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Abstract: Traditional methods for water-level measurement usually employ permanent structures,
such as a scale built into the water system, which is costly and laborious and can wash away with
water. This research proposes a low-cost, automatic water-level estimator that can appraise the level
without disturbing water flow or affecting the environment. The estimator was developed for urban
areas of a volcanic island water channel, using machine learning to evaluate images captured by a
low-cost remote monitoring system. For this purpose, images from over one year were collected. For
better performance, captured images were processed by converting them to a proposed color space,
named HLE, composed of hue, lightness, and edge. Multiple residual neural network architectures
were examined. The best-performing model was ResNeXt, which achieved a mean absolute error of
1.14 cm using squeeze and excitation and data augmentation. An explainability analysis was carried
out for transparency and a visual explanation. In addition, models were developed to predict water
levels. Three models successfully forecasted the subsequent water levels for 10, 60, and 120 min, with
mean absolute errors of 1.76 cm, 2.09 cm, and 2.34 cm, respectively. The models could follow slow
and fast transitions, leading to a potential flooding risk-assessment mechanism.

Keywords: water-level measurement; image processing; deep learning; water stream channel;
volcanic islands

1. Introduction

As urban development and expansion progress, so does the need for new land to
accommodate the urban expansion, leading the infrastructures to appear in locations where
natural hazards can occur [1]. Such threats include flash floods, where low-lying areas
experience rapid flooding. These usually occur during high-intensity rainfall and provide
little warning time to the population. Thus, these events are considered one of the main
challenges for regional water security, especially for rural settlements in mountainous areas,
since gravitational energy is provided to the water flow by steep slopes, potentially leading
to substantial channel overflow downstream [2]. Prime examples of such locations are
volcanic islands, where the rugged relief is associated with steep water channels that are
frequently narrow and deep. Furthermore, these channels can carry substantial amounts of
organic matter and sediment, increasing the downstream flooding risk [3].

Water flow monitoring is essential in numerous applications where the functional area
ranges from small water streams to large rivers. The most common techniques include
the use of contact-based sensors, including pressure or floating sensors, and contactless
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sensors, such as ultrasonic water meters and image-based methods [4]. The first approach
is particularly problematic when the water current is intense, as it can damage or carry
away the sensors. Furthermore, these sensors usually require calibrations to be performed
frequently to maintain the measurement’s accuracy [5].

Regarding the contactless methods, although ultrasonic sensors are easy to install,
they have been shown to be problematic when examining turbulent water [6], which
usually happens during flooding events in volcanic islands’ water channels [3]. As a result,
image-based sensors were found to be suitable for monitoring the water channels in these
locations, presenting a low installation and maintenance cost [7]. However, satellite images
lack enough spatial and temporal resolutions, particularly for narrow water streams [8],
while the use of unmanned vehicles is likely not to be suitable for small urban areas [9].
Furthermore, an expert is needed to steer the vehicle, increasing usage costs. Hence, a
fixed-location camera is likely the best solution for continuous water-level assessments
based on image analysis [7].

Developing a hand-tailored system that can accommodate all characteristics of the
water channel is labor-intensive and prone to environmental changes [7]. Hence, there is a
need for an algorithm based on a machine learning approach that leads to models that learn
the patterns directly from the data. Although the machine learning approaches previously
presented have a relevant performance, they are likely unsuitable for monitoring the water
levels in volcanic islands’ water channels in urban areas. In these channels, vegetation is
commonly present and continuously changes, continuously growing until the next large
water volume removes it, making the segmentation-based approach unfeasible. As a result,
there is a need for an algorithm that forecasts the water level directly from the images,
training the model on multiple conditions so that it learns to ignore the vegetation and
focus only on the water level. Such an algorithm can follow the approach presented by Xu
et al. [10] but without using a rule in the image. This leads to an automated model that
has not been previously described in the literature and comprises the main novelty of this
work. For this purpose, a dataset was created for this work and made publicly available,
composed of images collected (and annotated) from a water channel in Funchal, Madeira
Island, Portugal.

Employing a staff gauge or a ruler as a scale captured by a camera can lead to a low
estimation error. However, water ripples, traces of precipitation in the image, and debris
on the water’s surface can produce misperceptions during heavy rain [7]. Furthermore,
construction can be unfeasible and lead to the destruction of the environment [11]. Follow-
ing this line of thought, the main goal of this work is to propose an automatic noncontract
water-level measurement method suitable for volcanic islands’ water channels in urban
areas without requiring a visual scale. Such a method can be used further for emitting
different alarms according to the level’s assessment. For this purpose, a fixed-camera-based
methodology was employed. This article comprises five sections, presenting a state-of-the-
art overview in the second section, materials and methods in the third section, while the
fourth section shows and discusses the results. The last section concludes the work.

2. State-of-the-Art Overview

A common practice in state-of-the-art works that follow an image-based approach
uses a staff gauge to support measurements. Chen et al. [12] and Guo et al. [13] employed
image-recognition algorithms to identify the characters on the staff gauge image, achieving
a mean error (ME) of 0.9 cm when predicting the water level. A similar approach was
used by Zhang et al. [14], employing an image analysis algorithm to examine images from
an infrared camera, achieving an error of 1 cm. Furthermore, with a similar concept, an
error of 1 cm was reported by Zhang et al. [15] when using a developed image-recognition
algorithm to examine a staff gauge, which can be reduced to 1 mm when using a proposed
tunning strategy.

