,2(t)

)
+vi(t)− ui(t),

ui(t) = −∑
i∼j

(
xi,1(t)− xj,1(t)

)
− ki(xi,1(t)− c(t))− ∑

i∼j

(
xi,2(t)− xj,2(t)

)
−δ̂i(t)vi(t)− ω̂i(t)xi,2(t).

Here, the above reference model dynamics and controller given in this case yields changes
in the analysis of the quadratic stability of A

(
∆̂(t), Ŵ(t), M

)
given in (23) through the

resulting controller gain matrix that is set as K1 = [F (G), L(G)]. The blue curve represents
the feasible actuator bandwidth limits. From Figures 6–8, we see that, unlike the first case,
agent states’ converge to the desired values and estimated variables converge to constant
values. However, there exists oscillation in the command tracking, and it yields degraded
transient performances. A feasible actuator bandwidth set for this case can be seen in
Figure 9.

(a) (b)

Figure 6. State trajectories xi(t) for Case 2: (a) position trajectories for each agent and (b) velocity
trajectories for each agent.
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Figure 7. Distributed adaptive control inputs ui(t) and actuator outputs vi(t) for Case 2.
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Figure 8. Adaptive estimates δ̂i(t) and ω̂i(t) for Case 2: (a) adaptive control effectiveness estimates
δ̂i(t) and (b) adaptive uncertainty estimates ω̂i(t).
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Figure 9. Actuator bandwidth set that makes A
(
∆̂(t), Ŵ(t), M

)
quadratically stable after LMI analysis

for Case 2. The blue curve represents the bandwidth limits, where the area highlighted with green
refers to the feasible set of actuator bandwidths that provide quadratic stability and red refers to the
unfeasible set.

4.3. Case 3—Position Consensus and Damping

In this case, we investigate the results for applying the controller given in (7) by using
position consensus and damping without the velocity consensus. The hedging-based
reference model dynamics and distributed control algorithm with the same update laws
given in (8) and (9) for the ith agent are written as

ẋri,1(t) = xri,2(t),

ẋri,2(t) = −∑
i∼j

(
xri,1(t)− xrj,1(t)

)
− ki

(
xri,1(t)− c(t)

)
− kdxri,2(t) + vi(t)− ui(t),

ui(t) = −∑
i∼j

(
xi,1(t)− xj,1(t)

)
− ki(xi,1(t)− c(t))− kdxi,2(t)− δ̂i(t)vi(t)− ω̂i(t)xi,2(t).

Similar to the previous two cases, the reference model dynamics and controller given
in this case yields changes in the analysis of the quadratic stability of A

(
∆̂(t), Ŵ(t), M

)
given in (23) through the controller gain matrix that is set as K1 = [F (G), Kd]. Here, the
blue curve, which represents the feasible actuator set limits, shows the feasible bandwidth
set requires higher bandwidth values when compared to Case 2. From Figures 10a,b and 11,
we see that, unlike the first and second cases, the agent states converge to the desired values
in an asymptotic convergence fashion with minimal oscillations and minimized overshoot.
Moreover, estimated unknown control effectiveness and uncertainty reach a constant value
faster (see Figure 12a,b) when compared to the previous two cases. The transient response
of the closed-loop multi-agent system can also be manipulated by adjusting the damping
gain. There is a trade-off between using the velocity consensus term or using the damping
term in addition to the position consensus term. Using velocity consensus allows for
operation with slower actuators, but yields oscillatory transient behavior with overshoot,
while using the damping term instead requires faster actuators, but the transient response
is smoother. A promising solution to overcome this trade-off is using the full controller
given in (7), which is investigated in the next case. The feasible actuator bandwidth set for
this case can be seen in Figure 13.
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Figure 10. State trajectories xi(t) for Case 3: (a) position trajectories for each agent and (b) velocity
trajectories for each agent.
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Figure 11. Distributed adaptive control inputs ui(t) and actuator outputs vi(t) for Case 3.
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Figure 12. Adaptive estimates δ̂i(t) and ω̂i(t) for Case 3: (a) adaptive control effectiveness estimates
δ̂i(t) and (b) adaptive uncertainty estimates ω̂i(t).

Figure 13. Actuator bandwidth set that makes A
(
∆̂(t), Ŵ(t), M

)
quadratically stable after LMI

analysis for Case 3. The blue curve represents the bandwidth limits, where the area highlighted with
green refers to the feasible set of actuator bandwidths that provide quadratic stability, and red refers
to the unfeasible set.

4.4. Case 4—Position, Velocity Consensus, and Damping (Main Result)

In this case, we utilize the hedging-based reference model given in (5) and (6) and
the distributed control algorithm provided in (7) with the same update laws given in (8)
and (9). By using these dynamics and controller yields A

(
∆̂(t), Ŵ(t), M

)
given in (23)

through the controller gain matrix that is as given in (14), K1 = [F (G), L(G) + Kd]. The
blue curve, which represents the feasible actuator set limits, shows the bandwidth values
are less than those in any other case. This provides a great advantage since it enables the
use of actuators with much lower bandwidths or, in other words, actuators with higher
time constants. From Figures 14–16, we see that the transient response is as desired and can
be modified by using different damping gains. Since this controller provides a satisfactory
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transient response and the largest set of feasible actuators, it is superior to the other cases.
The feasible actuator bandwidth set for this case can be seen in Figure 17.
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Figure 14. State trajectories xi(t) for Case 4: (a) position trajectories for each agent and (b) velocity
trajectories for each agent.
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Figure 15. Distributed adaptive control inputs ui(t) and actuator outputs vi(t) for Case 4.
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Figure 16. Adaptive estimates δ̂i(t) and ω̂i(t) for Case 4: (a) adaptive control effectiveness estimates
δ̂i(t) and (b) adaptive uncertainty estimates ω̂i(t).

