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Abstract: In this paper, a new negative lossless grounded capacitance multiplier (GCM) circuit
based on a Current Feedback Operational Amplifier (CFOA) is presented. The proposed circuit
includes a single CFOA, four resistors, and a grounded capacitor. In order to reduce the power
consumption, the internal structure of the CFOA is realized with dynamic threshold-voltage MOSFET
(DTMOS) transistors. The effects of parasitic components on the operating frequency range of the
proposed circuit are investigated. The simulation results were obtained with the SPICE program
using 0.13 µm IBM CMOS technology parameters. The total power consumption of the circuit was
1.6 mW. The functionality of the circuit is provided by the capacitance cancellation circuit. PVT
(Process, Voltage, Temperature) analyses were performed to verify the robustness of the proposed
circuit. An experimental study is provided to verify the operability of the proposed negative lossless
GCM using commercially available integrated circuits (ICs).

Keywords: capacitance multiplier; multiplication factor; active element; spice; Monte Carlo

1. Introduction

High-value capacitors in IC technology require a large silicon area. To address this
issue, capacitance multiplier (CM) circuits capable of multiplying capacitance have been
proposed to obtain large capacitance from small capacitance values. Therefore, CM circuits
play an essential role in obtaining high-value capacitances.

CM circuits can be classified as grounded [1–8] and floating [9–18] according to the
type of the simulated capacitance, and positive [1–7] and negative [19–28] according to the
value of the simulated capacitance.

A literature survey reveals that there are various CM circuits are reported using
numerous versatile active building blocks (ABBs). However, upon careful examination of
the circuit configurations published in the literature, they are considered to suffer from
some of the limitations given below.

1. The circuits implemented with two or more active and passive elements have higher
power consumption and a larger area on the chip.

2. They are practically not applicable with commercially available ICs.
3. The multiplication factor is not electronically adjustable.

Four negative CFOA-based CM circuit topologies have been proposed by Lahiri and
Gupta [19]. While the first two proposed circuits contain two CFOAs, the other circuits
consist of a single CFOA. All circuits are designed using two resistors and a single capacitor.
Additionally, the circuits do not require any critical component matching conditions. All
of the circuits in SPICE have been tested using the AD844 macro model. A capacitance
cancellation circuit and a quadratic oscillator circuit are given as application examples. The
resistance-controlled negative capacitance multiplier circuit presented by Abuelma’atti
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and Dhar consists of two CFOAs, two floating resistors, and a floating capacitor [20]. The
negative CM circuit proposed by Dogan and Yuce includes a single CFOA, three resistors,
and a capacitor [21]. The circuit proposed by Al-Absi and Abuelma’atti includes one
CFOA and two OTAs. It is configured as an OTA-negative resistor to achieve an adjustable
negative impedance multiplier [22]. The resistor-free circuit presented by Stornelli et al.
consists of an E-VCII- and a capacitor [23].

Many of the negative CMs available in the literature contain two or more ABBs [19,20,22,
24,25,27,28]. There are also circuits that contain only one active device [19,21,23,26,29–31]. When
designing negative CMs, excessive use of active and passive elements should be avoided as this
will increase power consumption. Negative CMs presented by researchers have generally been
realized through the use of three or more passive elements [19–21,24,25,28,30,31]. Negative
CMs containing a single capacitor have also been proposed, but each of these circuits
operates with two or more active components [22,27].

The aim of this work was to design a negative lossless GCM circuit using currently
commercially available ICs, namely the AD844 [32]. The proposed circuit is designed
with a single CFOA, four resistors and a grounded capacitor. The internal structure of the
CFOA is built with DTMOS transistors to reduce power consumption. The total power
consumption of the circuit is 1.6 mW. The non-ideal analysis for the proposed circuit has
been investigated in detail. A capacitance cancellation circuit is presented as an application
example. To verify the operability of the proposed circuit, it has been experimentally tested
using commercially available ICs, namely AD844s.

The paper is structured as follows: Section 2 introduces the proposed circuit utilizing
a CFOA. The non-ideal analysis is given in Section 3. SPICE simulation results and dis-
cussions are given in Section 4. An application example is presented in Section 5. Finally,
Section 6 concludes the paper.

