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Abstract: Current testing methods for autonomous driving systems primarily focus on simple traffic
scenarios, generating test cases based on traffic accidents, while research on generating edge test cases
for complex driving environments by traffic regulations is not adequately comprehensive. Therefore,
we propose a method for scenario modeling and violation testing using an autonomous driving
system based on traffic regulations named TraModeAVTest. Initially, TraModeAVTest constructs a
Petri net model for complex scenarios based on the combination relationships of basic traffic regulation
scenarios and verifies the consistency of the model’s design with traffic regulation requirements using
formal methods, to provide a representation of traffic regulation scenario models for the violation
testing of autonomous driving systems. Subsequently, based on the coverage criteria of the Petri
net model, it utilizes a search strategy to generate model paths that represent traffic regulations,
and employs a parameter combination method to generate test cases that cover the model paths,
to test the violation behaviors of autonomous driving systems. Finally, simulation experiment
results on the Baidu Apollo demonstrate that the test cases representing traffic regulations generated
by TraModeAVTest can effectively identify the behaviors of autonomous vehicles violating traffic
regulations, and TraModeAVTest can effectively improve the efficiency of generating different types
of violation scenarios.

Keywords: software testing; autonomous driving system; test case; Petri net model; traffic regulation

1. Introduction

With the rapid development of artificial intelligence, autonomous vehicles (AVs) have
become a typical application of AI technology and hhave made significant progress in the
past decade. As a type of non-deterministic system, the safety of autonomous driving
systems (ADSs) has garnered increasing attention, and the prevention of traffic accidents is
one of the crucial safety requirements for AVs [1]. In 2018, an AV operated by Uber was
involved in a traffic accident on public roads, which resulted in the death of a pedestrian
due to the failure to yield [2]. Therefore, as a safety-critical system, ADSs must undergo
regulatory testing before deployment on actual roads to ensure their safety. Testing based
on deep learning for ADSs is particularly challenging due to the lack of interpretability in
the behavior of deep learning systems [3].

By employing effective scenario generation methods in combination with simulation
testing techniques, the diverse and complex traffic scenarios can be provided for testing
ADSs [4]. Simulation testing uses modeling methods and high-fidelity simulators, such as
LGSVL [5] and CALAR [6], to map the real world into a virtual simulation environment,
enabling the generation of intricate interactive environments and hazardous boundary sce-
narios [7]. In the field of autonomous driving, a scenario is understood as a comprehensive
reflection of the driving environment and behavior within a specific time and space, and can
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be categorized into functional, logical, and specific scenarios based on different abstraction
levels [8]. Test cases are defined as specific scenarios containing “pass/fail” criteria to
evaluate the performance of AVs, such as collisions between AVs and obstacles [9]. Due
to the complexity of driving environments, including factors such as weather conditions,
road layouts, and dynamic traffic information, these complex situations can have unpre-
dictable effects on AVs. Therefore, researching testing techniques for autonomous driving
in complex environmental scenarios is of significant importance for enhancing traffic safety
and reducing the likelihood of traffic accidents involving ADSs.

Traffic regulations are utilized as external resources for testing autonomous driving,
offering both scenario descriptions and driving rules concurrently [10]. As indicated by a
recent study on autonomous driving testing [11], the development of test scenarios based
on traffic regulations in a simulated environment is an urgent issue that requires attention.
Therefore, we concentrate on the construction and reorganization of autonomous driving
scenarios based on traffic regulations, as well as the generation of test cases that represent
traffic regulations to identify violations within AVs.

In summary, this paper makes the following contributions:

1. We proposed a formal definition and combination relationships of autonomous driv-
ing scenarios and constructed a Petri net model for the complex traffic regulation
scenarios based on the combination of basic traffic regulation scenarios. The consis-
tency of the model design with traffic regulation requirements has been validated
using formal methods;

2. We introduced coverage criteria suitable for Petri nets and utilized a search strategy
to generate scenario model paths that represent traffic regulations. Subsequently, we
have iteratively generated test cases for covering the model paths using a parameter
combination approach;

3. TraModeAVTest was evaluated using simulation experiments on the Baidu Apollo
platform. The experimental results demonstrate that the test cases generated by
TraModeAVTest, covering traffic regulation scenario model paths, effectively represent
traffic regulations and can efficiently test violations of traffic regulations within the
ADS. Furthermore, the experimental comparisons with baseline methods indicate that
TraModeAVTest effectively improves the efficiency of generating different types of
violation scenarios.

2. Related Work

With the rapid development of autonomous driving technology, the testing of ADSs
has become a research focus in both academia and industry. Currently, many companies are
dedicated to this field, such as Tesla Autopilot [12], Baidu Apollo [13], and Autoware [14].
The majority of existing research has been focused on the collision avoidance functional-
ity of autonomous driving systems, testing them by introducing various safety metrics
such as accident rates [15], drivable area [16,17], collision time [18,19], and performance
boundaries [20,21]. However, due to open and uncertain traffic environments, testing
autonomous driving systems still remains challenging.