Figure 17. Actuator bandwidth set that makes A
(
∆̂(t), Ŵ(t), M

)
quadratically stable after LMI

analysis for Case 4. The blue curve represents the bandwidth limits, where the area highlighted with
green refers to the feasible set of actuator bandwidths that provide quadratic stability, and red refers
to the unfeasible set.

In the light of different case results, we can compare the overall numerical results of
applying distinct distributed control algorithms to the multi-agent system with system
anomalies. As a result, one can first recognize that trying to control a second-order system
by using only position consensus without velocity consensus and damping can yield
unstable results. However, adding velocity consensus yields asymptotic convergence but
does not cancel out the oscillation, which is not a desired transient response for most
systems. The solution for this issue is adding a damping term that allows us to obtain a
smoother transient response with less or no overshoot, depending on the magnitude of
the damping gain. However, increasing the damping gain beyond the optimal value can
result in a sluggish system response. Furthermore, adding only damping and not velocity
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consensus still yields non-oscillatory behavior, and the feasible actuator bandwidth limit
increases as seen in Figures 9 and 13. Using all of these terms (position consensus, velocity
consensus, and damping) together yields satisfactory transient results that offer asymptotic
convergence with minimal oscillation and also the largest feasible actuation bandwidth set.

4.5. Case 5—Comparison with the Results in [31]

As a final case, we compare the performance of the proposed distributed adaptive
controller with the most recent controller developed in [31] in the context of a multi-
agent system with system anomalies. Actuator bandwidth and uncertainty values are
selected identically (i.e., m1 = m2 = 20 rad/s, m3 = m4 = 50 rad/s, ω1 = ω3 = 0.5, and
ω2 = ω4 = 0.25), and, since [31] does not consider unknown control effectiveness, for
better comparison, it is assumed that control effectiveness is fully known (i.e., δ1,2,3,4 = 0)
for both simulations. Specifically, in [31], the designed control algorithm requires using
the integral state to update the control input. As mentioned in Section 1, this yields a poor
transient response, delay, and non-robust behavior.

For the simulation of [31], the reference model matrices are selected to be
Ar = [0, 1;−0.5,−1] and Br = [0, 0.5]T, which results in the same K1 and K2 values
as selected in Case 4. The adaptive learning rates for update laws are selected to be the
same as for the results of this paper, which are γ1i = γ2i = 10. Also, the damping gain for
all agents chosen as kd1,2,3,4 = 0.5, which are, again, the same damping gains selected for the
results of this paper. The initial conditions on the system/actuator states and uncertainty
estimations are set to zero. Figures 18–20 show the resulting simulation comparison.
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Figure 18. Position trajectories comparison for Case 5: (a) position trajectories for our controller and
(b) position trajectories for controller in [31].
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Figure 19. Velocity trajectories comparison for Case 5: (a) velocity trajectories for our controller and
(b) velocity trajectories for controller in [31].
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Figure 20. Distributed adaptive control inputs ui(t) and actuator outputs vi(t) comparison for Case 5:
(a) distributed adaptive control inputs ui(t) and actuator outputs vi(t) and (b) distributed adaptive
control inputs ui(t) and actuator outputs vi(t) in [31].

It is clear that both algorithms converge to the given command. However, the dis-
tributed adaptive controller proposed in this paper outperforms the other controller. The
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main reason behind this is the structure of the control algorithm, where we directly use
consensus errors without any integration. In [31], the researchers utilize an integrator-based
control law that consists of position and velocity consensus. This integrator structure yields
a virtual phase lag between the actual consensus errors and the control input driving the
system. This integrator results in oscillation in the transient response. It is possible to see
this effect clearly in Figure 19 as the first peak commands are produced within four seconds
in our controller while it takes around six seconds for the other controller.

5. Conclusions

In this paper, to obtain a fast update/response and improved transient performance,
we designed a novel distributed adaptive control law. We showed that one can drive a set
of agents with double-integrator dynamics in a leader–follower fashion in the presence
of uncertainty, unknown control effectiveness, and actuator dynamics. For the results
of this paper, we introduced a novel hedging-based reference model with second-order
dynamics. We showed that the proposed distributed adaptive controller tracks a novel
hedging-based reference model asymptotically. Specifically, we showed the stability of
the overall closed-loop multi-agent system by utilizing Lyapunov Stability Theory. We
also analyzed an additional stability condition that is a result of using the hedging-based
reference model by using a Linear Matrix Inequalities method to show the boundedness of
the reference model and actuator states. Finally, we illustrated the efficacy of the distributed
adaptive controller and performance results with a simulation based on an undirected and
connected line graph in five cases. One can consider applying the theoretical solution to an
experimental background as a future research direction.
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