A ruler was used by Hies et al. [16] to identify the water level using the Hough
transform and an edge detection algorithm. Lin et al. [17] also used this transform in
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a similar approach, achieving an average error of 1 cm. A different method based on
machine learning was proposed by Xu et al. [10] to identify the water level by examining
the characters on a staff gauge, using a Convolutional Neural Network (CNN) to evaluate
images in the Hue, Saturation, and Value (HSV) color space. This approach has the
advantage of not relying on tailored algorithms for a specific location, using data to tune
the model automatically. A CNN was also used by Pan et al. [18] to determine the water
level in a rule, attaining an average error of around 1 cm. An analogous approach was used
by Qiao et al. [19] with a similar performance.

A good performance was attained in the state-of-the-art method by employing a
staff gauge or a ruler as a scale. Such scale limits the applicability of these methods for
narrow urban water channels, especially during heavy rain [7]. Moreover, the illumination
condition on these channels is usually problematic, having substantially different intensities
during day and night operations. This leads several state-of-the-art works to discard images
with insufficient brightness or low contrast [7]. Therefore, there is a need for methodologies
that do not require such scales. These methods can rely on examining the image patterns
that allow for discriminating the water region, as carried out by Ran et al. [20], achieving a
Mean Squared Error (MSE) of about 4 cm. Stumpf et al. [21] also evaluated specific patterns
in an installation site to determine the water level and reported a Mean Absolute Percentage
Error (MAPE) of 9%.

Nevertheless, the methods that do not employ a rule commonly rely on edge detection
methods. Udomsiri and Iwahashi [22] proposed an edge detection methodology to identify
horizontal lines associated with water levels. A more complex approach was proposed by
Ridolfi and Manciola [23] using the Canny edge detection algorithm to determine the water
line and then assess the level by detecting reference points, reporting a Mean Absolute
Error (MAE) of around 5 cm. A similar concept was used by Eltner et al. [24] with an error
of about 2 cm. Young et al. [25] also used edge detection, but evaluated the clear edge of
rocks to determine the water margin, reporting an average error of about 3 cm. Azevedo
and Brás [7] used edge detection to identify a region of interest to calibrate an image and
then employed a gradient-based analysis to estimate the water level in volcanic islands’
water channels.

Similar to the approaches based on a scale, the use of tailored algorithms for a specific
location limits the applicability of the previously examined methods for other sites. On
the other hand, using a machine learning approach leads to models that learn the patterns
directly from the data, developing algorithms that are likely more resilient to environmental
changes, such as [26]: calm and turbulent water flow; clear and opaque water (during floods
with sediments); the presence of shadows that vary during the year; high- and low-contrast
images; and clear and foggy days. Furthermore, these models can be transfer-learned to
other locations, even if a retraining procedure is required. A machine learning approach
with images fed to a CNN to perform water segmentation was proposed by Eltner et al. [26],
comparing the assessed water contour with a reconstructed model to determine the water
level, reporting an error that ranged from around 1 to 4 cm. A similar approach was also
employed by Vandaele et al. [27].

3. Materials and Methods

The selected location for the study was in an urban area’s water channel on a vol-
canic island, continuously capturing images with a low-cost commercial device. These
images were then annotated regarding the water level. Following a similar approach to Xu
et al.’s [10], the color space of the images was initially changed, although Hue, Saturation,
and Lightness (HSL) were used instead of HSV. However, it was observed that the satura-
tion component was problematic for the different illumination conditions during the day
and night operations. Hence, this component was replaced by edge detection, performed
using the Canny edge detection algorithm, which created the HLE color space proposed in
this work. This edge analysis allowed us to highlight the locations the model should ignore
and further stress the water line (that must be identified by the model).
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The proposed regression model applied transfer learning to a Residual Neural Net-
work (ResNet) based on a CNN architecture. This architecture was selected as it was
recommended in the state-of-the-art work as a suitable choice to perform image regression
with stable results [28]. By using transfer learning, it is possible to employ deep learning
models while circumventing the need for large data volumes. The concept was based on
the fact that the model was already trained on a similar task, for which annotated data
were plentiful; thus, it should be able to handle a new, similar task. Even if a retraining pro-
cedure is necessary, it should require far less data than a cold start [29]. Lastly, a time-based
model was developed to model the water channel, allowing us to forecast the future water
level based on the previously assessed levels. Hence, a potential flooding risk-assessment
mechanism was proposed in this work.

3.1. Study Site

The monitoring location was in Funchal, Madeira Island, Portugal, which is part of
an archipelago comprising two habited islands and two groups of inhabited islands on
the northwest coast of Africa, featuring a sub-tropical climate. Funchal is the capital of the
archipelago, located on the largest island (Madeira Island) with an area of 742 km2 and an
average altitude of 646 m. Approximately 8% of the area is below 100 m, while the highest
peak is 1862 m. Furthermore, the island’s average slope is 56%, having accentuated relief
with deep valleys [30].