The currently prevalent methods for autonomous driving test scenario generation
include data-driven scenario generation methods and model-driven scenario generation
methods. In data-driven methods, scenarios are generated from existing datasets, such
as collision reports [22,23] and real-world driving records [24–27], and deep learning
techniques can also be used to enhance the diversity of these datasets [28–30]. Drawing on
real traffic data, scenario reconstruction is driven by the extraction of necessary scenario
data to replicate offline scenarios in virtual environments for testing with ADSs [31]. For
example, Gambi et al. [32] introduced a method for generating crucial scenarios based on
police reports and accident sketches. Since data-driven methods rely on traffic accident
data to recreate pre-accident scenarios for testing ADSs, the testing scenarios are solely
based on actual traffic accidents, posing challenges in generating rare boundary test cases
and inadequately testing ADSs.
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In model-driven methods, scenarios are generated based on the evaluation results of
system models [33–35]. In particular, simulation-based test case generation methods, using
high-fidelity simulators to generate test cases for detecting safety violations in ADSs, have
attracted increasing attention due to their high testing efficiency, as well as good scalability
and repeatability [36–38]. For example, Tuncali et al. [39] transformed the problem of
finding fault-inducing scenarios into a function minimization problem, where a robustness
function is defined in a given virtual environment to minimize the input parameters that
can minimize the robustness function and find the initial settings for the specified scenarios.
Furthermore, search-based methods generate test cases guided by the results of simulation
experiments, and have been widely applied as an important approach to model-driven
scenario generation [40–43]. Scenario generation based on search techniques involves
modeling the spatial behavior of AVs, parameterizing scenario parameters within the
spatial scope, and generating specific scenarios using a parameter value search [44]. For
example, Haq et al. [45] proposed advanced techniques for testing ADSs, which expanded
existing search algorithms and utilized surrogate models to effectively identify safety-
related violations. However, existing approaches solely focus on safety-related guidance in
generating critical scenarios, neglecting to fully consider the constraints imposed by traffic
regulations. This oversight may result in generated test cases potentially disregarding
compliance with traffic regulations.

Studies have shown that [46,47], in order to guarantee the safety and comfort of ADSs,
AVs are required to adhere to a variety of regulatory standards. Presently, the testing
of ADSs, based on scenarios, places a primary emphasis on safety [48], with adherence
to traffic regulations being one of the essential prerequisites that ADSs must fulfill [49].
It is of great significance for the safety testing of ADSs to be able to generate test cases
that represent traffic regulations and subsequently test whether the ADSs violates traffic
regulations.

Additionally, the Petri net theory has also been widely employed in autonomous
driving testing. Tang et al. [50] proposed a method for testing AV route coverage through
map modeling, which models the map as a Petri net and then defines the topological
and route characteristics of intersections based on the Petri net model, and the experi-
ments demonstrated that the method generated test cases achieving higher route coverage.
Building on this inspiration, in [51], the authors proposed a modeling and verification
method for basic ADS testing scenarios. This method, starting from traffic regulations,
integrates the interactive behaviors of complex driving environments and constructs a Petri
net model of intersection scenarios. Experiments have shown that the constructed scenario
model can represent traffic regulations. Based on this, this paper focuses on the definition
and combination relationships of basic scenarios, in order to achieve the modeling and
verification of complex scenarios based on traffic regulations. Subsequently, this facilitates
the generation of test cases covering model paths to discover more violations of traffic
regulations by ADS.

3. Background
3.1. Petri Net

The Petri net is commonly used as a mathematical representation of discrete parallel
systems and is an important tool for modeling analysis, verification, simulation, and
property analysis of complex systems [52].

The mathematical depiction of a Petri net involves representing it as a triplet, where
S denotes places, T denotes transitions, and F denotes flow relations, all subject to the
following conditions:

1. S ∪ T ̸= Φ
2. S ∩ T = Φ
3. F ⊆ (S × T) ∪ (T × S)
4. dom(F) ∪ cod(F) = S ∪ T, where dom(F) = {x ∈ S ∪ T|∃y ∈ S ∪ T : (x, y) ∈ F},

cod(F) = {x ∈ S ∪ T|∃y ∈ S ∪ T : (y, x) ∈ F}.
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The basic elements of a Petri net include places, transitions, and arcs. Places represent
the states that may occur in a simulated system, while transitions describe the actions that
lead to the transition between two states. Arcs are used to connect places and transitions,
representing the transition between states and actions. The black dots inside circular nodes
represent tokens in places, and the transition of tokens within the system represents the
flow of resources.