2. The Proposed Circuit

The terminal relations of CFOAs, whose circuit symbol and equivalent circuit are
given in Figures 1 and 2, respectively, can be represented in the following matrix equation:

IY
IZ
VX
VW

 =


0 0 0 0

α(s) 0 0 0
0 β(s) 0 0
0 0 η(s) 0




IX
VY

VZ
IW

 (1)

where α(s) represents the current gain which is ideally equal to unity. Also, the β(s) and η(s)
correspond to voltage gains and ideally both of them are equal to unity. Furthermore, α(s),
β(s), and η(s) can be given by

α(s) =
ωα(1− εα)

s + ωα
(2)

β(s) =
ωβ

(
1− εβ

)
s + ωβ

(3)

η(s) =
ωη

(
1− εη

)
s + ωη

(4)

Herein, εα represents the current-tracking error, ideally equal to zero, while εβ and εη

denote the voltage tracking errors, also ideally equal to zero. It is assumed that |εα|,
∣∣εβ

∣∣,
and

∣∣εη

∣∣ are significantly smaller than one.
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In addition, ωα, ωβ, and ωη denote corner frequencies of the relevant parameter.
Furthermore, in an ideal case, Rin is infinity and the port relationships of the CFOA are
expressed by the following equations: VX = VY, IY = 0, IZ = IX, and VW = VZ.

The proposed negative lossless GCM is depicted in Figure 3. Without passive element
matching conditions, the input admittance (Yin) of the circuit is obtained as follows:

Yin(s) =
Iin
Vin

= − (R3 + R4)(R2 − R1 + sCR1R2)

R1R3(R2 + R4)
(5)

If R2 = R1 is selected for the circuit in Figure 3, the input admittance is simplified as
follows. When this condition is met, the circuit can simulate negative lossless GCM. The
equivalent capacitance (Ceq) and the multiplication factor (K) are given by
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Yin(s) =
Iin
Vin

= sCeq = sCK = sC
[
−R1(R3 + R4)

R3(R1 + R4)

]
(6)

Ceq = CK = C
[
−R1(R3 + R4)

R3(R1 + R4)

]
(7)

K = −R1(R3 + R4)

R3(R1 + R4)
(8)
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As can be seen from Equation (8), if one of the resistors R3 or R4 is replaced
with an MOS-based voltage-controlled resistor, the multiplication factor becomes
electronically controllable.

The sensitivity of the K with respect to the tuning resistors is given below.

SK
R1

=
R4

R1 + R4
(9)

SK
R3

= − R4

R3 + R4
(10)

SK
R4

=
R4(R1 − R3)

(R1 + R4)(R3 + R4)
(11)

3. Non-Ideal Analysis

The non-ideal equivalent circuit of a CFOA is shown in Figure 4. Here, RX, RZ, and RW
indicate parasitic resistors. Also, CY and CZ demonstrate the parasitic capacitors. Ideally,
these parasitic elements are RX = RW = CZ = CY = 0 and RZ =
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. The terminal relations of
the CFOA in non-ideal conditions are given in Equation (12).

IY
IZ
VX
VW

 =


0 sCY 0 0

α(s) 0 sCZ + 1/RZ 0
RX β(s) 0 0
0 0 η(s) RW




IX
VY

VZ
IW

 (12)
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Taking into account the effects of the non-ideal gains of the CFOA, the input admittance
of the circuit is obtained as follows.

Yin(s) =
R3(1− αβ) + R4(1− αβη) + R1(1− η)− αβR1(R3 + ηR4)sC

R3(R1 + R4)
(13)

Considering the non-ideal gains of the CFOA, the equivalent circuit of the pro-
posed circuit is given in Figure 5; the values of the equivalent components are given
in Equations (14)–(16).

Req =
R3(R1 + R4)

R3(1− αβ) + R4(1− αβη) + R1(1− η)
(14)

Ceq = CK = −αβR1(R3 + ηR4)

R3(R1 + R4)
C (15)

K = −αβR1(R3 + ηR4)

R3(R1 + R4)
(16)
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The sensitivity analysis is given below.