The water channel known as Ribeira de Santa Luzia was selected since it is one of the
three main water channels of the city that was significantly damaged and inundated during
the last flood in the region. This channel’s watershed has an area of 15.6 km2, a maximum
altitude of 1785 m (minimum of 0 m), and an average slope of 27◦ [31]. Although the
yearly precipitation in Funchal is lower than 800 mm, this value increases with the altitude,
reaching a value higher than 2800 mm at the highest points [32]. This high precipitation
combined with island geomorphology and geology makes the city of Funchal a prime
candidate for flooding with the possibility of having large debris flows.

The examination site is located at a latitude of 32.654702192363175 and longitude of
−16.914266616679093. At this site, the walls surrounding the channel are approximately
9 m tall, and the channel width is around 11 m. This location is indicated in Figure 1, where
the channel’s watershed is presented.
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Figure 1. Representation of the examined channel’s watershed, highlighting the Funchal area and
pointing to the examination site.

3.2. Hardware Specifications

The developed platform for image capturing was composed of a Pi NoIR V1 camera
connected to a Raspberry Pi 3 to control the camera, process the photos, and send them to
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the server where the regression model performed the analysis. This camera was chosen
since it can operate in infrared mode, allowing it to capture images during the day and
night. It was proven suitable for continuously examining water channels in urban areas [7].
This setup was low cost (less than USD 100) and was successfully used by numerous other
works requiring remote image acquisition [33].

As the power consumption of the developed platform was low, it was possible to
feed the device using an 80 W photovoltaic panel, wirelessly transmitting the images to a
router, which then transferred the pictures to the server. The image resolution was defined
to be the standard 1280 × 720 pixels, thus having a balance between the resolution and
the bandwidth required to transfer images (that should not be excessive to allow remote
monitoring in low-coverage areas). The system can capture three images per second.

3.3. Data Collection

The developed platform was installed under a balcony of one of the buildings sur-
rounding the monitored water channel, protecting the camera from rain and direct sunlight.
The camera was at a distance of 23.7 m from the wall used to measure the water level. A
cutting section representing the site installation is shown in Figure 2. The collected images
monitored the channel without capturing the information from the public streets.
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A database was created by capturing images from the water channel during the entire
year (from January to December) of 2020. The hardware could capture an image with a
periodicity of 1 min. Thus, a total of 527,040 images could be collected. However, due
to power constraints and taking into account the usual slow variation in the water level,
the images were collected over a 10 min period. This also aligns with the Portuguese
Institute of the Sea and the Atmosphere weather-based practices in Madeira [34]. Therefore,
52,704 images were collected; however, due to internet-based problems and image corrup-
tion, the total amount of usable pictures was 49,918. To attain a better resolution in the
water-level changes, during the rapid variations in the levels, the periodicity during these
events was reduced to 1 min. A total of 5003 images were additionally collected, leading to
a total number of captured images of 57,707, of which 54,921 were usable.

The water-level annotation was carried out using a combination of a semi-automatic
technique developed by [7] with the subsequent manual supervision of all images to correct
the errors. The ground truth for the annotation was based on preliminary measurements
from a ruler, examining the highlighted location presented in Figure 3. However, the
annotation procedure was laborious and time-consuming. Hence, it was unfeasible to
annotate all the images. Thus, from all the captured images over the year, 11,495 were
selected for the dataset, not including most photos where the water level was below 10 cm,
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the most usual value during the year, while keeping most of the samples above this level.
The rationale for this dataset was to make the models focus on the highest water levels as
they were the most relevant for flooding.
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Figure 3. An example of a photo from the examined location where the location used to define the
water level is highlighted, showing the water level at 7 cm.

The data distribution is shown in Figure 4. This dataset was made publicly avail-
able with the Digital Object Identifier (DOI) at Mendonça, Fábio (2023), “Madeira Water
Channel”, Mendeley Data, V2, DOI: 10.17632/bkn36h64ts.2, allowing other researchers to
further confirm the results attained by this work and improve them. Statistical measures of
the dataset water level are presented in Table 1, including the specifications for the day and
nighttime, adjusted daily for Funchal, and including the daylight-saving time.
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Table 1. Statistical measures of the dataset water samples annotated in cm.

Dataset
Statistical Metrics

Mean Standard Deviation Median Variance

Complete (11,495 samples) 35.12 26.07 30.00 679.85
During the day (5642 samples) 33.67 24.12 30.00 581.86
During the night (5853 samples) 36.52 27.75 34.00 770.15
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3.4. Image Processing

Image normalization, using the Min–Max method [35], was applied to the stored
images to increase the image contrast, assisting the regression model in extracting features
from the image. Following a similar approach used by Xu et al. [10], the color space of
the images was changed to HSL. This color space presents immunity to alterations in the
illumination [36], which is required for the monitored location where the illumination
varies during the day. Additionally, it was observed that the saturation component was not
relevant for the examined images and even clouded the pictures during the night operation.
Therefore, this component was replaced by edge detection, which was used since it was
recommended by state-of-the-art works to stress the water line. However, in this work,
it was also used to emphasize elements that the regression model should ignore, such as
vegetation, turbulent water, and debris on the water’s surface. Therefore, the HLE color
space was produced. The Canny algorithm [37] was used for edge detection as it was
reported to be suitable for water-level detection in state-of-the-art works [7].