3.2. Model Path

In reference [51], the authors have presented a comprehensive overview of the model-
ing and verification methods for intersection scenarios based on traffic regulations. Specifi-
cally, commencing from traffic regulations and accounting for the complex driving environ-
ment, a Petri net is utilized to construct a model of an autonomous driving test scenario that
conforms to traffic regulations. The rational states, transitions, and actions within the model
pathway serve to represent the traffic regulations that an ADSs must adhere to. Formal
methods are subsequently utilized to verify the consistency between the model pathway
and the requirements of traffic regulations. Consequently, the scenario model constructed
in accordance with traffic regulations can effectively represent the corresponding traffic
regulations.

In the Petri net model, each test path is represented as a complete path from the initial
state to the terminal state of the Petri net model. Newly generated test paths should contain
at least one place or transition that has not appeared in other paths. Since each path of
the scenario model corresponds to a traffic regulation, generating test cases that cover all
paths of the model can effectively represent the validation of each traffic regulation, thereby
enabling the testing of AVs’ compliance with traffic regulations.

For instance, the Petri net model of the signal-free intersection scenario shown in
Figure 1 represents the traffic regulations as follows:

1. The path P1 represents the traffic regulation “vehicles on the left yield to vehicles on
the right at the intersection”, i.e., P1 : s2 → t2®s5®t3®s6®t4®s2®t5®s7 .

2. The path P2 represents the traffic regulation “turning vehicles yield to vehicles going
straight at the intersection”, i.e., P2 : s3®t6®s8®t7®s9®t8®s3®t9®s10.

3. The path P3 represents the traffic regulation “vehicles yield to pedestrians at the
intersection”, i.e., P3 : s4®t10®s11®t11®s12 ®t12®s4®t13®s13.
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Figure 1. Petri net model of the left turn scenario. Figure 1. Petri net model of the left turn scenario.

Therefore, from the perspective of generating test cases that cover structurally diverse
paths, the capability to generate test cases covering model paths can effectively represent the
corresponding traffic regulations. This provides a decision model for testing the compliance
of ADSs in complex traffic environments.



Electronics 2024, 13, 1197 5 of 22

3.3. Method Overview

We have proposed a method, named TraModeAVTest, for modeling scenarios and
conducting violation tests for ADSs based on traffic regulations, to address the compliance
verification issue of ADSs. Specifically, TraModeAVTest comprises two main components.
Firstly, it involves the modeling and validation of traffic regulation scenarios based on Petri
nets, which primarily focuses on the critical task of constructing a complex Petri net model
for the interaction environment of an ADS based on traffic regulations, enabling the Petri
net model paths to represent traffic regulations. Secondly, it encompasses the simulation
testing of the AV violation behaviors, which primarily addresses the key issue of generating
test cases covering model paths based on traffic regulation scenario models to identify AV
behaviors that violate traffic regulations.

For the first challenge of scenario modeling and validation, we start the process by
modeling the basic test scenarios of the ADS based on traffic regulations. Subsequently, we
define the combination relationships of autonomous driving scenarios, thereby modeling
the Petri net model of complex scenarios and verifying the consistency of the scenario
model design and system traffic regulation requirements using formal methods, thereby
achieving the validation of model paths representing traffic regulations.

For the second challenge of violation testing, we first utilize search strategies based
on coverage standards suitable for Petri net models to generate model paths representing
traffic regulations. Then, we use a parameter combination method to generate test cases
covering model paths. Finally, through simulation experiments on the Baidu platform
Apollo, we verify that the test cases generated by TraModeAVTest covering the scenario
model paths effectively identify the behaviors of AVs violating traffic regulations, thus
validating the testing scenarios based on traffic regulation modeling and the test cases
generated based on models, effectively testing the compliance of the ADS. In fact, these
violation behaviors are also important causes of traffic accidents involving AVs. The method
framework of TraModeAVTest is illustrated in Figure 2.
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4. Scenario Modeling and Validation

In our previous study [51], we presented a comprehensive overview of the modeling
and validation methods for the intersection scenarios based on traffic regulations. Using
similar methods, we can construct more basic scenarios based on traffic regulation, includ-
ing cruising, lane changing, following, overtaking, and parking. In this section, we describe
the combination relationships of basic traffic regulation scenarios, and then elaborate on
the process of modeling and verifying complex traffic regulation scenarios.