SK
α = SK

β = 1 (17)

SK
η =

ηR4

(R3 + ηR4)
(18)

SK
R1

=
R4

R1 + R4
(19)

SK
R3

= − ηR4

(R3 + ηR4)
(20)

SK
R4

= − R4(R3 − ηR1)

(R1 + R4)(R3 + ηR4)
(21)

Under the specified condition where only the parasitic impedances of the X, Y, Z,
and W terminals are considered, the input admittance is derived in the form presented in
Equation (22).

Yin(s) =
a0 + a1s + a2s2

b0 + b1s + b2s2 (22)

In this context, ai and bi represent the real coefficients of the driving point admittance Yin(s).

a0 = ((R3 + RW) + R4)[R1 + RX − (R1 ‖ RZ)] (23)

a1 = R4(R3 + RW)[CR1(RX − (R1 ‖ RZ)) + CZ(R1 + RX)] (24)

a2 = CCZR1RX(R1 ‖ RZ)((R3 + RW) + R4) (25)

b0 = (R1 + RX)(R3 + RW)(R4 + (R1 ‖ RZ)) (26)

b1 = [CR1RX(R3 + RW)(R4 + (R1 ‖ RZ)) + CZR4(R3 + RW)(R1 ‖ RZ)(R1 + RX)] (27)

b2 = CCZR1R4RX(R3 + RW)(R1 ‖ RZ) (28)

In the ideal case, the input admittance of the capacitor is of the form Yin(s) = a1s/b0.
To obtain a lossless capacitor, the terms other than a1s and b0 need to be small enough. In
other terms, when s is substituted with jω, the following inequalities must be concurrently
fulfilled to approximate the ideal capacitor admittance:

|a0| � |a1 × (jω)| ⇒ f � fL =
1

2π

(
a0

a1

)
(29)

∣∣∣a2 × (jω)2
∣∣∣� |a1 × (jω)| ⇒ f � fH1 =

1
2π

(
a1

a2

)
(30)

|b1 × (jω)| � |b0| ⇒ f � fH2 =
1

2π

(
b0

b1

)
(31)

∣∣∣b2 × (jω)2
∣∣∣� |b0| ⇒ f � fH3 =

1
2π

√
b0

b2
(32)
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According to the inequalities given above, the operating frequency range of the
proposed circuit is calculated approximately as follows.

f � fL =
1

2π

(
a0

a1

)
(33)

f � fH =
1

2π
min

{
a1

a2
,

b0

b1
,

√
b0

b2

}
(34)

4. Simulation Results

In order to reduce the power consumption of analog integrated circuits, operations
with lower supply voltages can be provided by DTMOS technology [33–37]. To obtain
a DTMOS transistor, the body and gate terminals of the MOSFET are short-circuited as
shown in Figure 6. The DTMOS-based implementation of the CFOA, derived from the
CCII+ presented in reference [38], is depicted in Figure 7.
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The simulation results have been obtained utilizing the SPICE program, employing
0.13 µm IBM CMOS technology parameters. The power supply and bias voltage were
chosen as VDD = −VSS = 0.6 V and VB = −0.2 V, respectively. The transistor dimensions
are detailed in Table 1. The parasitic impedances and non-ideal gains of the CFOA are
delineated in Table 2.

Table 1. The transistor dimensions.

Transistors W (µm)/L (µm)

M1–M13 130/0.65
M14, M15, M20–M23, M25, M26, M28 13/0.65
M24, M27 26/0.65
M16–M19 15.6/0.26
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Table 2. Parasitic impedances and non-ideal gains of the CFOA.

Parasitic Impedances Values

RX 0.637 Ω
RW 0.637 Ω
RZ 20.04 kΩ
CZ 66 fF
CY 8.23 fF
α 0.999972
β 1.000009
η 1.000009

The functionality of the proposed negative GCM was examined under the following
simulation conditions. Detailed simulation settings are included in Table 3.

(i) Multiplication factor (K) is constant while C is variable;
(ii) C is constant while K is variable.