The image was cropped to accommodate the maximum water level of the dataset
(120 cm) and to match the regression model’s requirements. Therefore, the pictures were
cropped at 256 pixels in height (counting from the bottom). This method was preferred to
squeeze vertically since it could maintain the vertical resolution of the images, affecting the
minimum pixel height (for the employed image resolution, it was estimated to range from
1.93 to 1.8 cm when the water level rose from 7 to 120 cm, respectively). This approach
also has the advantage of deleting unnecessary information about the wall patterns that
can confuse the model. Lastly, the image was squeezed horizontally to 256 pixels in width,
matching the dimensions the employed regression model needed. The squeezing operation
was used since the horizontal resolution was less relevant than keeping the complete
(uncropped) water line in the image. Finally, the image was cropped around the center to
the final size of 224 × 224 pixels.

Figure 5 depicts four examples of processed images, each at a different time during
the day and with varying water levels. It is possible to observe in (a) a picture of a daytime
operation in a turbulent stream with a water level above average. Furthermore, the water
ripples (that should be ignored) and the water line (that must be detected) are highlighted
by edge detection. It is also known that removing the saturation component does not
substantially alter the image patterns, maintaining the most relevant information for the
model. A similar conclusion can be reached for (b), where the different colors in the original
image that are generated in the evening twilight are noticeable, in this case, with a quiet
water stream with a level below the average and vegetation highlighted by edge detection.
Lastly, (c) depicts a stream with the lowest water level at night, where the water channel is
illuminated by streetlamps (mounted on the water channel wall), with vegetation and water
level visibly marked by edge detection. In this last image, the problem of using saturation
is noticeable, as it clouds the image. The objective of edge detection is to emphasize
vegetation and water ripples that should be ignored, while simultaneously delineating the
water line (requiring detection). We anticipate that this approach will enhance the model’s
understanding of image characteristics.

3.5. Model for Water-Level Estimation

Since the problem required a continuous output of the water-level estimation, a
regression-based model was thus needed. The developed regression model was based on
ResNet architecture, recommended in the state of the art for regression with images [28].
Therefore, multiple variants of this architecture were examined to assess those more suitable
for this work. Particularly, versions with 50, 101, and 152 layers were evaluated, using
version 1.5 as it was shown to outperform version 1, and the model was initialized following
the approach defined by He et al. [38]. The standard version with 18 layers was also studied.
Performing depth scaling (increasing the number of layers) was expected to improve the
performance. However, when using deeper architectures, gradient-related problems occur,
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causing the performance gain to become marginal [39]. Hence, it is likely that using even
deeper ResNet architectures will not justify the performance-to-complexity ratio.
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Figure 6 shows the employed ResNet-101 architecture, where we introduced the last
fully connected (dense) layer to produce the regression output. In the first section, denoted
as the input stream, a 7 × 7 convolution with 64 kernels (feature maps), a stride of 2, and a
padding of 3, allowed reducing the input image size from 224 × 224 to 112 × 112 pixels
while the channel depth increased from 3 to 64. The convolution layer output was fur-
ther reduced to 56 × 56 pixels by a subsampling layer performing a 3 × 3 maximum
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pooling operation with a stride of 2. A sequence of four stages continued to perform this
process of lowering the height and width while increasing the depth using bottleneck
architecture. Each stage was composed of a residual block series, containing the bottleneck
that, in turn, was a sequence of three convolution layers performing 1 × 1, 3 × 3, and
1 × 1 convolution operations.
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The third convolution layer had four-times the number of kernels from the previous
two, while the second convolution layer reduced to half the image height and width. This
allowed us first to reduce and then expand the depth, making it possible to increase the num-
ber of kernels while reducing the computational cost of calculating the 3 × 3 convolution.
The number of kernels was chosen so that it doubled per stage, starting with 64, 64, and
256 (in the first stage) and finishing with 512, 512, and 2048 (in the fourth stage). ResNet-50
and ResNet-152 have a similar architecture to ResNet-101. However, in the third stage,
instead of 22 identity blocks, the first had 5, while the second had 35. Furthermore, in the
second stage, ResNet-152 had 7 identity blocks instead of 3. As a result, the numbers of
blocks in the four stages were 3, 4, 6, and 3 for ResNet-50; 3, 4, 23, and 3 for ResNet-101;
and 3, 8, 36, and 3 for ResNet-152.

In each residual block, the first two convolution layers of the bottleneck were followed
by batch normalization and activation. The first biased the residual blocks toward the
identity function, allowing the training of deeper networks [40]. The second introduced a
nonlinearity, and the standard Rectified Linear Unit (ReLU) was used. However, the last
convolution layer was only followed by batch normalization, and its output was combined
with the shortcut (skip) connection. This outcome was then passed by an activation,
resulting in the residual block output. This shortcut connection allows identity mapping,
which is why deep residual neural networks can increase the number of layers without
reducing their performance due to gradient-related problems during training [41]. These
residual blocks are denoted as identity blocks. However, when there is image reduction,
the shortcut connection needs to be adjusted so that it can be combined with the bottleneck
output. Therefore, a 1 × 1 convolution followed by batch normalization is used to perform
a linearly transformed shortcut connection, using the same number of kernels as the last
convolution layer of the bottleneck. These blocks are denoted as convolution blocks.