4.1. Scenario Combination Relationship

According to the fundamental behaviors of vehicle driving, we categorized driving
scenarios into basic scenarios such as cruising, lane changing, overtaking, intersection,
following, and parking. These basic scenarios can be further classified into meta-scenarios.
For example, the intersection scenario can be divided into two scenarios: crossroads and
roundabouts. The crossroads scenario can be further subdivided into four meta-scenarios:
left turn, straight, right turn, and U-turn. Similarly, the roundabout scenario can also
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be further subdivided into entering the roundabout and exiting the roundabout. The
cruising scenario includes static obstacles ahead, dynamic obstacles ahead, and normal
cruising. The following scenario involves vehicles merging in, vehicles merging out, and
emergency situations ahead. The lane changing scenario comprises vehicles changing left
and vehicles changing right. The overtaking scenario encompasses following the target
vehicle, merging into the adjacent lane, overtaking the target vehicle, and returning to the
original lane. The parking scenario categorizes emergency vehicle parking and right-side
vehicle parking. Furthermore, instantiating these meta-scenarios through parameters yields
specific scenarios for testing the violation behaviors of ADS. Specifically, the relationship
between basic scenarios and meta-scenarios is shown in Figure 3.
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The traffic regulations, upon which the construction of the scenario model is pred-
icated, are articulated in natural language. In order to bridge the gap between natural
language and formal language, we present a formal definition of the scenario. The formal-
ized description of a scenario is denoted as a triplet <π,≺, s >, where π represents a set of
scenarios, s is a scenario within π (i.e., s ∈ π), and ≺ denotes a precedence relationship,
which is a strict ordering relation on π. For example, s1 ≺ s2 denotes that s1 precedes s2,
signifying that s1 takes precedence over s2 in occurrence. As the occurrence of any scenario
can be viewed as the occurrence of an event, the relationships between scenarios can be
described using the relationships between events. The elements of the scenario still serve
to describe the scenario. Therefore, based on the formal definition of the scenario, three
common relationships between scenarios can be described, as shown in Table 1.
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Table 1. Description of the scenarios relationship.

Definition Meaning Example

s1 ≺ s2
The occurrence of s1 strictly precedes the
occurrence of s2. For s1 = “Following” and s2 = “Overtaking”, then s1 ≺ s2.

s = s1 ∪ s2 If either s1 or s2 occurs, then s occurs. For s = “Lane changing”, s1 = “changing_left”,
s2 = “changing_right”, then s = s1 ∪ s2.

s = s1 ∩ s2 If both s1 and s2 occur, then s occurs. For s = “Roundabout”, s1 = “roundabout_entering”,
s2 = “roundabout_exiting”, then s = s1 ∩ s2.

Based on the formal definition of the scenarios mentioned above and the description
of the three common relationships between scenarios in Table 1, the relationships between
the basic scenarios and meta-scenarios in Table 1 are described as follows:

Relation 1: Cruising = cruising_static ∪ cruising_dynamic ∪ cruising_normal.
Relation 2: Lane changing = changing_left ∪ changing_right.
Relation 3: Following = following_merging in ∪ following_merging out ∪ following_

emergency.
Relation 4: Intersection = Roundabout ∪ Crossroad.

Relation 4.1: Roundabout = roundabout_entering ∩ roundabout_exiting.
Relation 4.2: Crossroad = crossroad_left ∪ crossroad_straight ∪ crossroad_right ∪

crossroad_U-turn.

Relation 5: Overtaking = overtaking_following ∩ overtaking_merging ∩ overtaking_
overtaking ∩ overtaking_returning.

Relation 6: Parking = parking_emergency ∪ parking_right-side.

In this instance, the intersection described by Relation 4 may represent either Cross-
road or Roundabout. Intersection can only be triggered when one of these options is
activated. Additionally, Roundabout outlined in Relation 4.1 comprises two meta-scenarios:
roundabout_entering and roundabout_exiting. Activation of Roundabout is contingent
upon the simultaneous triggering of both meta-scenarios. Crossroad detailed in Relation
4.2 encompasses four meta-scenarios: crossroad_left, crossroad_straight, crossroad_right
and crossroad_U-turn. Activation of any of these meta-scenarios can trigger Crossroad. It
is apparent that when constructing complex scenarios based on inter-scenario relationships,
the “or” relationship dictates that only one meta-scenario can occur, while the “and” rela-
tionship stipulates that each meta-scenario must occur. Moreover, strict adherence to the
“priority” relationship is imperative for all scenarios.

4.2. Complex Scenario Modeling

In order to model complex scenarios based on traffic regulations and verify the con-
sistency of model design with system requirements, our research focuses on methods for
integrating basic scenarios into complex scenarios. In practice, basic scenarios may involve
only one pedestrian or one obstacle and are relatively straightforward. However, complex
scenarios are comprised of multiple basic scenarios, taking into account the constraints of
multiple traffic regulations and incorporating the interaction between AVs and obstacles or
pedestrians, thereby amplifying the complexity of the scenario interaction environment.

