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Abstract: The agricultural industry has the potential to undergo a revolutionary transformation
with the use of Internet of Things (IoT) technology. Crop monitoring can be improved, waste
reduced, and efficiency increased. However, there are risks associated with system failures that
can lead to significant losses and food insecurity. Therefore, a proactive approach is necessary
to ensure the effective safety assessment of new IoT systems before deployment. It is crucial to
identify potential causes of failure and their severity from the conceptual design phase of the IoT
system within smart agricultural ecosystems. This will help prevent such risks and ensure the safety
of the system. This study examines the failure behaviour of IoT-based Smart Irrigation Systems
(SIS) to identify potential causes of failure. This study proposes a comprehensive Model-Based
Safety Analysis (MBSA) framework to model the failure behaviour of SIS and generate analysable
safety artefacts of the system using System Modelling Language (SysML). The MBSA approach
provides meticulousness to the analysis, supports model reuse, and makes the development of a
Fault Tree Analysis (FTA) model easier, thereby reducing the inherent limitations of informal system
analysis. The FTA model identifies component failures and their propagation, providing a detailed
understanding of how individual component failures can lead to the overall failure of the SIS. This
study offers valuable insights into the interconnectedness of various component failures by evaluating
the SIS failure behaviour through the FTA model. This study generates multiple minimal cut sets,
which provide actionable insights into designing dependable IoT-based SIS. This analysis identifies
potential weak points in the design and provides a foundation for safety risk mitigation strategies.
This study emphasises the significance of a systematic and model-driven approach to improving the
dependability of IoT systems in agriculture, ensuring sustainable and safe implementation.

Keywords: Internet of Things; smart agriculture; failure analysis; fault trees; model-based safety
analysis; SysML

1. Introduction

Agriculture plays a crucial role in providing sustenance and employment oppor-
tunities to millions of people around the world. As the global population continues to
grow exponentially, there is an increasing demand for food production. Unfortunately,
the amount of cultivable land is limited and is rapidly dwindling due to urbanisation and
environmental degradation [1,2]. Therefore, there is a pressing need to improve crop yields
to meet the growing demand for food. Modern farming techniques can optimise every
aspect of the crop production process, from planting to harvesting. Precision agriculture,
Solar Insecticidal Lamp Internet of Things (SIL-IoTs), and many other innovative ideas
leverage technology to achieve this optimisation [3–5]. By prioritising sustainable and
efficient farming practices, it is possible to ensure that agriculture remains a viable source
of sustenance and employment for generations to come. Through efficient implementation
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of these smart techniques, farmers can increase their yield and improve the efficiency of
their operations.

The escalating worldwide water crisis is a significant worry, given the rising popu-
lation and the need for fresh water. To tackle this problem, embracing sustainable water
usage practices is imperative, particularly in agriculture, where water is a crucial resource.
A viable solution is the adoption of Smart Irrigation Systems (SIS), which can track perti-
nent factors and regulate physical devices like water pumps to minimise water wastage
by irrigating only when required [6,7]. Furthermore, sustainable farming practices can
enhance soil health, reduce greenhouse gas emissions, and promote biodiversity [3]. Such
approaches can also improve the overall quality of the produce and increase the economic
sustainability of farming operations.

The integration of IoT, edge computing, and AI has transformed the landscape of farm-
ing practices [8]. However, with these innovative approaches come new challenges, such
as increased complexity, system safety, reliability, trustworthiness, and vulnerability [9,10].
To ensure the dependability of these systems, it is essential to understand their compo-
sition and inner workings and potential failures that may arise during operation. This
proactive understanding of the system and its behaviour will help to mitigate risks from
the design time and optimise the efficiency of such systems. In the case of large-scale
smart farming, the failure of these systems can have devastating consequences on nature,
people, agricultural production, and finances. Therefore, conducting a credible failure
analysis of IoT-based technology during the conceptual design phase is crucial to ensure
the development of safe and reliable IoT-based agricultural systems. While in this study
we focus on the qualitative failure analysis of the IoT system, a recent overview of physical
security and safety issues in IoT can be found in [11].

Failure analysis methods are indispensable in safety-critical domains, encompassing
diverse sectors like aviation, automobiles, and industrial control systems [12]. Among these
methods, Fault Tree Analysis (FTA) stands out as a widely acknowledged and highly effec-
tive technique for analysing failures in safety-critical systems [13]. By employing graphical
models, FTA provides a systematic representation of the logical connections between fail-
ures and their root causes, offering valuable insights into potential vulnerabilities and areas
for improvement in complex systems.

The structured and methodical FTA method is an effective approach for identifying
potential system failures, assessing risks, and developing strategies to prevent them during
system design [13–15]. This approach is particularly useful in examining failures across a
range of systems, including smart agriculture [13–18]. By utilising a visual and deductive
approach, the FTA method identifies potential safety risks, predictive failure of the system,
critical failure scenarios, and the shortest path to system failure [17,18]. The FTA process
involves understanding system functions and components, identifying possible failure
modes, determining the root cause of failures, and proposing corrective actions to address
them [19]. The FTA method remains a well-established approach for assessing the safety
and reliability of agricultural systems, contributing to improved performance and enhanced
productivity. Therefore, incorporating the FTA method into the iterative design process
of smart agricultural systems ensures that safety considerations evolve with the system
design, promoting ongoing improvement and cultivating a proactive risk management
culture within the agricultural industry.

Despite the wide adoption of the FTA model as a safety analysis method, the reliance
on FT has some inherent limitations, such as being a manual process, not supporting
reusability, being prone to human errors, and becoming cumbersome when the failure
behaviour becomes complicated [13,20]. Model-driven approaches are being adopted from
the functional system design domain to the safety analysis environment to overcome these
challenges and keep up with the latest advancements in the overall system design approach.
In the model-driven environment, the Model-Based Systems Engineering (MBSE) approach
is rich with various system models and diagrams, which can effectively model system
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architecture, and through their extension, model failure behaviour that can be viable for
Model-Based Safety Analysis (MBSA) [21].

Recent studies in the safety analysis domain are now proposing the utilisation of
MBSA approaches for the generation of the FTA process to simplify design trade-offs,
increase IoT design flexibility, and reduce cost and time-to-market constraints [22–31]. This
study utilises the use of the MBSA paradigm to create an FTA model of an IoT-based SIS
in a SysML environment for a viable safety assessment. It is worth noting that although
IoT-based agricultural systems are gaining more trust from the public, the MBSA approach
of safety analysis is not being used as much in the intelligent agricultural domain as it is in
other safety-critical domains. However, the failure of monitoring systems in agriculture
can have a significant impact on food security and result in enormous financial loss.