The first stage receives the input stream’s output and is composed of a convolution
block followed by two identity blocks. The second stage starts with a convolution block;
however, the bottleneck’s middle convolution layer and the shortcut convolution layer
employ a stride of 2 to reduce the image size. Later, three identity blocks are used. The
two subsequent stages are similar, but use five and two identity blocks, respectively.
Therefore, the ResNet architecture allows doubling the number of channels (channel width)
while reducing the image size by half from one stage to another.

ResNet-18 also has four stages with a concept similar to the other examined architec-
tures. However, each stage comprises two blocks; the first is a convolution block followed
by an identity block. Furthermore, the bottleneck comprises two convolution layers, both
performing 3 × 3 convolution operations. Batch normalization is used after the convolution
layers, and activation is employed after the first batch normalization. In the same way as
the other examined architectures, the second batch normalization output is combined with
the shortcut connection, whose output is then passed by an activation, creating the residual
block output. The numbers of kernels used in the convolution layers of the bottleneck were
64, 128, 256, and 512 for stages one to four, respectively [38]. As a result, the output shape
of all examined ResNet stages and output layer were the same, being 56 × 56, 28 × 28,
14 × 14, 7 × 7, and 1 × 1.

In addition to the standard ResNet architecture, three state-of-the-art advances were
examined, which could lead to a better performance [42]. The first, named ResNeXt, used
a split–transform–merge strategy and was shown to outperform other state-of-the-art
architectures, such as standard ResNet, Inception-v3, and Inception-ResNet-v2. ResNeXt
uses multiple filters that operate at the same level in a multi-branch architecture. Following
Xie et al. [42], two architectures were examined, with a cardinality (number of branches) of
32; the first is based on ResNet-50, while the second is based on ResNet-101. Therefore, the
input channels were divided into 32 groups that fed the parallel stacking of convolution
operations whose outputs were then combined. It was observed that increasing cardinality
could lead to better results than having a deeper or wider architecture [42]. Furthermore,
two standard values for the bottleneck width (4 and 8) were also examined.
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The second examined alteration was Squeeze and Excitation (SE), which adds an atten-
tion module to the architecture that can lead to significant performance improvements [43].
This attention mechanism allows the recalibration of channel-wise features adaptively by
modeling the channels’ interdependencies. First, it performs a squeezing operation to
produce a channel descriptor, followed by excitation, which generates the per-channel mod-
ulation weights. Particularly, the squeezing operation performs a global average pooling
to pool the most informative feature that will act as a channel descriptor since the output
shape is 1 × 1 × number of channels. Subsequently, two fully connected layers introduce
parameterization allowing the model to learn the nonlinear interaction between channels.
The first fully connected layer uses ReLU as an activation function and reduces the output
channel complexity (the number of neurons is given by the number of channels/ratio,
using 16 as the default value for ratio), while the second fully connected layer uses sigmoid
as an activation function, restoring the original complexity (the number of neurons is equal
to the number of channels) and allowing each channel to be emphasized. The created
output is then fed to the excitation part, which weighs each feature map provided to the
squeeze-and-excitation block.

The last examined alteration was the Wide ResNet (W_ResNet), as width scaling
was reported to be a capable alternative to depth scaling [39]. Particularly, the examined
W_ResNet only modified the number of channels in the 3 × 3 convolutions by doubling
its value.

All code was developed in Python 3 using PyTorch version 1. Transfer learning was
used to bypass the need for large data volumes when developing deep learning models [29].
In this work, the examined models were pre-trained in the ImageNet-1K database, which
comprised 1,281,167 training images and 1000 categories [44].

The pre-trained models were retrained in the developed database by adding a fully
connected layer with one unit as the output layer to produce the regression output. Adap-
tive Moment (ADAM) [45] estimation was used for the stochastic optimization of the
retraining procedure with a learning rate of 0.0001. Early stopping was employed to avoid
overfitting, stopping the training procedure (before the limit of 200 epochs) if a succession
of 10 epochs occurred where the improvement in the tracked metric was less than 0.01.

3.6. Time-Based Prediction Model

With the goal of forecasting possible flood events, a Nonlinear Autoregressive Exoge-
nous (NARX) model was developed to forecast the water level in the future. It is based
on a recurrent neural network with feedback connections and has fast convergence with
good generalization [46,47]. Moreover, this model was previously shown to be suitable for
forecasting complex time series regarding flooding events [48]. Therefore, this model was
used in the time-based analysis.

A standard NARX architecture was used, considering a network with two layers and
100 hidden units. Additionally, a lag of 12 inputs was used, denoting a delay of 120 min
(10 min per sample). The processing flow used for time-based prediction is presented in
Figure 7, where it is possible to observe that the ResNet model examines the figures to make
the water-level estimations that influence the NARX to make future forecasts. Three NARX
models were developed to forecast the water levels in the following 10 min, 60, and 120 min.
Such predictions can then be potentially used for flood risk assessment.