To model basic scenarios based on traffic regulations, we select a section of the map
to construct complex scenarios for the ADS, encompassing cruising, intersection, lane
changing, following, overtaking, and parking. We employ the trajectory route of the AV
depicted in Figure 4 as an example to elucidate the modeling and verification process of
the complex scenarios.
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The scenario combination relationship of this road segment is as follows:
cruising ≺ crossroad_right ≺ overtaking ≺ crossroad_straight ≺ changing_left ≺

crossroad_left ≺ following ≺ parking_right-side
Here, overtaking = overtaking_following ∩ overtaking_merging ∩ overtaking_

overtaking ∩ overtaking_returning.
Within the basic scenario model, a mechanism exists for receiving commands, which is

equivalent to other scenario models calling the interface of this scenario model. It is evident
that commands can be sent by invoking transitions, thereby combining basic scenario
models into complex scenario models. Based on the road trajectory of the AV as shown
in Figure 4 and the scenario combination relationships outlined in Section 4.1, a Petri net
model for the complex scenarios is constructed for clarity. Figure 5 presents a simplified
Petri net model for complex scenarios based on traffic regulation.
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In our previous research, we presented a comprehensive overview of the modeling
and validation techniques for crossroad scenarios utilizing Petri nets [51]. Similar method-
ologies can be applied to develop Petri net models for basic scenarios, including cruising,
overtaking, lane changing, following, and parking, which will not be expounded upon
here. In this section, our main contribution lies in the construction of basic scenarios based
on traffic regulations, and the establishment of complex scenario models based on the
combination of scenario relationships. For instance, as depicted in the simplified Petri
net model in Figure 5, the combination of basic scenario Petri net models can be used to
construct complex scenario models based on traffic regulations, as shown in Figure 6.
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4.3. Scenario Model Validation

The Petri net model for complex scenarios based on traffic regulations undergoes
model verification, involving correctness verification and consistency verification. In the
correctness verification, formal verification of the scenario model is carried out using
MyCCSL software v1.4.15, based on the transformation rules from Petri nets to CCSL
constraints. Table 2 presents the experimental results for basic scenarios such as cruising,
lane changing, overtaking, following, and parking, indicating that the constructed complex
scenario models are deadlock-free and schedulable, thus demonstrating the correctness of
the constructed complex scenario models.

Table 2. Results of correctness verification for traffic regulation scenario models.

Scenario Consistency

Boundary Correctness

30 40 50
Activity Boundness Reachability

Result Time(s) Result Time(s) Result Time(s)

Cruising satisfiability
√

293.92
√

921.57
√

1681.23

√ √ √

deadlock x 352.36 x 961.54 x 1548.41

Lane
changing

satisfiability
√

14.46
√

39.17
√

97.16
deadlock x 22.89 x 80.44 x 153.34

Overtaking satisfiability
√

34.47
√

70.17
√

151.68
deadlock x 41.95 x 123.83 x 255.47

Following satisfiability
√

94.82
√

219.52
√

529.25
deadlock x 122.62 x 264.97 x 652.67

Parking satisfiability
√

19.70
√

44.72
√

167.63
deadlock x 23.27 x 56.21 x 204.49

In the consistency verification, the consistency between the model design of complex
scenarios and the traffic regulation requirements of the system is examined using LTL
formulas describing traffic regulation characteristics. Table 3 presents the descriptions of
typical traffic regulation features, LTL formula representations, and experimental results
within the basic scenarios. The results indicate that the model design has passed the consis-
tency verification of the traffic regulation requirements. In particular, detailed verification
results for the intersection scenario can be found in reference [51].

Table 3. Results of consistency verification for traffic regulation scenario models.

Describe LTL Formula Result

C
ru

is
in

g

If encountering a stationary obstacle,
then maneuver to avoid it. G((px21_obstacle)→(X((px23_change.left)∨(px24_change.right))))

√

If encountering pedestrians crossing
at a crosswalk, then yield to the
pedestrians.

G((px62_mark)→(X(px65_stop)))
√

If encountering fire vehicles, then let
the fire vehicles. G((px81_truck)→(X(px83_slow)))

√

La
ne

ch
an

gi
ng

If traveling in the current lane, then
maintain a safe distance from the
longitudinal target vehicle 2 and the
lateral target vehicle 3.

G((pb02_driving)→(F((pb03_distance2.safe)∧(pb04_distance3.safe))))
√

If the relative distance to the target
vehicle is greater than the
longitudinal and transverse safe lane
change distance, then change the lane

G(((pb09_distance.vertical)∧(pb10_distance.horizontal))→(F(pb1_change)))
√
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Table 3. Cont.

Describe LTL Formula Result

O
ve

rt
ak

in
g

If following another vehicle, then
maintain a safe lane-changing
distance.

G((pc02_travel.follow)→(F(pc08_change.safe)))
√

If there is a safe lane-changing
distance, then overtake the target
vehicle on the left.

