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Abstract: Image denoising is a fundamental research topic in colour image processing, analysis, and
transmission. Noise is an inevitable byproduct of image acquisition and transmission, and its nature
is intimately linked to the underlying processes that produce it. Gaussian noise is a particularly
prevalent type of noise that necessitates effective removal while ensuring the preservation of the
original image’s quality. This paper presents a colour image denoising framework that integrates
fuzzy inference systems (FISs) with eigenvector analysis. This framework employs eigenvector
analysis to extract relevant information from local image neighbourhoods. This information is
subsequently fed into the FIS system which dynamically adjusts the intensity of the denoising process
based on local characteristics. This approach recognizes that homogeneous areas may require less
aggressive smoothing than detailed image regions. Images are converted from the RGB domain
to an eigenvector-based space for smoothing and then converted back to the RGB domain. The
effectiveness of the proposed methods is established through the application of various image quality
metrics and visual comparisons against established state-of-the-art techniques.

Keywords: colour image processing; fuzzy inference system; eigenvector analysis; Gaussian noise

1. Introduction

In the visual information era image processing and computer vision dominate across
many research fields. Denoising and restoring the quality of the distorted images is
an essential procedure in the realm of computer vision systems. In the last decades,
colour image processing has become a relevant research topic, and therefore colour image
smoothing, a mandatory pre-processing step, is one of its important research branches.

Noise is almost unavoidable in digital images during the acquisition and transmission
processes. This is particularly evident in the form of unpredictable variations of random
motion within the image information or in the pixel brightness [1]. Among different noise
sources, thermal noise (Johnson–Nyquist) is notably known as a result of the disruption of
the charge-coupled device sensor (CCD) [2]. This type of noise can be characterized by a
substantial amount of diverse phenomena and events, which commonly satisfy Gaussian
distribution conditions [3]. Thus, this sort of noise is simulated by adding random values
from a zero-mean Gaussian distribution into the initial values of each image channel
separately, where the noise intensity is represented by the standard deviation, s, of the
Gaussian distribution [4].

Several methods proposed in the literature for suppressing undesired Gaussian noise
from the colour images share the same common aims [4–7]:

1. Homogeneous regions in the image should be completely smoothed.
2. Detailed regions in the image should be cautiously denoised, avoiding unnecessary

sharpening, blurring or introducing other distortions.
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3. The denoising process should not introduce any colour artifacts to the resulting images.

In Point 3, it is crucial to highlight that the introduction of artifacts in the form of
new and/or non-existing colours in the images can be specially attributed to not properly
taking the correlation among the image channels into account [4–6]. This explains why
the channel-wise use of grey-level-based image smoothing methods is not appropriate for
colour image denoising.

The first colour image denoising methods are based on linear assumption approaches.
One of the renowned methods that use this approach is the arithmetic mean filter (AMF) [4].
AMF is effective in noise suppression due to the use of the zero-mean property. However,
it introduces a blurring effect, which is particularly perceptible in the image details and
structures. This limitation in linear approaches has motivated researchers to explore non-
linear methods with the aim of preserving the edges from unwanted blurring by detecting
the details of the image and therefore less smoothing in these important parts of the image.

Many non-linear methods have leveraged the demonstrated advantage of the zero-
mean property and are still able to preserve the edges and improve noise reduction. A
widely known approach is the bilateral filtering method (BF) [8], as well as some of the
methods based on it [9–12].

On the other hand, there is a wide variety of non-linear methods based on different
types of approaches. Some of them are based on the use of wavelets, which are used to
decompose a signal into different scales or resolutions [13]. An example of this filtering
method is the so-called collaborative wavelet filter (CWF) that is proposed in [14,15].
The CWF involves grouping similar 2D image fragments into 3D using what is called
collaborative altering, containing jointly filtered grouped image blocks, reducing noise
while preserving unique features. Another example uses data regularization and the
wavelet transformation discussed in [16].

Another filtering method is based on analysing the structure of the local graph com-
puted at each pixel using the neighbour pixel information. In this particular case, a local
graph is used to assess the spatial relationship between the pixels within the image. An
example of this approach can be found in the graph method for simultaneous smoothing
and sharpening (GMS3) and its normalised version (NGMS3) [17].

Machine learning has garnered significant attention as an alternative for noise reduc-
tion. One such method leverages deep learning through a specific neural network type
called DnCNN [18]. This network utilizes residual learning and batch normalization to
achieve faster training and enhance performance. Notably, the DnCNN model can remark-
ably handle Gaussian noise without prior knowledge of its intensity (blind denoising).
However, these neural network-based methods often face challenges in interoperability
and explaining the underlying mechanisms behind their noise reduction capabilities.

Other/alternative methods are based on linear algebra mathematical roots. Among
these, we can mention those based on principal component analysis (PCA) [19–21]. An
alternative method is based on the eigenvector decomposition applied in the feature/color
space instead of the image spatial domain. This method is called the eigenvector analysis
filter (EIG) [22]. EIG effectively uses the weighted pixel averaging mechanism in order
to mitigate the noise from the colour images. This method in particular is thoroughly
discussed in the following section, as the proposed methods leverage the information
extracted by EIG.