This article presents a novel MBSA approach for safety analysis of an IoT-based SIS.
The framework leverages IoT-based SIS and focuses on the conceptual design phase to
identify potential failure behaviours of the system. It generates detailed failure models
for the system and its components, formalising them through MBSA-generated FTA dia-
grams. The method’s granular flexibility enables a better understanding of how individual
component failures can cause system-wide safety problems, thereby improving system de-
pendability and failure risk mitigation. The framework’s efficacy is demonstrated through
a case study of IoT-based SIS. This approach represents a significant step towards proac-
tive and comprehensive failure analysis in innovative agricultural ecosystems, aligning
technological advancements with the goal of system analysis approaches. The article is
divided into sections to provide a comprehensive overview of the IoT’s role in smart agri-
culture. It begins with an introduction and then moves on to Section 2, which provides a
comprehensive overview of IoT’s role in smart agriculture. This is followed by a review of
manual safety analysis methods in Section 3, and MBSA methods are covered in Section 4.
Furthermore, Section 5 then describes the proposed framework in detail and demonstrates
its application in a case study, which can be found in Section 6. This article concludes
with Section 7, summarising the key points discussed and suggesting potential areas for
future research.

2. Applications of IoT in Smart Agriculture

This section provides a detailed overview of how IoT technology is leveraged to
promote sustainable and intelligent farming practices. From monitoring soil moisture
levels to tracking livestock, the IoT has revolutionised how agriculture is managed and
optimised for greater productivity and efficiency.

2.1. Smart Irrigation System

Freshwater scarcity is a critical global challenge that we must address, as only 2.5 % of
Earth’s water supply is freshwater, with a mere 31.3 % available for human use, with the
rest being in the form of glaciers or ice caps [32,33]. Agriculture consumes a vast amount
of this resource, and as the demand for food increases, it is essential to manage water
resources efficiently [34].

IoT technology offers a promising solution. By combining sensor networks, smart tech,
and the Internet, we can measure critical parameters like soil moisture and temperature to
enable real-time data analysis for accurate irrigation control [35]. With the integration of
microcontrollers and wireless communication, IoT tech can facilitate the development of
automated irrigation systems that conserve up to 90 % of water compared with traditional
methods [36]. Several studies have proposed the use of an integrated sensor/actuator
node network to measure various physical parameters such as soil moisture, air tempera-
ture, humidity, water level, water flow, and luminous intensity [37,38]. Leveraging smart
Internet-based technology can help optimise water usage and improve crop yield, con-
tributing to long-term resource sustainability. By incorporating IoT tech in agriculture,
a comprehensive solution to freshwater scarcity can be provided, leading to better water
conservation and benefiting farmers, consumers, and the environment.
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2.2. Pest Control and Plant Disease Monitoring

The agricultural industry has experienced significant changes due to the IoT, particu-
larly in pest control and plant disease monitoring [39]. Farmers can now utilise advanced
deep learning methods to identify pests, diseases, weeds, and yield and assess soil suitabil-
ity for different crops. With the help of image processing, machine learning, and Logistic
Decision Regression (LDR), researchers have achieved impressive accuracy rates in detect-
ing pests and plant diseases, leading to better crop management practices and improved
yields [39–41].

Smart agriculture has been introduced which utilises an IoT architecture that employs
deep learning techniques to detect insects, diseases, weeds, and soil nutrients and predict
crop yield with greater accuracy. This has revolutionised the industry, as sensor data
have improved the accuracy and reliability of disease detection through innovative data
analysis methods. Recently, there has been a surge of interest in using convolutional neural
networks (CNNs) for image analysis, which have the potential to further enhance the
accuracy and speed of disease detection. CNNs effectively identify plant diseases, pests,
and nutrient deficiencies and predict crop yield [42,43]. Integrating IoT with advanced deep
learning methods has transformed the agricultural industry, paving the way for innovative
solutions to old problems. More farmers are expected to embrace this technology in the
coming years, leading to increased productivity and better crop management practices.

2.3. Use of Drones and Harvesting Robots

The agricultural industry has significantly transformed since the introduction of drones
and IoT devices. These advanced technologies have revolutionised traditional cultivation
methods by reducing physical strain and streamlining the process [44]. The introduction of
intelligent agricultural systems has paved the way for implementing innovative methods
to monitor soil conditions, spray pesticides and fertilisers, and transmit sensor data for
analysis [45].

Drones have emerged as one of the most promising tools in agriculture. With high-
resolution cameras, they can capture images of crops from an aerial view, providing farmers
with an accurate measurement of crop damage caused by pests or weather, especially
in challenging terrain [46]. They can also monitor crop growth and identify areas that
require fertilisation or irrigation. In addition to drones, agricultural robots integrated with
IoT devices and sensors are used for various tasks such as seedling, harvesting, weed
detection, and pest control. These robots are designed to operate autonomously and can
be programmed to perform specific tasks with precision and accuracy. Moreover, they
can collect and transmit data in real time, enabling farmers to make informed decisions
and take corrective actions quickly. Developed nations are adopting these technologies to
enhance agricultural efficiency while minimising costs and time [47,48]. Implementing IoT
devices and drones in agriculture can potentially increase crop yields, reduce labour costs,
and minimise the use of harmful chemicals [49]. Therefore, integrating these advanced
technologies in the agricultural industry is a significant step towards creating a sustainable
future for the world.

2.4. Vertical Farming and Smart Greenhouse

Vertical Farming (VF) has emerged as a modern agricultural technique wherein crops
are grown on vertically inclined surfaces, predominantly in high-rise buildings. This
innovative practice has gained immense popularity in recent years, owing to its ability
to offer several advantages beyond food security. As per Kalantari et al. [50], VF has
the potential to revamp urban design and architecture, augment food safety and security,
and reduce environmental pollution.

With the rapid advancement of digital technologies, IoT devices, artificial intelligence,
and other cutting-edge technologies are increasingly being incorporated into VF. According
to Siregar et al. [51], IoT devices and AI are being employed to monitor and control VF
environments, and researchers such as those found in [52–54] have proposed methodologies
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that integrate sensors and IoT techniques for smart VF. Additionally, Kaur et al. [55,56]
demonstrated how hydroponic VF could be carried out using IoT-based sensors with
minimal water and soil usage. By harnessing these innovative ideas, VF has the potential
to enhance crop yields while minimising resource usage, making it an attractive option for
sustainable agriculture.