G((pc08_change.safe)→(X(pc09_overtake.left)))
√

Fo
llo

w
in

g

If the followed target vehicle 1
changes lanes, then adjust the speed
to follow target vehicle 2.

G((pg21_near.target1)→(F(pg24_follow.target2)))
√

If approaching target vehicle 2 and
target vehicle 1 changes lanes, then
follow target vehicle 1.

G((pg31_near.target2)→F(pg34_follow.target1)))
√

Pa
rk

in
g

If there is a safe lane-changing
distance and the speed limit
requirements are met, then change to
the right lane and decelerate.

G(((pt12_adjust.speed)∧(pt13_change.distance))→(X(pt16_go.right)))
√

If there is a safe lane-changing
distance and the speed limit
requirements are met, then change to
the emergency lane and decelerate.

G(((pt22_adjust.speed)∧(pt23_change.distance))→(X(pt25_go.emergency)))
√

The formal verification results of the model design and system requirements indicate
that the paths of the Petri net scenario model are capable of representing traffic regulations.
For instance, the intersection scenario model has successfully undergone validation for the
“yield to pedestrians at intersections”, signifying that the corresponding paths of the model
can adequately depict the traffic regulation of “yielding to pedestrians at intersections”.
Therefore, TraModeAVTest utilizes the Petri net model of traffic regulation scenarios to
generate test cases that cover model paths, which can characterize traffic regulation and be
used to test the violations of traffic regulation for AVs, thereby improving the safety and
reliability of ADS.

5. Violation Testing Method

In the previous section, we provided a method for constructing complex scenario
models based on traffic regulations and formally verified that the paths of the Petri net
model can characterize traffic regulations. Consequently, in this section, we introduce a
method for generating test cases to cover model paths, utilizing the scenario model of traffic
regulations, in order to assess the ADS for violations of traffic regulations. Initially, we
employ a method of traversing the model to generate state invocation sequences without
test cases, i.e., the test paths of the Petri net model. Subsequently, we employ a method
of parameter combination to generate executable state invocation sequences for covering
model paths, i.e., the test cases for covering model paths.

5.1. Test Path Generation

In this paper, the coverage criteria for Petri nets primarily include the place coverage
criterion, transition coverage criterion, and place-transition coverage criterion.

1. Place coverage criterion: The test case set should ensure that all places in the Petri net
model are accessed at least once.

2. Transition coverage criterion: The test case set should ensure that all transitions in the
Petri net model are activated at least once.

3. Place-transition coverage criterion: The test case set should ensure that all places
in the Petri net model are accessed at least once, and all transitions are activated at
least once.
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The Petri net model of the autonomous driving scenario based on traffic regulations
exhibits a fundamental structure comprising sequential structure, selection structure, loop
structure, synchronization structure, and concurrent structure. In the sequential structure,
test paths are covered sequentially according to the ordered relationship of places and
transitions. Within the selection structure, each test path is traversed, ensuring that each
branch is explored at least once. Notably, the mutually exclusive branches of the selection
structure cannot appear simultaneously in the same test path, as depicted in Figure 7a.
Regarding the loop structure, to ensure comprehensive testing, scenarios where the loop
body is executed 0 times and 1 time are considered. Consequently, the loop structure can
be transformed into a selection structure, as illustrated in Figure 7b.
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For the concurrent and synchronization structures within Petri net models, the pres-
ence of mutually exclusive branches poses a challenge for testing. We will now analyze
the two cases of whether mutually exclusive branches exist in concurrent-synchronous
structures.

1. Non-existence of mutually exclusive branches: Within the concurrent-synchronization
structure, there is not just a single path for the interacting transitions; rather, there
are no mutually exclusive branches, as depicted in Figure 7c. In this simple structure
devoid of mutually exclusive branches, there are numerous methods for selecting
concurrent-synchronization paths. By employing a random generation approach to
sequentially select paths for testing, the outcomes remain consistent, thus mitigating
issues such as combinatorial explosion and repetitive testing.

2. Existence of mutually exclusive branches: Within the concurrent-synchronization
structure, there are multiple paths for the interacting transitions, and mutually ex-
clusive branches exist, as depicted in Figure 7d. In its simplified Figure 7e, the
mutually exclusive branches are P1 with P2, P3 with P4, and P5 with P6. Analysis
of the selection structure reveals that mutually exclusive paths cannot be executed
simultaneously; thus, these mutually exclusive branches cannot be directly chosen
as concurrent-synchronization paths. In the concurrent-synchronization structure, if
the number of groups of interacting places is denoted as m, and the corresponding
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number of mutually exclusive branches is n1, n2, . . . nm, then the combination number
of the interacting places is n1 × n2 × . . .× nm, with each combination representing a
concurrent-synchronization path. In the concurrent-synchronization structure, the
number of concurrent-synchronization paths increases when multiple branches are
involved, leading to a combinatorial explosion. In response to this scenario, we adopt
the pairwise combination testing coverage method.