To improve EIG performance, we propose to include fuzzy inference systems to
better manage the information extracted from the local neighbourhoods on which the
eigenvector analysis is performed. Fuzzy logic was introduced by Zadeh in [23]. His
groundbreaking work aimed at imitating the human thinking and decision process by
incorporating the ability to reason when dealing with uncertain data. Fuzzy logic is able to
deal with many possibilities by mapping the diverse responses onto a continuum. Moreover,
fuzzy logic facilitates deriving meaningful conclusions even from imprecise or incomplete
knowledge. This remarkable versatility has led to its widespread adoption across various
scientific and technological fields. The field of computer vision has seen many studies
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highlighting the crucial advantages of using fuzzy logic. Specifically, researchers have
employed fuzzy inference systems (FIS) [24] to reduce noise from the colour images, as
shown in studies [25,26]. For instance, in [27], authors implemented a two-step fuzzy
approach in order to remove white additive noise (Gaussian noise). In [28], we studied
a preliminary application of FIS in an image smoothing framework. In this work, we
extend this study by including more accurate and complex approaches so that we really
find a system that effectively eliminates the Gaussian noise. Moreover, we optimize the
system to handle all three channels separately, taking advantage of non-correlation in the
extracted data. In these methods, the image is transformed from the RGB domain to the
local eigenvector space in order to perform the analysis of the correlation of the image
channels. Subsequently, three descriptive statistic features are extracted from each 3 × 3
kernel vector field, which is therefore used as inputs of the FIS system.

It is critical to emphasize that the proposed methods diverge from EIG filtering
methods in several aspects. A noteworthy distinction is that EIG relies on the normalized
standard deviation for the smoothing process, whereas FIS also utilizes the local standard
deviation for each component channel as input data for the inference systems. Moreover,
the membership functions and the set of fuzzy rules are employed to determine the extent
of smoothing in the three image channels based on the information within the channels.
Consequently, if the channel within the homogeneous areas contains information that does
not need to be preserved, i.e., it is identified as noise, FIS applies a higher smoothing
intensity. Conversely, if the information resides within the detailed part of the images, FIS
employs a gentle smoothing to retain these crucial image details. Section 3 provides a more
detailed explanation of the whole filtering process. The extensive experiments and testing
produced promising results, demonstrating the superiority of the proposed FIS compared
to state-of-the-art methods. The main advantages of the proposed methods are that, by
including a fuzzy inference system that decides the intensity of the smoothing performed,
they are able to significantly improve the noise reduction capability of the EIG filter while
keeping a good performance from the detail preservation point of view.

The rest of the paper is organized as follows: Section 2 presents the general eigenvector-
based smoothing framework our proposal stems from. Section 3 describes the FIS-based
filtering methodology. Section 4 shows the experimental results and discusses its perfor-
mance in relation to other state-of-the-art techniques. Finally, Section 5 summarizes the
main outcomes and discusses potential future research avenues.

2. Eigenvector-Based Smoothing Framework

This section describes in some detail the eigenvector analysis-based filter [22] which
may be considered a precursor idea of the research presented in this paper. Let us assume
the colour image F, which is represented in the RGB colour space, is processed using a
sliding filtering window of size N × N where N = 2n + 1 and n = 1, 2, . . .. The sliding
window is centered on each pixel to be processed, denoted by F0, and defined by term
(FR

0 , FG
0 , FB

0 ) of its three RGB colour components. The rest of the neighbour pixels in the
filtering window are denoted as Fi, i = 1, . . . , N2 − 1.

Using the colour component values of the pixels in the filtering window, we build a
data matrix D of size N2 × 3 where the columns of the matrix are associated to the colour
components. Each row in this matrix represents each one of the pixels. The main novelty
of the method is that an analysis of the D matrix is used to (i) appropriately process the
correlation among the image channel and (ii) conveniently smooth the noise in the image
while preserving the original structures. We propose to perform an eigenvector analysis
based on the information provided by matrix D. For this, we find the eigenvectors, also
called characteristic vectors or principal components, of DTD, where T denotes matrix
transponse. This procedure is behind well-known methods based on Principal Component
Analysis (PCA) [29,30].

The method of principal components is based on a key result from matrix linear
algebra: since DTD is a symmetric matrix, it may be reduced to a diagonal matrix L by
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premultiplying and postmultiplying it by a particular orthonormal matrix O such that
the diagonal elements of L are called the characteristic roots, latent roots or eigenvalues,
and the columns of O are called the characteristic vectors, eigenvectors or latent vectors of
DTD [29,30]. That is, vector v is an eigenvector of DTD if and only if it satisfies

DTDv = λv, (1)

where λ is a scalar called the eigenvalue corresponding to v and, for convenience, v is taken
so that it is unitary. Eigenvalues λi of DTD can be obtained as the solutions of equation

det(DTD − λI) = 0, (2)

where det denotes the matrix determinant. Then, given the non-null eigenvalues λi, we can
obtain [29,30] three associated eigenvectors vi from eigenvalue equations

(DTD − λiI)vi = 0, (3)

that can be considered as an alternative set of orthogonal coordinate axes. Transforming
the original data by means of the coordinate axis provided by the eigenvectors implies
transforming the original correlated variables into a new set of variables which are uncor-
related. Geometrically, this procedure is simply a principal axis rotation of the original
coordinate axis about their means [29,30]. Therefore, if we denote by V the 3 × 3 orthonor-
mal matrix that has as columns the three eigenvectors of DTD denoted as V1, V2, and V3,
the mentioned transformation is performed by multiplying D by V so that

U = DV, (4)

where U denotes the matrix containing the transformed data, also called the scores matrix,
and each pixel Ui, i = 0, . . . , N2 − 1 is now represented by the term Ui = (U1

i , U2
i , U3

i ).
Moreover, note that, since V is orthonormal, it is fulfilled that

UVT = D. (5)

Now, we can directly operate on the values of U to reduce the noise. Notice that now
the columns of U are associated to a new set of uncorrelated variables that we denote as U1,
U2, and U3, and which are associated to eigenvectors V1, V2, and V3, respectively. This im-
plies that we can safely apply component-wise methods to reduce the noise independently
in each of the new variables.