Apart from IoT and machine learning, studies also explore using artificial intelligence
to build smart greenhouses. For instance, Maraveas and Chrysanthos [57] conducted a
detailed review of AI’s use in building smart greenhouses and explored methods to optimise
their usability. Also, Gracia et al. [58] reviewed the usage of Artificial Neural Networks
(ANNs) in greenhouse technology and proposed models to integrate IoT devices and ML
for innovative agriculture development. Therefore, integrating cutting-edge technologies
like IoT and AI in VF has immense potential to transform crop growth, enhance food
security, and reduce environmental impact.

2.5. Tracking and Monitoring Livestock

Precision Livestock Farming (PLF) is a modern approach that utilises IoT technolo-
gies to provide farmers with advanced tools for monitoring cattle behaviour, diagnosing
diseases, managing their welfare, and improving overall management [59,60]. In recent
years, significant progress has been made in developing web and mobile applications that
use sensors and IoT devices to monitor livestock behaviour and environmental factors.
Researchers have identified key technologies that have proven effective in PLF, including
Radio Frequency Identification (RFID), Global Positioning Satellite (GPS), Digital Twin
technology, and AI [60,61]. These technologies have improved data collection and analysis
efficiency, enabling farmers to make informed decisions about their livestock.

Furthermore, researchers have proposed efficient methods for monitoring cattle be-
haviour and environmental factors using indoor Ultra-WideBand (UWB) location data,
accelerometer data, and automatic monitoring systems based on sensors. These methods
allow farmers to monitor their cattle more accurately and in real time, improving the
overall health and well-being of the animals. Additionally, smart geofencing methods
that rely on IoT and General Packet Radio Service (GPRS) have been suggested for remote
monitoring and controlling cattle, making it easier for farmers to monitor their livestock
from a distance [61]. Other methods for herd location monitoring using Bluetooth and
GPS have also been proposed, making it easier for farmers to track the location of their
animals and ensure their safety and security. IoT technologies in PLF have transformed
the livestock industry, allowing farmers to leverage advanced tools and technologies to
manage their livestock more efficiently and effectively [62]. With continued advancements
in this field, we can expect to see even more innovative solutions that will further improve
the quality of life for livestock and enhance sustainability.

2.6. Effects of Sensor-Based IoT Device Failures in Smart Agriculture

As the demand for sustainable and efficient agricultural production grows, farmers are
increasingly adopting smart farming practices that rely on IoT technology. However, these
practices come with risks. If the sensor-based IoT devices used in agriculture fail, it can
have severe consequences for the entire system. The impact can range from environmental
pollution to decreased crop yields or even famine. In the long run, these hazards can
also damage soil health and fertility, crop disease control, supply chain management,
and farmers’ trust in IoT technology. These risks can lead to economic collapse in rural
areas, affecting farmers and related industries. Therefore, it is crucial to develop strategies to
mitigate the risks associated with sensor-based IoT device failure in agriculture, particularly
given that harsh weather conditions can make these devices prone to failure.

3. Overview of Manual Failure Analysis Methods

Failure analysis is a systematic approach to investigate and comprehend the underly-
ing causes of failures in various systems, products, or processes [26]. The primary objective



Electronics 2024, 13, 1156 6 of 25

of failure analysis is to prevent similar failures from happening in the future [12]. Fail-
ure analysis is extensively employed to analyse potential safety-related issues in domains
where safety is critical. It is crucial to perform appropriate failure analysis on the conceptual
design of IoT-based agricultural systems to ensure the design is safe and dependable [63].
Safety and reliability analysis are the two most significant dependability attributes, and they
are used extensively in many safety-critical sectors. Below is a discussion of some of the
well-known failure analysis methods.

3.1. Failure Mode and Effects Analysis

Failure Mode and Effects Analysis (FMEA) is a proactive approach in safety-critical
domains. It identifies and evaluates the potential failure modes of a system, assessing their
impact on safety, reliability, and performance [14,64]. FMEAs are often attributed to the US
military, who first utilised this technique in the late 1940s to mitigate potential failures and
minimise sources of variation during munitions production [20,65]. Notably, FMEA is also
used for failure analysis of smart agriculture [66]. Using FMEA, critical components and
functions are identified, and failure modes are evaluated based on their severity, probability
of occurrence, and detectability [67,68]. The Risk Priority Number (RPN) is calculated for
each failure mode, and necessary mitigation strategies are adopted. High-RPN failure
modes are prioritised through improved design, redundancy, maintenance, or additional
safety measures [67].

3.2. Bayesian Network

A Bayesian Network (BN) is a sophisticated probabilistic model that is extensively
utilised in various engineering domains, particularly in testing and verifying the safety
properties of IoT systems. Employing a BN model aids in recognising and reducing
risks by representing interdependencies and uncertainties [65]. The safety problem is
defined, relevant components are identified, and probabilistic dependencies are established
to achieve the utilisation of the BN model in the safety analysis. Numerical values are
then assigned to calculate the probability of specific events occurring. Each variable is
represented as a node, and the directed edges between nodes indicate the probabilistic
dependencies between the variables [65,69,70]. The Conditional Probability Tables (CPTs)
specify the probabilistic relationships for each node based on the values of its parent nodes.
The Bayesian Network supports both qualitative and quantitative analysis. Qualitative
analysis involves graphical representation, while quantitative analysis involves assigning
numerical values to the parameters in the BN, such as conditional probabilities in CPTs,
to calculate the probability of a specific event occurring or estimate the likelihood of
different events [18,71].

3.3. Markov Analysis Model

The Markov model is a mathematical framework used to study systems that change
over time through a sequence of discrete states. It is beneficial for analysing systems with
memoryless properties [72]. These are systems where the future state depends only on the
current state and not on the sequence of states that came before it. The model assumes that
a system exists in one of several discrete states at any given time and can move to another
state with specific probabilities [73]. A state transition matrix that captures these transition
probabilities defines the system’s behaviour. Markov models are often used to analyse the
behaviour of systems based on the exponential distribution of failure. The steady-state
probabilities of the model can be calculated by solving the system of linear equations
defined by the model [73].