It is imperative to consider that various segments of the water channel can exhibit
different water levels during flooding, owing to variations in channel characteristics and
population density along its length. Consequently, the decision was made to develop a
water-level estimation model rather than a flood/non-flood classification system. Each fore-
casting interval served a distinct purpose: the 10 min forecast offered immediate insights
crucial for prompt responses during sudden situations, while the 60 min forecast provided
a medium-term perspective, aiding in comprehensive planning and resource allocation.
Extending the lead time, the 120 min forecast facilitated the improved organization of
evacuation efforts and the preparation of shelters. Given Madeira’s unique topography and
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susceptibility to rapid environmental shifts, shorter forecasting intervals hold particular
significance and can be more pertinent than longer ones in effectively addressing dynamic
conditions. Additionally, it is essential to evaluate the readiness of evacuation routes [49],
which are likely as relevant as the warning period itself.
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3.7. Performance Metrics

Standard regression performance metrics were used to assess the developed models’
performance and allow a comparison with state-of-the-art works. Particularly, the MAE,
MAPE, MSE, ME, and Root Mean Squared Error (RMSE) were used [50]. Furthermore,
the MSE was used for both tracking the early stopping procedure and as the loss function
during training. The performance-to-complexity ratio was also examined to determine if it
was worth proceeding toward more complex models (models with more parameters). This
ratio was defined as (1 − MAPE)/number of parameters.

4. Results and Discussion

Data were randomly divided into two for all tests, keeping half of the data for training
and the other half for testing. Furthermore, 25% of the training dataset was held to produce
a validation dataset (thus, 12.5% of the total data was used for validation), and the batch
size was set to 8. The implemented pipeline is presented in Figure 8. First, a database was
created from the acquired images, which was then used to assess the performance of the
examined regression models. The best-performing model was then further investigated by
carrying out an explainability analysis. Lastly, the water channel was modeled to develop
a model capable of forecasting the future by knowing the current and previous water levels
in the examination site.

4.1. Water-Level Estimation

The performance of the four standard ResNet models (ResNet-18, ResNet-50, ResNet-
101, and ResNet-152) was initially assessed, and Figure 9 presents the performance metrics
of the examined architectures. The continuous reduction in error metrics is notorious when
depth scaling is performed from ResNet-18 to ResNet-152. However, as depicted in Figure 9,
the performance-to-complexity ratio continuously reduces, with ResNet-152 attaining the
worst result, suggesting a saturation in the depth scaling. Hence a compromise between
performance and complexity was considered, focusing the subsequent analysis on the 50
and 101 architectures.
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test dataset.

It was observed that using W_ResNet substantially increased the performance com-
pared to standard ResNet, although the performance-to-complexity ratio was lower. Fur-
thermore, ResNeXt-101 attained a better performance (lower error metrics) with a better
performance-to-complexity ratio than W_ResNet-101. Moreover, a bottleneck width of
4 or 8 yielded the same performance; thus, ResNeXt-101_32-4 is preferable (it has a bet-
ter performance-to-complexity ratio). Therefore, the SE attention module was applied
to the best-performing model (ResNeXt-101_32-4), achieving a better performance while
improving the performance-to-complexity ratio.

Finally, data augmentation was applied to the training data by doubling their size,
and the best-performing model was trained on these new data. Notably, each sample of
the training dataset was copied, and then the augmentation procedure was applied to the
copied image. This way, both original and augmented images were presented to the model
during training. Two augmentation procedures were examined. The first was using the
standard AutoAugment from ImageNet (the resulting performance was identified with aug
at the end) [51], which applies numerous procedures to modify the images substantially.
However, the examined problem was a water channel monitored by a camera in a fixed
location, which mostly suffered through time from slight rotations and shifts in the images,
and from the variation in the light intensity (from day to nighttime over the year). Therefore,
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the second examined augmentation procedure was proposed in this work by performing
minor augmentations that stressed the mentioned effects. Specifically, each copied image
had a 50% probability of being solarized; then, random color jitter was applied to the
brightness, contrast, saturation, and hue. Finally, the images were randomly rotated in the
−20◦ to 20◦ range. The resulting performance was identified with s_aug at the end.

It was observed that both data augmentation procedures further decreased the error
while keeping the same performance-to-complexity ratio. In addition, the proposed aug-
mentation method led to the best-performing model, with an MAE of 1.14 cm. Furthermore,
when checking the day and night images, it was observed that the MAE was slightly higher
in the day images (1.20 cm) than in the night ones (1.09 cm). The prediction errors are
shown in Figure 10, where the error line points to one outliner sample. It is also noticeable
that the tendency line has almost a 45◦ slope with an R2 of nearly 1, strongly supporting
the claim that the model’s forecasts have a lower error.

Electronics 2024, 13, x FOR PEER REVIEW  16  of  24 
 

 

occurrence shows that the model is indeed examining the region of interest to make the 

forecasts. 

 

Figure 10. Relation between the database water level and the value forecasted by the best‐perform‐

ing model (SE_ResNeXt‐101_32‐4_s_aug), examining the test dataset. 

A direct comparison with other state‐of‐the‐art works is problematic since only one 

other work [7] has examined the type of water channels evaluated in this work. However, 

an estimate can be attained by considering the capability of the models to predict the wa‐

ter level. Azevedo and Brás [7] reported average MAEs of 1.8 cm and 2.8 cm during the 

day and nighttime  images, respectively.  It  is possible  to conclude  that  the day error  is 

higher than the value of this work (1.20 cm); furthermore, the nighttime error is substan‐

tially larger than the attained performance (1.09 cm), advocating the preeminence of the 

proposed models to adapt to the changing operating conditions during the day. Addition‐

ally, the other previously discussed state‐of‐the‐art works reported an error in the same 

range or higher than the error attained  in  this work, supporting the significance of the 

developed model. 