We aim at applying a weighted averaging operation in order to smooth each compo-
nent independently. Then, to smooth each component of the pixel represented by the tern
U0 = (U1

0 , U2
0 , U3

0), the operation given by the following expression is applied:

Ûi
0 =

N2−1
∑

p=0
Wi

pUi
p

N2−1
∑

p=0
Wi

p

, i = 1, 2, 3. (6)

where i refers to the colour channel and p to the pixel number in the neigbourhood window
around a pixel.

According to above, weights Wi
p should be computed so that component Ui

0 is less
smoothed when σ(Ui) >> σ(U j) and σ(Ui) >> σ(Uk), and more smoothed otherwise.
For this, we define the normalized standard deviation σn of a variable Ui as

σn(Ui) =
σ(Ui)

3
∑

j=1
σ(U j)

. (7)
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To appropriately perform the averaging, weights Wi
p should be computed using a

decreasing function on |Ui
p − Ui

0| so that only Ui
p values close to Ui

0 receive high weights.
For this, we use the following exponential-based expression, but any other decreasing
function could be used instead, as well:

Wi
p = exp

(
−
|Ui

p − Ui
0|σn(Ui)

D

)
, (8)

where D > 0 is a filter parameter that tunes the global smoothing capability of the method.
It can be seen that larger values of D imply that values of Wi

p are closer to 1 and therefore the
smoothing capability is higher. Conversely, for lower values of D, the smoothing capability
decreases. The appropriate setting of D = (5/6)× s where s is the noise standard deviation.
Note that the value given by σn(Ui) is also related to the smoothing capability: for lower
values of σn(Ui), the smoothing capability increases, whereas for higher values of σn(Ui),
the smoothing performed is lower. Consequently, the desired behaviour is achieved.

Notice that this denoising method is based on computing the eigenvectors and eigen-
values of a data matrix and that this procedure, followed in Equations (1)–(3), is very
sensitive to outliers in the data. Therefore, whereas this analysis is accurate in a context
of white (zero-mean) noise, it is not expected to be useful for other types of image noise
as impulse, salt-and-pepper or multiplicative noise unless a robust eigenvector analysis
is performed.

3. Smoothing Colour Images Using a Fuzzy Inference System

The EIG filter has shown its effectiveness in eliminating unwanted noise while pre-
serving important image information (spatial structure and details). However, EIG presents
some limitations in the noise reduction capability when considering large homogeneous
regions. This limitation arises from the use of the normalized standard deviations in
Equation (8). When the original standard deviations are similar, their normalized coun-
terparts all become close to 1

3 . This issue arises from the assumption that these standard
deviations reflect meaningful information about the level of detail or the presence of edges
within the image.

However, this assumption does not always hold true, particularly in large homoge-
neous regions. In homogeneous regions, where the data do not exhibit much variation,
this results in similar standard deviation values. Consequently, the normalized standard
deviation values in Equation (8) also become approximately equal to 1

3 . This situation poses
a problem because Equation (8) uses these values to determine the denoising strength, and
with all values close to 1

3 , the denoising effect becomes less intensive than desired, as in
homogeneous regions, averaging can be safely applied. This means that the method may
not effectively remove the noise, especially in homogeneous regions.

In this work, we propose the introduction of a new smoothing coefficient, C, in
Equation (9) to address this limitation. The goal is to provide more control over the de-
noising strength and adapt it to different data characteristics, particularly in homogeneous
regions. Smoothing coefficient C modulates the normalized standard deviation which leads
to a stronger smoothing effect, particularly in homogeneous regions where all values are
close to 1

3 . The new equation to set the weights is the following, instead of Equation (8):

Wi
p = exp

(
−
|Ui

p − Ui
0|σn(Ui)Ci

D

)
. (9)

where σn(Ui) is given in Equation (7).
Adjusting smoothing coefficient C across different image elements is crucial. The

key challenge lies in controlling C for smoothing intensity. In homogeneous areas with
minimum details, we would like C to have low values (ideally, close to 0), allowing for a
strong smoothing behaviour, in order to effectively remove noise, without compromising
details. Conversely, areas with significant noise and edges require gentle smoothing (C close
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to one) to preserve essential features while subtly reducing noise. However, intermediate
areas (between zero and one) demand a degree of smoothing tailored to their specific
characteristics. This reasoning effectively balances noise reduction and detail preservation,
leading to improved image quality.