3.4. Petri Net

A Petri Net is an essential graphical and mathematical modelling approach for
analysing and describing intricate, concurrent, and distributed systems. It is a highly
effective method for modelling and understanding systems in which multiple entities
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interact asynchronously and dynamically [65]. Typically, PNs are denoted as four-tuple
N = (P, T, A, K), a bipartite graph that we discuss in detail below:

• P = {p1, p2, p3, . . . , pn} is a finite set of places: Places represent states or conditions
within the system. They are typically depicted as circles or ovals in a PN diagram.

• T = {t1, t2, t3, . . . , tn} is a finite set of transitions: Transitions represent events or
actions that can occur within the system. These are typically depicted as rectangles
in the diagram. Transitions cause changes in the system’s state by consuming tokens
from input places and producing tokens in output places.

• A ⊆ (P × T) ∪ (T × P) is a finite set of arcs: Arcs (also known as edges) connect from
places to transitions or transitions to places, indicating the flow of tokens between
them. There are two types of arcs: Input Arcs and Output Arcs.

• K = {1, 2, 3, . . .} is a finite set of tokens: Tokens are small symbols or markers. Each
place can hold a certain number of tokens, representing the presence or availability
of resources, objects, or entities. They can move between places through transitions,
following the defined flow of arcs.

The PN model follows basic rules for activating transitions based on the availability
of input tokens. The behaviour of PNs is determined by the movement of tokens and
interaction between transitions. Coloured, timed, and stochastic PNs are variations of PNs
that address specific aspects of system modelling and analysis [65,74,75]. An example of a
simple PN is shown in Figure 1.

Figure 1. Example of a Petri Net model.

3.5. Fault Tree Analysis

The FTA method is a systematic graphical methodology widely used in engineering,
safety, and risk assessment to thoroughly analyse the causes of failures within complex sys-
tems. It originated in 1962 at Bell Phone Laboratories and was initially crafted to evaluate
the failure behaviours of the launch control system of the LGM-30 Minuteman interconti-
nental ballistic missile (ICBM) as part of the United States’ strategic deterrent forces [20,76].
Over the years, FTA has evolved into a pivotal tool for failure analysis, finding applications
in diverse domains, including industrial safety-critical systems, and gaining momentum in
IoT-based applications.

FTA’s versatility is evident across various applications, spanning safety analysis in
smart homes [77,78] to generic IoT systems [79,80], electric vehicles [81], industrial fire
detection and prevention systems [82], industrial robots [17], self-healing industrial sys-
tems [83], and cyberphysical systems [15]. Additionally, FTA has successfully analysed the
failure behaviour of smart agriculture systems [76,84], showcasing its adaptability across
diverse domains.

The FTA technique systematically identifies factors contributing to system failures
and assesses the probability of such failures, solidifying its position as one of the most
prominent techniques for dependability analysis. Recognising its significance, the Interna-
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tional Electrotechnical Commission (IEC) has endorsed FTA as a leading method for failure
analysis [13,85,86].

In Figure 2, the FTA model employs a logical and graphical diagram to pinpoint
critical components for improvement, preventing future failures. The diagram outlines
the hierarchy of events and utilises logic gates such as AND, OR, and Voting gates to
model different systems’ behaviour. In an AND gate, all child events must occur for the
parent event, whereas in an OR gate, any single child event can activate the parent event.
The Voting gate requires a specific number of events (e.g., 2 out of 3), as the diagram
indicates. The green triangle symbol facilitates the breakdown of the tree into smaller
components for more accessible representation.

Figure 2. Example of a fault tree.

The fault tree is constructed using a top-down approach, starting with a top event
causing the overall system failure. This top event is then decomposed into intermediate
events using logic gates, representing the immediate causes of the top event. The recursive
breakdown continues until the analysis reaches the component level failure or root causes
that cannot be further decomposed. The ultimate goal is to assess how the top event will
occur in the tree, representing the system failure.

The analysis can be conducted qualitatively and quantitatively. Qualitative analysis
involves obtaining Minimal Cut Sets (MCSs), the smallest combinations of root causes or
basic events (BEs) leading to system failure. Identifying MCSs helps understand critical
combinations of component failures or events. On the other hand, quantitative analysis
uses failure rates of components or probabilities of root causes to predict system failure.
Considering the type of logic gates used between events, the system failure probability can
be calculated [12,20].

While FTA possesses strengths shown in Table 1, such as providing a structured
approach for failure analysis, there are also acknowledged weaknesses [12,20]. These
include the potential for human error in tree creation, a cumbersome process, lack of
support for reusability, and inherent limitations of manual-based system analysis methods.
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Table 1. Strengths of Fault Tree Analysis Approach.

Ser Strengths Description

1. Systematic Approach FTA provides a structured and systematic
method for analysing potential failures in a
system and helps to identify the root causes
of failures in a logical manner.

2. Visual Representation It uses a tree-like structure that helps visualise
the relationships between different events and
their contributions to system failure.

3. Facilitates Communication The graphical nature of FTA facilitates com-
munication among stakeholders, making it
easier to convey complex system failure sce-
narios and their implications.

4. Root Cause Analysis FTA helps identify system failure’s
root causes.

5. Identifying Critical Paths FTA helps to identify critical paths or combina-
tions of events that may lead to system failure.

6. Quantitative and Qualitative
Analysis

FTA can be used for both qualitative analy-
sis (identifying failure paths) and quantita-
tive analysis (estimating probabilities of fail-
ure events).

7. Early Detection of Issues Potential issues and vulnerabilities can be
identified during the design phase, allowing
for proactive risk mitigation.

8. Continuous Improvement FTA can be applied iterative throughout the
design and operational phases, allowing for
continuous improvement in system reliability
by addressing identified vulnerabilities.

9. Supports Risk Management It is widely used in risk assessment to evaluate
the likelihood and consequences of potential
system failures.

10. Facilitates Decision Making FTA supports decision-making processes re-
lated to system design, maintenance, and
risk mitigation.

11. Versatility FTA can be applied to various systems, includ-
ing engineering systems, industrial processes,
and complex projects.

12. Integration with Other Methods FTA can be integrated with other analysis
methods, such as FMEA, to provide a more
comprehensive understanding of system reli-
ability and safety.