Table 3. Detailed simulation results and passive component settings.

Case
Passive Components

K Ceq (nF)
Frequency Response

C (nF) R1
(kΩ)

R2
(kΩ)

R3
(Ω)

R4
(kΩ)

Magnitude within
10% Error

Phase within
10◦ Error

1 0.1
10 10 100 1 −10 −1 4 Hz to 80 MHz 14 Hz to 53 MHz
10 10 100 10 −50.5 −5.05 9 Hz to 35 MHz 52 Hz to 47 MHz
10 10 10 10 −500.5 50.05 9 Hz to 32 MHz 53 Hz to 11 MHz

2
0.5

10 10 100 1 −10
−5 1 Hz to 52 MHz 3 Hz to 30 MHz

5 −50 1 Hz to 20 MHz 1 Hz to 15 MHz
50 −500 1 Hz to 4.5 MHz 1 Hz to 4.5 MHz

The frequency response of the input impedance of the proposed negative lossless
GCM is given in Figure 8 for various multiplication factors (K). By selecting the passive
elements as C = 100 pF , R1 = R2 = 10 kΩ, R1

3 = R2
3 = 100 Ω, R3

3 = 10 Ω, R1
4 = 1 kΩ,

and R2
4 = R3

4 = 10 kΩ, the multiplication factors are set to K1 = −10, K2 = −50.5, and
K3 = −500.5, resulting in Ceq = −1 nF, −5.05 nF, and −50.05 nF, respectively. In Figure 9,
a comparison of the proposed negative GCM with the ideal capacitor for Ceq = 5, 50, and
500 nF is given by selecting K = 10, C = 0.5, 5, and 50 nF, respectively. The frequency
responses of the proposed circuit to various supply voltages are shown in Figure 10. Monte
Carlo (MC) simulations were conducted for 100 runs. The simulation results for a 10%
change in the threshold voltages and gate oxide thicknesses of all MOS transistors and a
5% change in the width of all MOS transistors are shown in Figures 11 and 12, respectively.
A temperature analysis of the circuit is also depicted in Figure 13.

A table of comparisons of previously reported negative CM circuits using various
ABBs can be seen in Table 4. The proposed circuit contains a single CFOA. Compared to
other circuits implemented with a single active component, the number of passive elements
is relatively high. However, to reduce power consumption, the internal structure of the
CFOA is designed using the DTMOS technique. Power consumption can be reduced by
using MOS-based resistors. The multiplication factor of the circuit can be adjusted up to 500.
In addition, according to Figure 8, the operating frequency reaches 80 MHz. Considering
its simplicity, operating frequency, and multiplication factor, it is clear that the proposed
circuit is superior to the circuits in the literature.



Electronics 2024, 13, 1163 9 of 20

Electronics 2024, 13, x FOR PEER REVIEW 9 of 21 
 

 

to 500. In addition, according to Figure 8, the operating frequency reaches 80 MHz. Con-
sidering its simplicity, operating frequency, and multiplication factor, it is clear that the 
proposed circuit is superior to the circuits in the literature. 

 
Figure 8. Frequency response of the proposed negative lossless GCM and ideal capacitor for K = −10, 
−50.5, and −500.5 by selecting C = 100 pF; (a) magnitude and (b) phase responses. Figure 8. Frequency response of the proposed negative lossless GCM and ideal capacitor for K = −10,
−50.5, and −500.5 by selecting C = 100 pF; (a) magnitude and (b) phase responses.



Electronics 2024, 13, 1163 10 of 20Electronics 2024, 13, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 9. Frequency response of the proposed negative lossless GCM and ideal capacitor for Ceq = 
−5, −50, and −500 nF by selecting K = 10, C1 = 0.5, 5, and 50 nF; (a) magnitude and (b) phase responses. 
Figure 9. Frequency response of the proposed negative lossless GCM and ideal capacitor for Ceq = −5,
−50, and −500 nF by selecting K = 10, C1 = 0.5, 5, and 50 nF; (a) magnitude and (b) phase responses.