In order to determine smoothing coefficients C, we use local image features that
capture the level of detail and noise in its surrounding area. Specifically, we rely on
the standard deviations as inputs, denoted by σ(Ui), σ(U j), and σ(Uk), as described in
Section 2, that fulfill σ(U1) < σ(U2) < σ(U3). In particular, we propose two different ways
for this that in turn generate two filtering methods, as follows:

• FuzzyEIG1: It considers the absolute standard deviation of each channel as its input
value. This aligns with the intuitive idea that higher standard deviations often indicate
the presence of image structures to be preserved while lower values are associated to
flat regions where we can apply more smoothing.

• FuzzyEIG2: It takes two input values given by D1 = |σ(U j) − σ(Ui)| and D2 =

|σ(Uk)− σ(U j)|. We also observed that when image structures are present, there are
big differences between the standard deviation in the channels, while lower differences
indicate flat regions.

According to this, the two sets of implication rules we propose to use are the following:
In FuzzyEIG1, we consider two rules for each channel (i = 1, 2, 3):

• IF σi is low. THEN Ci is low.
• IF σi is high THEN Ci is high.

On the other hand, we specify the following set of two rules for FuzzyEIG2:

• IF |σ1 − σ2| is low AND |σ2 − σ3| is low THEN Ci is low.
• IF |σ1 − σ2| is high AND |σ2 − σ3| is high THEN Ci is high.

As these sets of rules include linguistic variables, the way to make them computational
and finally obtain values for Ci is through the use of fuzzy theory, which handles the
inherent vagueness and uncertainty of natural language. As described in [31], any fuzzy
inference system (FIS) approach is formed by three key stages: (a) fuzzification, (b) inference,
and (c) defuzzification. During fuzzification, FuzzyEIG1 considers the absolute values of
σ(Ui), σ(U j), and σ(Uk) as input values.

These crisp values are then converted into linguistic terms (“low”, and “high”) using
membership functions tailored to their specific ranges. Different linguistic terms are consid-
ered for each input due to their varying standard deviation ranges. Similarly, FuzzyEIG2
considers D1 and D2. These crisp values are also translated into linguistic terms using
other membership functions. This process allows for FIS to reason about the different noise
patterns detected through these different values.

Fuzzy rules work in conjunction with fuzzy sets, mimicking human reasoning by
connecting linguistic terms like “when σi is low” to consequences like “the smoothing
coefficient Ci is low” in the inference step. Finally, the defuzzyfication step converts the
certainty of the consequentes into crisp values of the output variable, Ci. For both systems
and both input/output variables, Gaussian membership functions are considered, with two
fuzzy sets (called low and high). While alternative membership functions could be used,
Gaussian functions minimize the number of parameters involved (location and width),
reducing the complexity as well.

Figure 1 illustrates the scheme of the proposed method visualizing the processing steps
applied to a pixel. We begin by introducing the pixel, which is considered along with its
neighboring pixels. Next, a data matrix, denoted by D in the equations above, is extracted.
Eigenvector analysis is then performed to obtain the standard deviation for each color
channel, (σ1, σ2, σ3). Then, (σ1, σ2, σ3) are used as inputs for the Fuzzy Inference System
(FIS) which computes the smoothing coefficients (C1, C2, C3). Subsequently, weights Wi

p are
calculated using Equation (9). And last, Equation (6) is employed to perform the smoothing
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operation in the eigenvector space and the processed pixel is converted back from the
eigenvector space to the RGB color space using Equation (5), resulting in smoothed pixel F̂0.

Figure 1. Flowchart of the Gaussian denoising proposed method that outlines the processing steps
applied to a single pixel.

4. Experimental Setting of the Proposed Methods, Validation and Discussion
4.1. Optimization of the Membership Functions

Parameter optimization offers a standard and reliable tool to enhance the numerical
accuracy of fuzzy inference systems while maintaining their interpretability [32]. There
is a plethora of techniques that address this process, with genetic algorithms (GAs) [33]
demonstrating considerable success in optimizing both structure (i.e., rule definition and
system architecture) and membership function parameters within each fuzzy subset.

Genetic algorithms (GAs) represent a class of global stochastic optimization methods.
Their foundation lies in the principles of Darwinian survival of the fittest and natural selection
(in evolutionary theory applied to animal species). This well-established approach has
shown its effectiveness as an optimization technique in challenging real-world problems,
particularly in the domains of design and combinatorial optimization [34].

In this context, and for each generation, a specific number of individuals is randomly
created, forming the so-called initial population of candidate solutions. Subsequent genera-
tions are created through the application of variation, selection, and inheritance principles.
Algorithm 1 establishes how these methodologies work.

Algorithm 1: Genetic Algorithm

1 Initialization: t = 0. Generate a random population P(t) of n chromosomes.
Define the crossover probability Pcross and the mutation probability Pmut

2 Selection: Select two parent chromosomes, p1 and p2 from P(t).
3 Crossover (with probability Pcross): If random value ∈ [0, 1] ≤ Pcross, perform

crossover operation on p1 and p2 to create offspring o1 and o2.
4 Mutation (with probability Pmut): For each bit in o1 and o2 If random value

∈ [0, 1] ≤ Pmut, flip the bit value.
5 Evaluation: Calculate the fitness of o1 and o2.
6 Selection (for replacement): Select two chromosomes c1 and c2 from

P(t) ∪ {o1, o2}.
7 Replacement: Replace c1 and c2 in P(t) with o1 and o2
8 Increment generation counter: t = t + 1
9 Output: Best chromosome found in any generation