4. Model-Based Approach in Safety Analysis of IoT

Several approaches in MBSA have been developed to model both functional and
nonfunctional properties of modern and embedded systems, including those in the IoT
environment. These modern and formal methods utilise modelling languages that draw
from general engineering models or domain-specific models and profiles. In contrast
to manual safety analysis techniques used with informal models discussed in Section 3,
MBSA approaches have been developed to automate and semiautomate the process. These
computer-based approaches facilitate safety analysis and support various aspects of system
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design. MBSA approaches can generate compositional analysable safety artefacts based on
systematic modelling of systems’ static, dynamic, and failure behavioural patterns using
existing modelling languages and their extensibility mechanisms. The MBSA approaches are
model-driven and can manage system complexity while performing coherent, formalised,
structured, and rigorous system safety analysis. Safety analysis approaches have been de-
veloped using various modelling languages, including Unified Modelling Language (UML),
SysML, and Architecture Analysis and Design Language (AADL) as well as Hierarchically
Performed Hazard Origin and Propagation Studies (HiP-HOPS) [20,31,87,88]. Additionally,
these models are unambiguous, based on standardisation and various automation support
tools, and possess a high level of abstraction to model the heterogeneity of IoT-based
systems. The proposed approach used in this study is based on the UML/SysML mod-
elling approach.

4.1. The Unified Modelling Language

UML is a powerful modelling language that enables one to systematically visualise
a system using modelling diagrams and conduct a formal analysis. It is widely used
for systems and software specifications and can be customised to suit specific domains.
With numerous diagrams and extensions, UML can effectively describe a system’s compo-
nents, hierarchy, and states. UML diagrams are grouped into two categories: behaviour
and structure [30]. Behaviour diagrams capture the system’s dynamic behaviour, while
structure diagrams describe the system’s static structure. Some popular UML diagrams in-
clude activity, state machine, sequencing, timing, use case, class, and component diagrams.
UML is a reliable tool for high-quality modelling of safety-critical systems and has been
adopted as a standard by the Object Management Group [29].

4.2. System Modelling Language

The SysML is a general-purpose graphical modelling language that was developed in
2003 on top of the UML specifically for system development, such as software, hardware
interactions, and dependencies, among others [22,28]. The SysML is similar to UML;
however, some diagrams in UML were removed, and others more specific to system
engineering design were added. Two groups of SysML diagrams can be used to describe
a system: behaviour and structure. The behaviour diagram showcases how the system
operates, while the structure diagram highlights the system’s static structure. Popular
SysML diagrams that are widely used include the block definition diagram (BDD), internal
block diagram (IBD), parametric, and state machine diagram (SMD) [27]. A Broad List of
SysML diagrams that can be used for various modelling of system features is shown in
Figure 3, and a high-level description of the diagrams is provided in Table 2.

The uniqueness of both UML and SysML is their extension mechanisms, which are
known as profiles. A UML/SysML profile defines an extension of the language in terms
of stereotypes (concepts in the target domain) and tagged values (the attributes of the
stereotypes). For instance, the UML profile for Modelling and Analysis of Real-Time and
Embedded Systems (MARTE) provides an analysis framework called the Quantitative
Analysis Model (GQAM), enabling performance specification in UML models.



Electronics 2024, 13, 1156 11 of 25

Figure 3. SysML Diagrams.

Table 2. Overview of some of the Notable UML/SysML Diagrams.

Ser SysML Diagrams Features/Functions

1. Activity Diagram Illustrates the system’s behaviour, control flow, object
flow, decision, and end process.

2. State Machine Diagram Model the various states of a system and the transitions
between them. They can represent single or parallel
states, including initial, idle, active, and standby.

3. Sequence Diagram Model sequencing or order of the system’s operations.

4. Timing Diagram Represents the hierarchy of timings in which a system
executes actions.

5. Use Case Diagram Model how users (actors) can use the system or
corroborate with one another.

6. Class Diagram Software or hardware model classes, each with a name
and attributes, depict the structure of the system design
in terms of classes and constraints.

7. Block Definition
Diagram

Present the structure and hierarchy of a system block
(software/hardware) through classes and constraints.
Describe generalisation (inheritance between classes),
aggregation, and dependencies.

8. Internal Block Diagram Model the internal structure of a system and how
components block exchange information.

9. Component Diagram Model components in the system and their interface
(how they can be connected).

10. Parametric Diagram Model parametric constraints between blocks.

11. Requirement Diagram Model system operation requirements and the
interrelationships between its various elements.

12. Package Diagram Model is organised into packages, views,
and viewpoints.

The Dependability Analysis Modelling (DAM) is a domain-specific profile of SysML
designed to address safety concerns such as safety metrics, transitions from safe to failure
states, and triggers leading to those transitions. In a safety analysis based on MBSA
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approaches, the static structure of the system and its components are annotated with failure
behaviours, and the resulting models are transformed to develop system-level failure
analysis models [26]. Studies have been conducted using SysML/UML to develop FT and
FMEA [28,89–92]. Various methodologies have been used for FTA generation, such as
transforming the MBSA design developed in SysML using IBD and SMD to FTA artefacts
based on a failure mapping pattern [25]. Other approaches have used programming
languages to parse the XML model file generated from the source model and automate a
formal model. Notably, the XML file of the source model was parsed in the Python language
to safety analysis artefacts [93], ATLAS Transformation Language (ATL) [24], and Eclipse
Modelling Framework [23]. The MBSA offers several advantages, including a composition
that enables an easy understanding of the effects of altering one or more components or
subsystems on the entire system’s safety assurance. Additionally, it supports reusability,
reduces human errors, and facilitates iterative system design.

5. Proposed Safety Analysis Approach

The approach proposed in Figure 4 uses the MBSE method, which combines the
benefits of MBSA and safety analysis models. This technique preserves the advantages of
MBSA over other static FTA methods while establishing the link between the IoT system
architecture and the analysis models.

Static  System
Modelling

Start

 Functional
Modelling

Create BDD of 
the Context

Modification

Failure Annotation
Modelling

Component Fault
Tree Generation

System Fault Tree
Generation

Qualitative Failure
Analysis

Convert the
Configuration

 into SysML IBD

Modification Modification Modification Modification
Finish

Develop Nominal and
Failure Model

(SMDs) of  the System
Map Failure

Model
to CFT Aggregate the

CFT to System FT

Figure 4. Proposed MBSA framework.

The MBSA framework described in Figure 4 for modelling of an IoT-based SIS involves
a systematic process, utilising SysML diagrams and software tools compatible with SysML
for precise modelling of the IoT system . The open-source SysML-compatible tool Papyrus
was employed to initiate the analysis, seamlessly integrating with other Eclipse-based tools.
This tool creates models that accurately represent the system’s static, functional aspects,
and failure behaviours.