4.2. Explainability of the Model 

A common problem with using machine learning algorithms is the lack of explaina‐

bility of  the models, as  they are operated as a black box  [52]. This  issue  is particularly 

prominent  in models based on deep neural networks, as the extracted features become 

more complex as we  travel deeper  into  the models’  layers. Hence, an effort  to attain a 

transparency approach was carried out in this work with visual explanations by example, 

leading to an opaque model. This analysis was carried out on the best‐performing model 

(SE_ResNeXt‐101_32‐4_s_aug). 

For  this purpose,  two approaches were employed. The  first evaluated  the  feature 

maps created by each convolution layer of the model (the ones in the shortcut connection 

were not considered as they are used for keeping the shapes) when an  image was pre‐

sented. In contrast, the second examined the Gradient‐weighted Class Activation Map‐

ping plus plus (Grad‐CAM++) [53] applied to the model when an image was fed to iden‐

tify  the  image patterns  that  impacted  the model’s predictions  the most. Furthermore, 

Grad‐CAM++ analysis was carried out through the progress of the model’s training, al‐

lowing us to observe where the model focus shifted during the learning procedure. 

Figure 11 presents the created feature maps when an image with the highest water 

level in the database is fed to the model. It is possible to observe that, as we travel deeper 

into the network, the created features are initially related to the shape and edges, becom‐

ing more complex and not humanly understandable in the latter stages. The input stream 

keeps the primary forms of the image, while in stage 1, it is noticeable that the model is 

Figure 10. Relation between the database water level and the value forecasted by the best-performing
model (SE_ResNeXt-101_32-4_s_aug), examining the test dataset.

An outlier analysis was carried out, and the highest error occurred on 19 October
2020, at 5:41 a.m. Further investigation revealed an anomalous water stream directly above
the region of interest, originating from an underground pipe beneath the street. This led
the model to inaccurately predict a higher water level in the image. Notably, a similar
phenomenon caused high errors on the same day on other samples. Upon removing the
sample, we observed no significant impact on the MAE. We attributed this lack of effect to
the substantial sample size. Therefore, we decided to retain these images in the dataset to
maintain a diverse range of occurrences. It is also important to note that this occurrence
shows that the model is indeed examining the region of interest to make the forecasts.

A direct comparison with other state-of-the-art works is problematic since only one
other work [7] has examined the type of water channels evaluated in this work. However,
an estimate can be attained by considering the capability of the models to predict the water
level. Azevedo and Brás [7] reported average MAEs of 1.8 cm and 2.8 cm during the day and
nighttime images, respectively. It is possible to conclude that the day error is higher than
the value of this work (1.20 cm); furthermore, the nighttime error is substantially larger than
the attained performance (1.09 cm), advocating the preeminence of the proposed models
to adapt to the changing operating conditions during the day. Additionally, the other
previously discussed state-of-the-art works reported an error in the same range or higher
than the error attained in this work, supporting the significance of the developed model.

4.2. Explainability of the Model

A common problem with using machine learning algorithms is the lack of explain-
ability of the models, as they are operated as a black box [52]. This issue is particularly
prominent in models based on deep neural networks, as the extracted features become
more complex as we travel deeper into the models’ layers. Hence, an effort to attain a
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transparency approach was carried out in this work with visual explanations by example,
leading to an opaque model. This analysis was carried out on the best-performing model
(SE_ResNeXt-101_32-4_s_aug).

For this purpose, two approaches were employed. The first evaluated the feature
maps created by each convolution layer of the model (the ones in the shortcut connection
were not considered as they are used for keeping the shapes) when an image was presented.
In contrast, the second examined the Gradient-weighted Class Activation Mapping plus
plus (Grad-CAM++) [53] applied to the model when an image was fed to identify the
image patterns that impacted the model’s predictions the most. Furthermore, Grad-CAM++
analysis was carried out through the progress of the model’s training, allowing us to
observe where the model focus shifted during the learning procedure.

Figure 11 presents the created feature maps when an image with the highest water
level in the database is fed to the model. It is possible to observe that, as we travel deeper
into the network, the created features are initially related to the shape and edges, becoming
more complex and not humanly understandable in the latter stages. The input stream
keeps the primary forms of the image, while in stage 1, it is noticeable that the model is
extracting the edges. We hypothesized that the edge component in the produced HLE color
space facilitated this process. In stage 2, the model extracts variations in the previously
assessed edges; in this case, the bottom wall, the vertical line of the streetlamp, and the
water level in the top wall are visible. Especially in convolution layer 18, it is visible that
the model ignores the shadow cast by the top wall and identifies the correct water line. In
stage 3, the extracted feature becomes progressively more abstract, although it seems like
the model first looks for vertical line changes and then for horizontal variations. In the
last stage, the created features are challenging to understand, although it seems to look for
diagonal variations.

The progress of the best-performing model’s training with an example of a specific
image, for which we can observe Grad-CAM++, is presented in Figure 12. The fed image
is at the highest water level and without vegetation, where we can see the model focuses
on the overall water region. We can observe that the model learned to focus on reference
elements, such as the top wall patterns, the vertical streetlamp, and the area where the
water level is visible. In the second image, the water level is above the average (61 cm) with
some vegetation, where we can see the model ignoring the vegetation. The last fed image
is at the lowest water level (7 cm) with extensive vegetation, in which we can observe the
model ignoring the vegetation cluster, focusing on its borders and the water-level mark on
the top wall. Figures 11 and 12 demonstrate that the model predominantly focuses on the
water channel’s main structure and the water level, while largely ignoring the vegetation.
As the water channel structure is very similar along the full channel, this robustness in
capturing essential features suggests that the model’s performance will likely generalize
well to new sites.