In our case, a genetic algorithm (GA) is applied in order to optimize the input and
output membership functions independently, for each one of the FIS methods, with the aim
to enhance the noise reduction performance of Fuzzy Inference System (FIS) methods. To
achieve this, we select a diverse set of three images Pills (50× 50), Headphone (200× 200), and
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Parrots (80× 80) shown in Figure 2. These images are subjected to varying levels of Gaussian
noise, s = 10, 20, 30. Meanwhile, the optimization process itself focuses on a single noise
level at a time for the three images. In order to assess the quality of noise reduction achieved
by the optimized membership functions, we employ the Peak Signal-to-Noise Ratio (PSNR)
metric [4]. The key advantage of this independent optimization lies in its ability to account
for the inherent differences in value ranges across various input and output variables. For
example, the concept of “low” might have significantly different interpretations for each
level of noise. By optimizing independently, we ensure that the membership functions
adapt effectively to these diverse ranges of noise levels. The optimization process itself
uses a fitness function that aims to minimize the mean squared error (MSE) between the
original and denoised pixel colour values. The optimization process starts with the third
channel, which typically holds the most part (the most important) information, followed by
the second channel using the smoothing coefficients obtained from the optimization of the
third one. Finally, the first channel is optimized using the smoothing coefficients from both
the third and the second channels. This sequential approach ensures that channels with
more prominent information are the guide for the noise reduction process in subsequent
channels. The input membership functions in both FuzzyEIG1 and FuzzyEIG2 methods are
restricted to [0–200] for both the location centre and width parameters. Output membership
functions are in the [0–1] interval for both the centre and the width parameters.

(a) (b) (c)
Figure 2. Group of images selected for the training stage. (a) Pills (50 × 50); (b) Parrots (80 × 80);
(c) Head-Phone (200 × 200).

The parameters corresponding to the optimized membership functions for FuzzyEIG1
and FuzzyEIG2 are shown in Tables 1 and 2, respectively. These tables can be used as
references for parameter setting when using the proposed methods.

In general, the membership function parameters change substantially across different
noise levels, somehow revealing an adaptation to the noise level. The main tendency is
related to membership functions increasing in overlapping as the noise increases, which
reflects the adaptation that the method shows as the uncertainty in the data increases. This
uncertainty is related to the location of the membership functions being closer or the width
being enlarged.

This adaptive behaviour allows for the system to deal with higher standard deviation
values that might be present in the data. However, the impact of noise varies across inputs,
with the first input being more affected due to its association with less correlated data
variations. Table 2 shows, for FuzzyEIG2, that noise also shifts the location of the output
functions. This leads to higher smoothing coefficients, which is a desirable outcome for
noise reduction.
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Table 1. Optimized parameters of the FuzzyEIG1 membership functions for the input and out-
put stages.

Optimized Parameters for the Inputs

SD Input (σ(U i) )/Output (C1) Input (σ(U j))/Output (C2) Input (σ(Uk))/Output (C3)

MF Low High Low High Low High

Params. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid.

s = 10 86.73 97.82 158.06 14.28 16.64 134.95 41.91 82.78 16.44 6.93 17.02 34.66
s = 20 106.96 3.84 22.52 84.22 112.00 103.57 24.75 93.79 11.61 31.19 6.58 46.54
s = 30 63.04 152.90 15.68 72.15 133.34 168.30 27.79 116.87 26.25 18.22 14.84 85.29

Optimized Parameters for the Outputs

s = 10 0.16 0.07 0.08 0.40 0.060 0.04 0.26 0.90 0.03 0.09 0.02 0.94
s = 20 0.01 0.01 0.09 0.63 0.07 0.19 0.87 0.72 0.10 0.16 0.15 0.65
s = 30 0.04 0.05 0.40 0.47 0.086 0.07 0.80 0.55 0.06 0.04 0.05 0.55

Table 2. Optimized parameters of the FuzzyEIG2 membership functions for the input and out-
put stages.

Optimized Parameters for the Inputs

Inputs D1 = |σ(Uj)− σ(Ui)| D2 = |σ(Uk)− σ(Uj)| D1 = |σ(Uj)− σ(Ui)| D2 = |σ(Uk)− σ(Uj)| D1 = |σ(Uj)− σ(Ui)| D2 = |σ(Uk)− σ(Uj)|

MFs Low High Low High Low High Low High Low High Low High

Params. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid.

s = 10 139.56 46.26 70.18 148.93 36.52 188.33 14.23 26.41 113.56 173.52 36.07 105.37 2.26 22.37 53.28 164.90 79.45 184.07 69.54 43.52 8.81 3.03 162.23 70.76
s = 20 50.85 106.26 21.33 180.43 2.84 14.13 45.23 188.19 10.78 8.17 7.07 82.04 69.23 52.90 34.71 193.97 36.63 172.34 1.25 143.91 15.30 0.80 27.77 83.69
s = 30 79.24 95.38 56.10 189.90 83.90 123.27 28.42 128.19 108.21 197.57 49.94 181.76 41.50 29.98 20.84 185.57 133.52 67.14 24.51 77.90 23.27 3.15 15.46 54.90

Optimized Parameters for the Outputs

Outputs C1 C2 C3

MFs Low High Low High Low High

Params Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid. Loc. Wid.