The first step in our proposed approach involves creating diagrams that capture the
static architecture, functional behaviour, and potential failure scenarios of the system in
the SysML environment using Papyrus–Eclipse-based open-source software (Website for
Papyrus tool: https://eclipse.dev/papyrus/). This includes creating SysML diagrams such
as BDD, IBD, and SMD to build a comprehensive model of the IoT system’s architecture,
functional structure, and failure characteristics. The created diagrams are then combined
using a specific methodology, which we define in the subsequent section, to create the FTA
from the models.

Notably, the failure behaviours of each component are annotated using a DAM pro-
file, transforming the source model into a formal analysable model for safety analyses.
The DAM profile defines stereotypes, tagged values, and constraints, which are applied
to the SysML SMD model to accurately articulate the system’s failure behaviour. Once
the DAM profile is imported, aligned with the SMD diagram, and configured with DAM
stereotypes, the Papyrus software tool facilitates a seamless transition, bridging static and

https://eclipse.dev/papyrus/
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functional modelling for fault tree generation. The fault tree logic is specified to generate
the fault tree automatically, providing the necessary input for the tool.

To ensure a high level of consistency and accuracy in our methodology, we heavily
depend on Papyrus’s robust support for SysML and the DAM profile throughout our
process. Alongside Papyrus, we incorporate other software tools, such as Drawio (Drawio
tool website: https://app.diagrams.net/), to streamline the transition from SysML mod-
elling to fault tree generation. Our overarching approach adheres to the MBSA framework,
supports iterative system development, provides a systematic and structured method for
constructing an FTA and conducts a qualitative safety analysis of the IoT-based SIS. In the
subsequent section, we delve into the intricacies of this process, providing a comprehensive
understanding of our methodology.

5.1. Static System Modelling

To create the system’s static architecture model, we utilised BDD to represent the
system’s different compositions and hierarchical structures. We divided the system into
components using predefined blocks that logically indicate the system’s hardware and
software. Additionally, we defined relationships among the components and the overall
system regarding dependencies, generalisations, associations, aggregation, and inheritance.

5.2. Functional Configuration Modelling

To develop the failure behaviour of an IoT system, it is crucial to have a comprehen-
sive understanding of its internal structure. One way to achieve this is by creating an IBD
representing the system’s properties and interconnections. This visualises the system’s de-
composition, facilitating an understanding of how information flows between its elements.
The IBD depicts the system’s internal configuration using its components, ports, and data
flows. The IBD illustrates how a malfunction can propagate throughout the system by com-
bining connectivity and flow. A well-defined internal structure and an understanding of its
behaviour are fundamental to ensuring system safety and reliability. By providing a visual
representation of the system’s properties, interconnections, and internal configuration in an
MBSA environment, these diagrams facilitate an understanding of the system’s behaviour,
identifying potential malfunctions and designing measures to mitigate them.

5.3. Failure Annotation

To effectively model the failure behaviour of a system, it is essential to understand its
functional features and the nominal state of each component. This involves analysing the
system’s overall function, any redundancy designed into the system, and the behavioural
characteristics of individual components. It is necessary to depict how the system elements
can fail, how they change from one state to another, and the conditions that cause these
changes. SMDs display the different states of the components and how their state can
change. Using the system’s decomposed BDD, various nominal and failure states of the
system are developed, along with their corresponding transitions and triggers, as SMDs.
However, more than SMDs are needed to provide all the necessary information to model
the failure features of an IoT system. To address this, the SMD was extended through
the use of the DAM Profile, a UML extension mechanism that models the metamodel of
the system. The DAM Profile is particularly effective for failure modelling through its
stereotypes, such as DaStep, which represents the failure and error states of the system.
The tag value under DaStep represents the transitions and triggers of the components.
Using the DAM Profile, unique stereotypes and tag values can be applied to annotate the
failure of system components accurately. The Data-Intensive Computing Environment
(DICE)-integrated simulation environment was employed to achieve this goal.

5.4. Component Fault Tree Generation

In the paradigm of MBSA, it is possible to convert a source MBSA model into a target
safety artefact by creating links between the two. The ultimate goal is to produce an

https://app.diagrams.net/


Electronics 2024, 13, 1156 14 of 25

executable model to analyse the system’s safety. To achieve this, it is essential to have a
comprehensive understanding of both the source and target languages. Our approach
involves transforming SysML SMDs into component-based models that can be analysed to
determine the contribution of each component to the overall system failure. This approach
simplifies the iterative design process by enabling the replacement of components with a
higher failure rate and more resilience. The resulting component-based model is generated
via failure modelling, identifying potential failures and enhancing overall system safety.
To create a component-level fault tree (CFT), each system component failure represented as
SMDs is mapped to obtain the corresponding component tree, generating several trees that
can be studied to detect possible failures.

5.5. System Fault Tree Generation

The system-level FT is a target model designed to conduct a comprehensive system
failure analysis. It combines individual FTA models of system components to create a
single, unified tree structure using the system’s IBD. The IBD instances are utilised to
merge the various CFTs. This allows the model to represent the relationship between
components based on their configuration in the IBD. Static gates are employed to illustrate
the configuration of the components better. For instance, an OR gate indicates series
configurations where the system fails if any components fail. On the other hand, an AND
gate is utilised for parallel configurations where the system only fails if all components
fail. This level of detail allows the model to predict potential failures and their causes more
accurately. At the top of the tree, the undesired event represents the overall failure of the
system. Prior to that, the previous top-level undesired events in each component FTs are
intermediate events. This detailed approach allows for a more thorough understanding
of the system’s potential points of failure and can help identify areas for improvement
and optimisation.

6. Illustrative Example

To demonstrate our proposed MBSA approach, we used the IoT-based Smart Irrigation
System presented in Figure 5. Using this system, a farmer can remotely monitor the status
of a field and control the water pump(s) to irrigate the field whenever needed without
being physically present in the field. In normal operating conditions, this system will
monitor different parameters of a field, and based on the monitoring knowledge, it will
decide when and for how long to irrigate the field. It uses a temperature sensor (TS) and a
moisture sensor (MS) for monitoring. TS monitors the temperature of the field, and MS
monitors the soil moisture. TS and MS continuously sense the respective parameters and
report them to the IoT gateway/controller for further processing. The communication
between the sensors and the IoT gateway takes place via a wireless medium. An Arduino
board or Raspberry Pi can be considered as an IoT gateway. A battery powers the board.
The IoT gateway converts the analogue signals received from the sensors to digital values
and sends these values to the edge cloud server. The communication between the edge
cloud server and the gateway occurs through a wireless medium.