In the concurrent-synchronization structure, when the number of groups of interacting
places is m, and the number of mutually exclusive branches is n1, n2, . . . nm, the pairwise
combination coverage criterion mandates that every possible execution path combination
of any two branches must be encompassed by at least one test case. This criterion ensures
both the completeness and sufficiency of testing, while also mitigating the issues related
to combinatorial explosion. In Figure 7e, P1 . . . P6 represent the six paths of the model.
Employing the conventional combination method, the number of concurrent-synchronous
paths generated is 2 × 2 × 2 = 8, whereas using the pairwise combination method pro-
duces a distinct number, specifically four paths: {P1, P3, P5}, {P1, P4, P6}, {P2, P3, P6}, and
{P2, P4, P5}. {P1, P3, P5} covers {P1, P3}, {P1, P5}, and {P3, P5}; {P1, P4, P6} covers {P1, P4},
{P1, P6}, and {P4, P6}; {P2, P3, P6} covers {P2, P3}, {P2, P6}, and {P3, P6}; {P2, P4, P5} cov-
ers {P2, P4}, {P2, P5}, and {P4, P5}. Thus, the pairwise combination method can cover
all potential combinations of execution paths for any two branches, ensuring both the
completeness and sufficiency of testing while averting a combinatorial explosion.

To ensure effective testing and reduce redundancy, the guiding principle for searching
test paths in the model is that the set of all paths must cover all places and transitions in
the model, branches should be executed at least once, and loop paths should be executed
at most once. The complex structures of concurrency and synchronization are addressed
by the pairwise combination criterion, and the test path set should encompass all paths
from the initial state to the terminal state of the Petri net model, thus representing all traffic
regulations in the scenario model.

5.2. Test Case Generation

TraModeAVTest defines abstract scenarios and specifies fixed features, such as the
initial position of the ego vehicle (EGO), to search for potential collision test cases using the
parameter combination method. Within the abstract scenario, each scenario has distinct
configuration parameters that are parameterized through variables defined on feature
thresholds. In the search space, test cases involve assignments of these variables, and
specific scenarios can be derived by instantiating abstract scenarios with assigned variable
values. For example, initial test cases are first generated, which are test cases without
any non-player character vehicle (NPC), then complex scenario test cases are explored
by adding NPCs to the test scenario. It is evident that the occurrence of a collision is
influenced by the relative distance and velocity between the EGO and the NPC. Once the
initial velocity of the NPCs is determined, each test case can be parameterized by the initial
position and velocity of the EGO, as well as the relative distance between the EGO and
the NPCs. Consequently, each test case can be described as a vector t = (s, v, d), with s
representing the initial position of the EGO, v representing the initial velocity of the EGO,
and d representing the relative distance between the EGO and the NPC.

The Petri net scenario model based on traffic regulations, TraModeAVTest aims to
generate test cases using the parameter combination method with the objective of collision
occurrence. Initially, initial test cases that cover the model paths are generated, i.e., test
cases without any NPCs, to ensure the effectiveness of the generated test cases. For the test
path Pj of the scenario model, ∀Pj ∈ PC, where PC represents the set of test paths. The
initial test case is denoted by tj

i0 =
(

sj
i0, vj

i0,∅
)

, sj
i0 representing the initial position of the

EGO, and vj
i0 representing the initial velocity of the EGO, ∅ indicating the absence of NPCs.

∀tj
i0 ∈ T j

i , T j
i is the initial test case set of the i-th meta-scenario in the test path Pj. ∀T j

i ∈ T j,
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T j represents the test case set of covered Pj, ∀T j ∈ TC, while TC represents the test case set
of covering all test paths.

Subsequently, collision test cases are identified by adding the NPCs, as illustrated in
Figure 8. Given an initial test case of a meta-scenario covering the model path,
Pj = Cov

(
tj
i0

)
, the new test cases are generated by adding the NPCs, tj

ik =
(

sj
ik, vj

ik, dj
ik

)
.

These new test cases encompass the position sj
ik and the velocity vj

ik of the EGO, as well as

the relative distance dj
ik between the EGO and the NPC. Based on the threshold values of

the variables set by traffic regulation features, with the objective of collision occurrence, the
parameter values of the variables are adjusted to obtain a test case set T j

i of a meta-scenario

covering the model paths, ∀tj
ik ∈ T j

i .
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Then, various parameters of the meta-scenario variables are chosen for combination,
generating executable state invocation sequences of parameter combinations, i.e., a test
case set of traffic regulation scenarios covering the model paths, Pj = Cov

(
T j), ∀T j ∈ TC.