s = 10 0.158 0.095 0.158 0.671 0.146 0.311 0.055 0.755 0.017 0.221 0.060 0.970
s = 20 0.027 0.136 0.148 0.747 0.164 0.077 0.004 0.468 0.009 0.033 0.292 0.879
s = 30 0.032 0.099 0.511 0.333 0.140 0.082 0.066 0.622 0.097 0.0009 0.202 0.788

4.2. Denoising Results and Discussion

Following the optimization stage, we tested the methodology by using a validation set
of four images with different sizes: Beach (100 × 100), Lena (90 × 90), Grass (200 × 200), and
Micro (51 × 51) shown in Figure 3. These validation images, similar to the training images,
were corrupted with varying levels of Gaussian levels: s = {10, 20, 30}. To comprehensively
assess the performance of our method, we employed five different metrics:

• Mean absolute error (MAE) [4]: It is particularly aimed at assessing detail preservation.
• Peak signal-to-noise ratio (PSNR) [4]: It measures noise cancellation.
• Normalized color difference (NCD) [4]: It evaluates colorimetric preservation.
• Fuzzy color structural similarity (FCSS) [35]: It is a color extension of the Structural

Similaty measure, SSIM [36], that focuses on evaluating perceptual similarity.
• Perceptual difference inspired by iCAM (iCAMd) [37]: It measures colour changes

form a perceptual point of view.

(a) (b) (c) (d)

Figure 3. Group of images selected for the validation stage. (a) Grass (200 × 200); (b) Beach (100 × 100);
(c) Lenna (90 × 90); (d) Micro (51 × 51).



Electronics 2024, 13, 1150 10 of 17

We compared the performance of our proposed approaches, FuzzyEIG1 and FuzzyEIG2,
with several state-of-the-art denoising methods: the collaborative wavelet filter (CWF) [15], the
eigenvector analysis method (EIG) [22], the method of Feed-forward denoising convolutional
neural networks(DnCNN) [18], and the Graphs-based methods for simultaneous smoothing
and sharpening (GMS3) as well as the Normalized graph-method for simultaneous smoothing
and sharpening (NGMS3) [17].

All filters used a 3 × 3 window with the authors’ recommended settings. Notably, the
sharpening processes involved in GMS3 and NGMS3 were ignored for a fair comparison.
The experimental results are shown in Table 3, where the best and second-best results are
highlighted in blue and red colours, respectively. Additionally, some of the method outputs
are visualized in Figures 4 and 5, along with squared error maps for each output.

Table 3. MAE, PSNR, NCD (×102), FCSS (×10) and iCAMd results for FuzzyEIG1, FuzzyEIG2, and
5 other denoising methods, on images of different sizes contaminated with varying levels of Gaussian
noise (s). For each noise level and metric, the best performing method is highlighted in blue, while
the second-best is highlighted in red.

Filter s = 10 s = 20 s = 30
MAE PSNR NCD FCSS iCAMd MAE PSNR NCD FCSS iCAMd MAE PSNR NCD FCSS iCAMd

Grass Image (200 × 200)

None 7.82 28.22 5.37 9.38 3.38 15.56 22.24 10.75 8.69 6.71 23.23 18.79 16.16 7.97 10.04
GMS3 5.23 31.16 2.91 9.51 2.72 8.94 26.71 5.65 9.19 4.93 14.68 22.53 9.85 8.70 7.70

NGMS3 5.52 30.59 2.88 9.48 2.80 8.11 27.35 4.66 9.18 4.72 10.92 24.96 6.86 8.98 6.70
DnCNN 4.84 31.87 2.69 9.45 2.55 7.11 28.40 3.63 9.15 3.93 8.56 26.74 4.10 8.95 4.80

CWF 3.82 33.90 1.82 9.63 1.91 5.80 30.08 2.48 9.38 2.93 7.35 27.92 2.97 9.14 3.76
EIG 4.82 32.24 2.80 9.58 2.56 8.64 27.20 5.33 9.27 4.82 12.21 24.22 7.85 8.98 7.02

FuzzyEIG1 4.57 32.54 2.45 9.55 2.50 7.51 28.31 4.22 9.29 4.46 9.11 26.43 4.68 9.00 5.66
FuzzyEIG2 4.59 32.51 2.46 9.55 2.50 7.55 28.26 4.22 9.27 4.48 9.13 26.41 4.69 9.00 5.68

Beach Image (100 × 100)

None 3.88 34.35 6.88 9.68 3.33 7.61 28.51 13.12 9.42 6.31 11.22 25.13 18.90 9.17 8.91
GMS3 6.51 29.62 6.70 9.16 4.60 7.87 28.08 9.27 9.07 5.89 9.70 26.32 12.41 8.95 7.41
NGM3 10.94 24.86 9.52 8.68 6.72 11.90 24.27 11.30 8.61 7.58 13.21 23.47 13.44 8.49 8.81

DnCNN 9.79 25.93 8.97 8.77 6.57 11.47 24.71 11.55 8.58 7.79 13.43 23.44 14.15 8.36 9.17
CWF 4.23 33.40 6.29 9.66 3.52 8.40 27.25 10.75 9.30 6.37 12.74 23.61 14.59 8.79 9.10
EIG 3.69 34.60 4.94 9.65 3.02 6.33 30.00 8.06 9.34 5.01 9.04 26.90 11.11 9.02 6.83