6.1. Static System Modelling

To create a formal system composition using the MBSA approach, it is crucial to have
static configuration modelling. The system’s functional components and dependencies
are depicted in the BDD shown in Figure 6, with SIS as the context. Direct composition
relationships and SysML relationship link symbols were utilised to represent composite
blocks in the system.
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Figure 5. Architecture of an IoT-based Smart Irrigation System.

IoT-Based SIS

TS

Controller

Battery
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Wireless
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Relay System
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Battery
Wireless
Device

Water ReservoirPrimary Power
Supply

Secondary Power
Supply

Farmer IoT
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1

1

11

1

1

1

1

1

1

Figure 6. Block definition diagram model of an IoT-based Smart Irrigation System.

6.2. Internal Configuration System Modelling

The IBD Model of the system is crucial for effectively utilising MBSA modelling in
system architecture. The SysML IBD depicts the system’s context and intricate, interdepen-
dent relationships among its components, accurately portraying data flow through ports
and item flow symbols. The context blocks in SIS accurately represent interactions between
different components as depicted in Figure 7.
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Figure 7. Internal block diagram model of an IoT-based Smart Irrigation System.

6.3. Failure Annotation Modelling of the System

In the provided Figure 8a,b, the failure annotations of two system components,
namely the temperature sensor and power source, are displayed based on the SysML
SMD. The metamodel was extended using the DAM Profile. In the SysML extension mech-
anism, DAM Stereotypes DaStep extends the SysML parent model to represent the state
of failure and error in the system. The tag value under DaStep describes the transitions
and triggers of the components. The nominal and failure states of the components are
shown, where the failure states are represented by no output from the temperature sensor
and power source failure. DAM stereotypes represent the transitions and triggers of the
components to illustrate the failure and error states. The extended SMDs include failure
to capture sensor readings, false sensor readings, and loss of control. The transition link
indicates the triggers responsible for the state change, and various triggers are defined for
other system components.

TS.SMD(NOTS)

Capture Sensors
Reading

Sending Sensing
Reading

NTSR

LOCTSG

<<DaStep>>
Kind=failure

<<DaStep>>
Kind=failure

<<DaStep>>
Kind=error

FTSR

Triggers
TSWDF.

CATSS.EC

Triggers
TSIF.TSBF.
CETS.PATS

Triggers
TSBD.CETS.

CATS

<<DaStep>>
Kind=failure

<<DaStep>>
Kind=error

<<DaStep>>
Kind=failure

PS.SMD (PSF)

Generate Power
Supply

PPSFPPSIF

SPSFSPSIF

Transmit Alternate
Power

Generated APOSPSIF.SWF

<<DaStep>>
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<<DaStep>>
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<<DaStep>>
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<<DaStep>>
Kind=failure<<DaStep>>

Kind=failure

<<DaStep>>
Kind=failure

PSIF

(a) (b)

Figure 8. Example of failure annotation, (a) failure annotation of a temperature sensor and (b) failure
annotation of a power source.

6.4. Model Transformation from MBSE Model to FT
6.4.1. Component Fault Tree Generation

To create the corresponding CFT, each system component’s one-to-one SMDs are
mapped. In the CFT, the component’s overall failure is TE, while the IEs represent various
functional states’ failure or error deviation. BE represents their triggers. To illustrate,
the SMDs created in Figure 8a,b are mapped to their respective CFTs, as shown in Figure 9.
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Figure 9. Mapping of component state machine diagram to component fault tree for (a) a temperature
sensor and (b) a power source.

6.4.2. System Fault Tree Generation

The different components’ fault trees generated are mapped based on the instances of
the components in the system’s IBD. Accordingly, the overall system FT of SIS obtained is
presented in Figure 10. The TE denotes the system failure condition, which is “the failure
of the system to irrigate the field when needed”. The list of BEs and IEs and their description
representing various basic device failures or communication failures between devices is
provided in Table A1 in Appendix A.

6.5. Qualitative Failure Analysis of the System

Depending on the role(s) of a component in the system and its interactions with other
components in the system, the failure of the component can have an enormous impact on
the failure of the system. Therefore, this system’s qualitative failure behaviour analysis
aims to identify its potential causes. For failure behaviour analysis, we identified “the failure
of the system to irrigate the field when needed” as a system failure condition. Considering this
event as the top event of the fault tree, we developed the fault tree shown in Figure 10. This
FT contains 19 unique basic events and the root causes that can contribute to the system
failure. These root causes are either an internal failure of the devices or the failure of the
communication between devices.
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Figure 10. Fault tree generated for IoT-enabled SIS.

As seen in Figure 10, physical damage to the sensors or erroneous readings from the
sensors is considered as the failure of the TS and MS, which are represented by the events
TSF (temperature sensor failure) and MSF (moisture sensor failure). In the fault tree, five
basic events—FCRG, FCGC, FCFC, FCTG, and FCMG—represent communication failures
between system components. Note that, due to simplicity and brevity, we considered
these communication failure-related events at an abstract level. This means we do not
decompose these events further to show why a particular communication failure occurs.
However, one can explore these events further by considering all the causes of a typical
wireless communication failure. Similarly, the failure of the edge cloud is presented by the
event ICS (internal failure of the edge cloud server) due to simplicity. Again, this event
can be decomposed further by considering many potential causes of a cloud server failure,
including hardware and software failures.

We analysed the fault tree in Figure 10 to identify the MCSs and obtained 94 MCSs;
each of these MCSs can cause the system to fail. Out of these 94 MCSs, 71 MCSs are of
order 2 and 23 are of order 1. The order of an MCS represents the number of basic events
contributing to that MCS. If all the basic events are equally probable to occur, then the
higher the order of an MCS, the lower the criticality of that MCS is. Therefore, in this
example, the first-order MCSs, such as “Water level is inadequate in the reservoir (WLIR)”,
“Random Failure of Water Pump (RFWP)”, “Switch Failure (SWF)”, “Internal Failure of
Relay (IFR)”, “Human Error (HE)”, “Random Failure of Gateway (RFG)”, and “Gateway
Battery Failure (GBF)”, are the most critical ones. Therefore, actions should be taken to
reduce the likelihood of these events. For instance, for the events related to communication
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failure, multiple communication media can be considered, so that if one medium fails,
another can be used for successful communication.