Electronics 2024, 13, 1163 11 of 20Electronics 2024, 13, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 10. Frequency responses of the proposed negative lossless GCM for various supply voltages; 
(a) magnitude and (b) phase responses. 
Figure 10. Frequency responses of the proposed negative lossless GCM for various supply voltages;
(a) magnitude and (b) phase responses.



Electronics 2024, 13, 1163 12 of 20Electronics 2024, 13, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 11. Monte Carlo simulation results for 10% variation in the threshold voltages (VTH) and gate 
oxide thickness (tox) of all the MOS transistors; (a) magnitude and (b) phase responses. Figure 11. Monte Carlo simulation results for 10% variation in the threshold voltages (VTH) and gate
oxide thickness (tox) of all the MOS transistors; (a) magnitude and (b) phase responses.



Electronics 2024, 13, 1163 13 of 20Electronics 2024, 13, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 12. Monte Carlo simulation results for 5% variation in width of all the MOS transistors; (a) 
magnitude and (b) phase responses. Figure 12. Monte Carlo simulation results for 5% variation in width of all the MOS transistors;
(a) magnitude and (b) phase responses.



Electronics 2024, 13, 1163 14 of 20Electronics 2024, 13, x FOR PEER REVIEW 14 of 21 
 

 

 
Figure 13. Temperature analysis for the proposed negative lossless GCM; (a) magnitude and (b) 
phase responses. 

 

Figure 13. Temperature analysis for the proposed negative lossless GCM; (a) magnitude and
(b) phase responses.



Electronics 2024, 13, 1163 15 of 20

Table 4. Comparison of negative CM circuit.

References # and Type of
ABB

# of Resistors # of Capacitors Electronic
Tuning

Multiplication
n Factor

Matching
Condition

Technology Operation
Frequency

Power
DissipationF G F G

[19] in Figure 2 2 CFOA 0 2 0 1 No 0.5 No 0.35 µm NA NA
[19] in Figure 3 2 CFOA 0 2 0 1 No 0.5 No 0.35 µm NA NA
[19] in Figure 4 1 CFOA 1 1 1 0 No 0.5 No 0.35 µm 1 kHz to 5 MHz NA
[19] in Figure 5 1 CFOA 2 0 0 1 No 0.5 No 0.35 µm NA NA
[20] in Figure 1 2 CFOA 2 0 1 0 No NA No AD844 NA NA
[21] in Figure 8 1 CFOA 1 2 0 1 No NA Yes 0.13 µm NA NA
[22] in Figure 11 1 CFOA,

2 OTA 0 0 0 1 Yes NA No AD844,
LM13700N 2 Hz to 7 MHz NA

[23] in Figure 1 1 EVCII− 0 0 1 0 Yes 100 No 0.18 µm 80 Hz to 40 kHz 67 nW
[24] in Figure 4 2 VCII+ 1 1 1 0 No 50 No 0.35 µm 10 MHz 1.5 mW
[25] in Figure 6 2 CFTA 0 2 1 0 Yes 20.3 No 0.13 µm 10 kHz to 100 MHz NA
[25] in Figure 7 2 CFTA 0 2 1 0 Yes 20.3 No 0.13 µm 10 kHz to 100 MHz NA
[26] in Figure 7 1 CFTA 0 1 1 0 Yes 10 No 0.18 µm 280 Hz to 4.15 MHz NA
[27] in Figure 2 1 VCII ±,

1 E-DVCC 0 0 0 1 Yes 25.4 No 0.18 µm 10 kHz to 1 MHz 3.184 mW

[28] in Figure 2 1 OTRA,
1 VF 3 0 1 0 Yes 99 Yes 0.18 µm 100 Hz to 1 MHz NA

[29] in Figure 1 1 VDTA 0 1 1 0 Yes 20 No 0.18 µm 100 Hz to 100 MHz 0.89 mW
[30] in Figure 1 1 CFOA 3 0 1 0 No 26 No AD844 1 kHz to 100 kHz NA
[31] in Figure 2 1 CFOA 2 0 0 1 No 2001 No AD844 4 kHz to 1 MHz NA
[31] in Figure 2 1 CFOA 2 0 0 1 Yes 201 No AD844 4 kHz to 1 MHz NA
[31] in Figure 2 1 CFOA 2 0 0 1 No 400 No AD844 4 kHz to 1 MHz NA