FuzzyEIG1 3.94 33.98 5.13 9.63 3.11 7.38 28.56 8.71 9.18 5.44 11.21 24.88 12.29 8.71 7.64
FuzzyEIG2 3.82 34.28 5.03 9.64 3.06 7.18 28.84 8.56 9.20 5.40 10.46 25.56 11.82 8.79 7.41

Lenna Image (90 × 90)
None 7.64 28.33 9.11 9.34 5.19 14.88 22.54 17.49 8.63 10.25 21.85 19.17 25.75 7.95 15.39
GMS3 4.87 31.62 4.95 9.49 3.31 8.53 26.99 9.18 9.20 6.24 13.72 22.89 15.25 8.68 10.26

NGMS3 5.08 31.16 4.90 9.45 3.31 7.71 27.62 7.74 9.22 5.47 10.45 25.07 11.01 8.98 8.01
DnCNN 4.50 32.61 4.87 9.55 3.10 6.60 29.19 6.69 9.33 4.60 8.55 26.94 8.57 9.15 6.02

CWF 3.38 35.23 3.01 9.64 2.17 5.07 31.51 4.25 9.47 3.19 6.87 28.91 5.91 9.30 4.24
EIG 4.56 32.64 4.67 9.56 3.20 8.17 27.57 8.48 9.24 5.96 11.40 24.63 12.14 8.95 8.72

FuzzyEIG1 4.15 33.35 4.05 9.57 2.86 6.59 29.05 5.79 9.24 4.22 8.64 26.80 7.91 9.07 5.87
FuzzyEIG2 4.17 33.32 4.07 9.57 2.87 6.65 28.96 5.82 9.23 4.24 8.68 26.75 7.94 9.07 5.90

Micro Image (51 × 51)
None 6.54 29.13 10.19 9.41 5.40 12.61 23.29 18.55 8.86 10.38 18.28 20.03 26.26 8.32 15.69
GMS3 5.61 30.42 7.67 9.38 4.86 8.51 26.85 11.56 9.00 7.02 10.99 24.61 15.81 8.78 9.71

NGMS3 5.91 30.00 7.77 9.35 5.09 8.37 26.98 11.85 9.04 6.77 10.76 24.88 15.94 8.81 9.61
DnCNN 5.69 31.26 9.51 9.36 4.13 8.61 27.72 13.35 9.00 6.16 11.08 25.57 17.63 8.84 8.92

CWF 4.70 32.49 7.27 9.49 3.82 8.11 27.93 11.94 9.09 6.16 10.99 25.48 16.62 8.78 8.97
EIG 4.97 31.75 7.30 9.47 4.19 7.95 27.88 11.35 9.08 6.25 10.27 25.73 15.84 8.94 9.03

FuzzyEIG1 5.03 31.68 7.13 9.38 4.08 7.93 27.90 11.62 9.08 6.12 10.44 25.57 16.27 8.96 8.89
FuzzyEIG2 5.06 31.63 7.16 9.38 4.09 7.93 27.88 11.62 9.09 6.20 10.43 25.58 16.33 8.98 8.92
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(a) Original image (b) Noisy image s = 30

(c) Output from CWF (d) Normalized error map CWF

(e) Output from EIG (f) Normalized error map EIG

(g) Output from FuzzyEIG1 (h) Normalized error map FuzzyEIG

Figure 4. Visual comparison of different denoising methods for the Grass image (200 × 200). Original
image (a), noisy image (b), denoised images (CWF (c), EIG (e), FuzzyEIG1 (g)), corresponding
normalized squared error maps (d,f,h).



Electronics 2024, 13, 1150 12 of 17

(a) Original image (b) Noisy image s = 30

(c) Output from CWF (d) Normalized error map CWF

(e) Output from EIG (f) Normalized error map EIG

(g) Output from FuzzyEIG1 (h) Normalized error map FuzzyEIG

Figure 5. Visual comparison of different denoising methods for the Micro image (5 × 51). Original
image (a), noisy image (b), denoised images (CWF (c), EIG (e), FuzzyEIG1 (g)), corresponding
normalized squared error maps (d,f,h).
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By closely examining the tables and figures, we observed that certain methods consis-
tently outperform others across different noise levels and image sizes while others have a
high variable performance. In particular, probably the highest varibility in performance
was shown by the DnCNN method, which we associated to training bias. Machine learning-
based denoising methods are difficult to fully understand and are biased by the training
dataset used to set their parameters. Consequently, it is hard to fully trust them in any
scenario. On the other hand, the other methods in the experimental comparison are in-
terpretable. Notably, the FuzzyEIG1 and FuzzyEIG2 methods demonstrated competitive
performance, often ranking among the top two performers across multiple metrics. This is
primarily due to their ability to enhance the smoothing capability of the EIG method in
image areas with greater homogeneity.

However, it is important to clarify that they did not outperform CWF in such ar-
eas. CWF indeed achieved the best results in homogeneous regions due to its non-local
block-matching approach, which is significantly more computationally expensive. This
is understandable because its block-matching approach effectively finds more matches
in these areas at an expense of higher computational load. Moreover, for example, in
the Lenna images with noise level s = 30, we saw a 2-unit improvement in the PSNR of
the proposed methods over the EIG method. However, there were slight variations in
performance for detailed images, where FuzzyEIG1 and FuzzyEIG2 lost some performance
with respect to EIG but still outperformed the non-local method CWF. For instance, in
the Beach image with noise level s = 10, the proposed methods achieved around a 1 unit
higher PSNR than CWF while they were only 0.3 below EIG. So, the benefit provided by
the proposed methods is an increased performance in noise reduction with respect to EIG
while keeping a good level of detail preservation although a bit lower than EIG.