7. Conclusions

The integration of IoT technology into agriculture heralds a transformative era, albeit
one fraught with challenges, particularly in areas of the dependability and trustworthi-
ness of these systems to operate as expected over their mission time. Understanding the
intricacies of individual component failures and their systemic impact is pivotal for en-
suring the robust performance of agricultural IoT systems. As the agricultural landscape
evolves, researchers are at the forefront of developing sophisticated analysis and verifi-
cation frameworks essential for fostering intelligent systems contributing to long-term
food sustainability.

This study serves as a testament to the effectiveness of the MBSA approach in dissect-
ing the failure behaviour of an abstract IoT-based Smart Irrigation System. Leveraging a
model-driven methodology, the investigation not only illuminated the nuances of system
failure but also showcased the MBSA approach’s merits—characterised by meticulousness,
error reduction, model reuse, and adaptability to iterative processes. The fault tree gener-
ated through this approach systematically identified component failures as basic events,
delineating their interconnected pathways leading to system failure. This granular analy-
sis empowers stakeholders to pinpoint the root causes of system failure and implement
remedial measures crucial for maintaining operational integrity.

While the present study concentrated on qualitative analysis, future investigations
hold promise in transitioning to quantitative assessments by incorporating components’
failure rates or probabilities and considering various failure distributions over time. Fur-
thermore, the MBSA approach’s inherent flexibility opens avenues for including additional
complex failure conditions, such as “unnecessary irrigation” or “insufficient irrigation
duration”, demonstrating its ease of adaptation for diverse failure analyses.

In the evolving landscape of agricultural technology, security considerations emerge
as a paramount concern. Acknowledging the potential vulnerabilities to safety failures
induced by malevolent attacks, future research endeavours should delve into fortify-
ing the system against security threats and malicious operations. As we navigate the
ever-expanding realm of IoT in agriculture, a continuous commitment to robust analysis,
adaptability, and security considerations will undoubtedly shape the future of sustainable
and resilient smart farming systems.

Lastly, the proposed approach requires scalability, which can be achieved using a
dynamic FTA. This tool is useful for modelling complex systems’ time- and function-
dependent failure behaviour. By incorporating a dynamic FTA, we will be able to gain
a more accurate understanding of how a system behaves over time and how different
functions and components interact. This information can optimise framework performance,
reduce risks, and improve the system’s overall dependability.
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Appendix A. Data Associated with the Fault Tree of Figure 10

Table A1. Description of Events in the Fault Tree of Figure 10.

ID Description

TE Failure of the Irrigation System

TS Temperature Sensor

MS Moisture Sensor

UA User IoT Mobile Application

SG Smart Gateway

EC Edge Cloud Server

WR Water Reservoir

RS Relay System

PS Power Source

WP Water Pump

NOMS No Output (or Wrong Reading) from MS

NOTS No Output (or Wrong Reading) from TS

NARF No action is recommended by the farmer

NOG No Output from the Smart Gateway

NODC No Output Data by the Cloud

FSWF Failure to Supply Water to the Farm

RAF Relay Activation Failure

PSF Power Supply Failure

WPF Water Pump Failure

NTSR No Reading from Temperature Sensor

FTSR False Reading from Temperature Sensor

LOCTSG Loss of Communication Temperature Sensor to Gateway

NMSR No Reading from Moisture Sensor

FMSR False Reading from Moisture Sensor

LOCMSG Loss of Communication Moisture Sensor to Gateway

TSIF Temperature Sensor Internal Failure

TSBF Temperature Sensor Battery Failure

CETS Calibration Error Temperature Sensor

CATS Cyberattack on Temperature Sensor

TSBD Temperature Sensor Battery Depletion (Low Battery)

TSWDF Temperature Sensor Wireless Device Failure

CATSS Cyberattack on Temperature Sensor sent Signal

EC Environment Condition

MSIF Moisture Sensor Internal Failure

MSBF Moisture Sensor Battery Failure
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Table A1. Cont.

ID Description

CEMS Calibration Error Moisture Sensor

CAMS Cyberattack on Moisture Sensor

MSBD Moisture Sensor Battery Depletion (Low Battery)

MSWDF Moisture Sensor Wireless Device Failure

CAMSS Cyberattack on Moisture Sensor sent Signal

FRCD Failure to Receive Cloud Data

NRCS No Command Received by the IoT Gateway from the Edge Cloud Server

LAF Lack of Action by the Farmer

HE Human Error

LCUAG Loss of Communication User Application to Gateway

NIRG No Sensing Input Received by the Gateway

ERG Erroneous Reading from the Gateway

LOCGC Loss of Communication Gateway to Cloud

LOCCG Loss of Communication Cloud to Gateway

FADU Failure to Accept Actuation Data From the User

LOCGR Loss of Communication Gateway to Relay System

NITS No Input from Temperature Sensor

NIMS No Input from Moisture Sensor

RFG Random Failure of Gateway

GBF Gateway Battery Failure

PAG Physical Attack on Gateway

GIF Gateway Internal Failure (Hardware Failure)

CAG Cyberattack on Gateway Node

GAIF Gateway Application Internal Failure (Runtime Error)

GBF Gateway Battery Failure

RFGWD Random Failure Gateway Wireless Device

CCD Corrupted Cloud Data

NACEC No Activation Command from the Cloud

LCUAG Loss of Communication User Application to Gateway

LCGRS Loss of Communication Gateway to Relay System

CACD Cyberattack on Cloud Data

LOCGC Loss of Communication Gateway to Cloud

NIRG No Input Received from the Gateway

IFC Internal Failure of Cloud Server

CAEC Cyberattack on Edge Cloud (DoS)

DCC Data Corruption on the Cloud Server

CACPD Cyberattack on the Cloud Processed Data

LOCCG Loss of Communication Cloud to Gateway

NIG No Input from the Gateway

IFR Internal Failure of Relay

PSF Power System Failure
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Table A1. Cont.

ID Description

EMI Electromagnetic Interference on the Relay System

PPSIF Primary Power System Failure

SPSIF Secondary Power System Failure

APO Alternative Power Source Outage

RFWP Random Failure of Water Pump

WLIR Water Level is Inadequate in the Reservoir

SWF Switch Failure

NGD No Data from the Gateway
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