Proposed 1 CFOA 2 2 0 1 Yes 500.5 Yes 0.13 µm 8 Hz to 80 MHz 1.6 mW

Abbreviations: ABB: active building block; CFOA: current feedback operational amplifier; CFTA: current follower transconductance amplifier; E-DVCC: electronically tunable differential
voltage current conveyor; F: floating; G: grounded; NA: not available; OTA: operational transconductance amplifier; VCII: second generation voltage conveyor; VF: voltage follower.
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5. Application Example

This section presents an application example to demonstrate the robustness and
workability of the proposed GCM. The application example shown in Figure 14 is the
capacitive cancellation circuit in which the parasitic capacitors in the output circuits are
eliminated. Here, the negative capacitor (Ceq) is obtained with the proposed negative
lossless GCM. The resistance currents IRa and IRb in the circuit are given below. If the
condition Ceq = −Cc is satisfied, IRa and IRb will be equal.

IRa =
1 + s

(
Cc + Ceq

)
Rb

Ra + Rb + s
(
Cc + Ceq

)
RaRb

Vs (35)

IRb =
1

Ra + Rb + s
(
Cc + Ceq

)
RaRb

Vs (36)
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The simulation result was obtained by choosing Ra = Rb = 1 kΩ and Cc = 0.5 nF. The
proposed negative GCM is designed to have Ceq = − 0.5 nF in the circuit by choosing
K = 10 and C = 50 pF . The frequency performance of the capacitance cancellation circuit,
for the output current IRb , is given in Figure 15. According to the results, the circuit is
compatible with ideal results up to 10 MHz.
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A sinusoidal waveform of 300 mV amplitude and 100 kHz frequency was applied
to the input of the circuit. Waveforms of IRa and IRb currents are given in Figure 16.
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The current waveforms have the same amplitude and phase, indicating that the parasitic
capacitance is eliminated in the proposed circuit.
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6. Experimental Study

An experimental setup has been designed with the commercially available AD844 ICs
to verify the operation of the proposed negative lossless GCM. The capacitance cancellation
circuit is shown in Figure 17. Supply voltages of ±15 V were selected. The experimental
results have been obtained out by selecting Ra = Rb = 1 kΩ and Cc = 1 nF. By choosing the
passive components of the proposed GCM to eliminate the parasitic capacitor, Cc = 1 nF,
R1 = 10 kΩ, R2 = 10 kΩ, R3 = 100 Ω, R4 = 1 kΩ and C = 100 pF, K = −10 and Ceq = −1 nF
were obtained. A sinusoidal input voltage (Vx) with an amplitude of 2 V at frequencies of
1 kHz, 10 kHz and 100 kHz was applied to the input of the circuit. The input voltage (Vx)
and the voltage waveforms of the compensated capacitor (Vy) are shown in Figures 18–20.
According to the test results, it can be seen that the voltages Vx and Vy are approximately
in the same phase. The phase difference between the voltages was measured as 2.2◦ at
most. As a result, the effect of the parasitic capacitor Cc is compensated for by the proposed
GCM. Since the resistances Ra and Rb are chosen to be equal, the circuit works as a voltage
divider and the voltage Vy is approximately half of the voltage Vx.
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7. Conclusions

In this study, a new circuit configuration was introduced to realize the negative
lossless GCM. The proposed circuit contains a single CFOA, four resistors, and a grounded
capacitor. A detailed analysis of the circuit has been carried out. The factors affecting
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the frequency range have been investigated through mathematical analyses. In order to
reduce the power consumption of the circuit, a CFOA was obtained by using DTMOS
transistors. The simulation results were obtained with the SPICE program using 0.13 µm
IBM CMOS technology parameters. The total power consumption of the circuit was 1.6 mW.
The workability of the circuit has been shown by providing a capacitive cancellation circuit
application and an experimental study.
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