Visually, in Figure 4, the CWF-processed “Grass” image exhibits some blurring in
the top cloud areas compared to FuzzyEIG1 and EIG. While FuzzyEIG1 and EIG leave
some noise to preserve details, CWF prioritizes smoothness, leading to this visible loss of
sharpness. This trend is further evident in Figure 5. Here, the “Micro” image processed
by CWF is noticeably blurred compared to FuzzyEIG1, which retains details closer to the
EIG output.

A detailed analysis of the performance revealed that the limitation of the proposed
methods arises during the defuzzification phase. The highest smoothing is achieved for
coefficients Ci = 0, whereas EIG level detail preservation happens for Ci = 1. However,
after defuzzification, Ci values never reach the extremes of 0 or 1. This is shown in Figure 6.
Here, we can see, particularly for C3, that higher values are associated to image edges and
detail regions to be preserved but they are far from the top value of 1. Conversely, neither
0 is reached for maximum smoothing in flat regions. This results in two key trade-offs:
(1) Incomplete Smoothing in Homogeneous Regions: Since C cannot reach 0, maximum
noise reduction in flat areas is limited. (2) Sub-optimal Detail Preservation: this limitation
prevents C from reaching 1, although it only leads to small detail loss compared to EIG.
Despite this limitation, the proposed methods excel at denoising flat regions compared to
EIG filtering. This is because they effectively assign low enough C values in these areas,
achieving strong noise reduction while maintaining details.

This improved performance is also seen in the histogram plots presented in Figures 7 and 8,
where the proposed method performance lies in between CWF and EIG. These histograms plot,
in the x axis, the normalized error, where the normalisation factor corresponds to the maximum
error for any pixel in the denoising methods that are compared (CWF, EIG, FuzzyEIG1 and
FuzzyEIG2). We only show CWF, EIG, and FuzzyEIG1 for interpretability purposes. We can
see that CWF has a higher number of pixels with low error values when the image contains
large homogeneous regions. This is the case, for instance, of the histograms for Grass (Figure 7).
However, when there are more edges, the EIG and FuzzyEIG1 methods outperform CWF, as
seen in the Beach histograms (Figure 8).
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(a) (b) (c) (d)

Figure 6. Maps of the smoothing coefficients for each colour channel in the Lenna image with noise
level s = 30. (a) Noisy image s = 30; (b) C1; (c) C2; (d) C3.

In general, FuzzyEIG1 stands out for its ability to achieve low error values while
balancing detail preservation and noise reduction. This performance lies in its approach to
the trade-off between smoothing and detail retention. CWF prioritizes smoothness, which
can be ideal in specific scenarios. However, this emphasis can lead to over-smoothing and
loss of fine details in other cases/images types. FuzzyEIG methods are able to balance
between smoothing and detail preservation. This makes them suitable for a wider range
of image types, despite limitation in the defuzzification where the smoothing coefficients
never reaching 0 or 1 (indicating full or minimal smoothing). While this suggests further
potential for improvement, the current balance allows for FuzzyEIG methods to preserve
details better than CWF while achieving comparable or better denoising in homogeneous
regions. This balanced approach makes FuzzyEIG methods competitive across various
metrics, even if they may not always surpass CWF in strictly homogeneous regions.

Figure 7. The combined histogram visualizes the distributions of normalized squared error values
obtained from three denoising methods applied to an image with “Grass 200× 200” noise level s = 10.
The x-axis represents the range from 0 (perfect reconstruction) to 1 (maximum error), and the y-axis
represents the frequency of each error value.
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Figure 8. The combined histogram visualizes the distributions of normalized squared error values
obtained from three denoising methods applied to an image with “Beach 100× 100” noise level s = 30.
The x-axis represents the range from 0 (perfect reconstruction) to 1 (maximum error), and the y-axis
represents the frequency of each error value.

5. Conclusions and Future Work

Two novel image-denoising methods, FuzzyEIG1 and FuzzyEIG2, are presented in
this paper, both of them based on an previous eigenvector-based strategy, EIG. While both
methods achieve promising results in terms of noise reduction and detail preservation,
their limitations are identified. FuzzyEIG1 and FuzzyEIG2 show competitive performance
across various metrics and present a more scalable behaviour. Their main advantage is an
increased performance in noise reduction with respect to EIG while keeping a good level of
detail preservation although a bit lower than that of EIG.

However, the methods’ performance in both noise smoothing and detail preservation
is not optimal. This happens because of the defuzzification process being unable to provide
values close enough to one when higher detail preservation is needed or to zero when more
smoothing is appropriate.

One promising avenue for future research is the integration of neural networks (NNs)
for this defuzzification (last) stage. NNs can be trained to learn the optimal parameters
for the defuzzification process, potentially improving both efficiency and accuracy. This
hybrid approach would combine the strengths of both methods, leveraging the data-driven
learning capabilities of NNs with the adaptability of FuzzyEIG methods. Ultimately,
continuous exploration and refinement are crucial for developing robust and adaptable
image-denoising techniques suitable for real-world applications.
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