Lastly, images that presented to the highest errors were examined to determine their
common characteristics. Figure 13a,b present images that present a higher overestimation
and underestimation, respectively. A shared trait in all images with considerable overesti-
mations was the presence of a sturdy variation from sunlight to shadow. It appears that
when the bottom wall is too much illuminated compared to the water line, the model loses
some of its references. In addition, the shadow on the top wall (above the water line) can
also lead to an overestimation, where the model identifies this shadow as the water line.
On the other hand, a communal characteristic of images that leads to substantial underesti-
mations is the presence of a shadow covering the water line and usually having a darker
water color, suggesting that the model can be identifying the shadow as the water line.
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Figure 12. Grad-CAM++ observed over the progress of the best-performing model (SE_ResNeXt-
101_32-4_s_aug) training when an image with the highest water level in the database is fed to it. The
Grad-CAM++ images of the trained model, when shown images with some and extensive vegetation,
are also shown. Both the Grad-CAM++ output and the superimposed Grad-CAM++ output on the
fed images are presented for the three examined images.
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4.3. Forecasting the Water Level

A NARX model was developed to forecast the water levels in the next 10 min, 60, and
120 min. For this purpose, all images collected over the year (except those used for training
the model or that were corrupted), at each 10 min period, were considered. This period
was used since it matched the one used by the Portuguese Institute of the Sea and the
Atmosphere in weather-based analysis. Therefore, the best-performing model (SE_ResNeXt-
101_32-4_s_aug) was used to label all these images (this analysis was validated by the low
error attained by the model in the performance analysis), creating a time series of the water
level with a period of 10 min between samples.

The data from January to June were used to train the model (from 25,543 samples,
20% was used as validation and the remaining for training), and the remaining months
were employed for testing (24,375 samples). Throughout the year, water levels showed
substantial seasonal changes. November to February experienced increased rainfall, leading
to higher water levels, while the remaining months showed more stable flow patterns, with
lower levels averaging around 7 cm during summer. We divided the year in half to capture
these patterns, aiming to train and validate our model effectively across representative
seasonal variations. The MAEs attained for the 10 min, 60 min, and 120 min forecasts
were 1.76 cm, 2.09 cm, and 2.34 cm, respectively. It was observed that, during low-water-
variation periods, all three models presented similar behavior. However, during fast
variations in the water level, the 120 min model produced a high error (it had a greater
inertia to make changes), suggesting that it was not worth exceeding 120 min. An example
of a fast variation period for the three models is presented in Figure 14, where the previous
observation is noticeable. Nevertheless, the model could reliably estimate the water level for
at least 60 min; this information can then be used for flooding risk assessments, sounding
an alarm if the forecasted water level exceeds a pre-defined limit.
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Figure 14. Example of the NARX model’s water-level forecasts for the next 10 min, 60, and 120 min.
A zoom-in image of a fast-changing peak is also shown to highlight the struggle of the 120 min model
to detect it while the 10 min model follows it smoothly.

5. Conclusions

A system for measuring the water levels in volcanic islands’ water channels in urban
areas was proposed in this work, using machine learning approaches based on deep learn-
ing models. For this purpose, the proposed regression model applied transfer learning to
multiple ResNet architectures, evaluating images captured by a low-cost remote monitoring
system that was converted to the proposed HLE color space.

The best-performing model (SE_ResNeXt-101_32-4_s_aug) attained an MAE that was
as good or superior to previous state-of-the-art works while using a fully automated
approach that only required images from a single camera without using any ruler to
facilitate the estimation. An explainability analysis was then carried out with a visual
explanation by example, producing an opaque model. In addition, two approaches were
used. The first was based on evaluating the generated feature maps, while the second
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used Grad-CAM++. An explanation for the occurrence of the more extensive error was
also presented, concluding that light conditions and the location of shadows can affect the
model’s forecasts.

Lastly, a time-based model was used to model the water channel, allowing us to fore-
cast the water levels in the next 10 min, 60 min, and 120 min. It was observed that 120 min
was likely excessive for the forecast since it could not correctly follow fast transitions, while
the 10 min mark could easily follow these transitions. The 60 min model, although with
some errors, could follow these transitions, creating a potential flooding risk-assessment
mechanism. Such a mechanism can be of utmost relevance for volcanic islands’ water
channels, where floods can devastate urban areas.

The main limitation of this work was the use of data from only one year to develop all
the models; hence, a future direction is to continuously acquire and annotate data, allowing
the development of further robust models. Likewise, the time-based model can be further
improved by these additional data. It is also important to examine the transferability
of the model to other locations of the water channel. Similarly, it would be relevant to
examine locations with a well-defined flooding season to test the suitability of flooding
detection. Lastly, it is relevant to study other baseline models for time-series forecasting for
comparison purposes and to include environmental variables (such as temperature and
humidity) in the modeling approach to further extend the forecast window.
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