In order to ensure test case diversity and prevent the creation of excessive redundant
test cases, the principle dictates the selection of distinct meta-scenario combinations from
the basic scenario when the same basic scenario is encountered multiple times in traffic
regulation scenarios. Consequently, this approach, based on the complexity of the actual
scenarios arising from the combination of basic scenarios, can effectively meet the demand
for complex test scenarios in the context of the ADS.

Algorithm 1 describes the method for generating test cases covering model paths.
Initially, it produces the initial test case for each meta-scenario and verifies the validity
of the generated test cases. If the generated initial test case covers the model path, it is
added to the test case set for the meta-scenario (lines 2–6). Otherwise, the initial test case
is regenerated until a valid test case is obtained (lines 7–13). Subsequently, it generates
collision test cases for the meta-scenario and checks whether the newly generated test cases
cover the model path. If they do, they are added to the test case set for the meta-scenario,
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and the initial test case for that meta-scenario is removed (lines 14–18). Conversely, the test
case set for the meta-scenario remains unaltered until a valid collision test case is generated
(lines 19–20). Ultimately, the generated meta-scenario test cases are integrated into the test
case set covering the model paths, thereby obtaining a test case set covering all model paths
(lines 21–22).

Algorithm 1: Test Case Generation for Path Coverage.
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14 if 𝐶𝑜𝑣(𝑡 ) ∈ 𝑃  then
15 𝑇 = 𝑇 ∪ {𝑡 };
16 𝑇 = 𝑇 \{𝑡 };
17   break; 
18 else 
19   continue; 
20         𝑇 = 𝑇 ∪ {𝑇 }; 21 𝑇𝐶 = 𝑇𝐶 ∪ {𝑇 };   /*Generate a test case set covering the paths.*/ 
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5.3. Simulation Experiment

In order to assess the performance of TraModeAVTest, we carried out simulation
experiments on the Baidu platform Apollo 6.0, which is recognized as one of the most
widely used ADSs in both academia and industry. The simulation environment employed
was LGSVL 2021.3, and the experiments were executed on a desktop computer running
Ubuntu 18.04, featuring an AMD Ryzen 9 3950x CPU, 64 GB of RAM, and an NVIDIA
GeForce RTX 3090 GPU.

The primary research questions are as follows:

1. Effectiveness: Can the test cases generated by TraModeAVTest effectively detect
violations of the ADS?

2. Efficiency: Can TraModeAVTest improve the efficiency of generating violation scenar-
ios compared to baseline methods?

The primary traffic facilities in the simulation environment include urban roads with
straight segments and intersections. Traffic control devices consist of traffic lights, road
markings, and traffic signs. To ensure that the simulation experiments start from a valid
and meaningful state, the initial state of the simulation environment is constrained such
that a safe distance exists between the EGO and the NPCs when all vehicles are initiated.
Furthermore, TraModeAVTest is not confined to a specific simulator. The selection of
LGSVL is based on its compatibility with Apollo, but it can also be migrated to other
simulators such as Calar, provided an API interface link to the ADS is available.
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5.3.1. Effectiveness Analysis

TraModeAVTest models testing scenarios based on traffic regulations and subsequently
generates test cases that represent regulations. Its primary objective is to test the violation
of traffic regulations by AVs, with the aim of enhancing the safety of ADSs. The traffic
regulation scenarios in this study encompass six fundamental scenarios: intersection,
cruising, following, lane changing, overtaking, and parking. However, violations in parking
scenarios are not within the scope of this analysis. Consequently, the following typical
instances of five basic scenario types are discussed based on violations of traffic regulations
by AVs, in order to explore potential causes of traffic accidents involving AVs and identify
potential safety issues in ADSs, so as to illustrate the effectiveness of TraModeAVTest.

1. Intersection scenario: The EGO runs a red light and accelerates through the intersec-
tion, as shown in Figure 9a. When approaching the intersection stop line, the speed
of the EGO is 14 km per hour, and the traffic signal is red. Despite the absence of a
collision, the EGO chooses to proceed through the intersection instead of stopping.
Upon entering the intersection, the speed of the EGO is 20 km per hour, posing a
significant danger. As the EGO exits the intersection at a speed of 32 km per hour, it is
already speeding. In this scenario, if the NPCs are passing through the intersection,
the EGO running a red light and speeding could likely lead to a traffic accident.
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In the intersection scenario, the traffic regulations are “prohibition of vehicle passage
when the red light is on” and “the maximum speed for motor vehicles passing through
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intersections should not exceed 30 km per hour”. When the traffic signal at the intersection
is red, the EGO not only fails to decelerate or stop but also accelerates, and subsequently
exceeds the speed limit while passing through the intersection. Therefore, although no
traffic accident occurred, the traffic violations of running a red light and speeding by the
EGO are likely to cause accidents, indicating significant safety issues in the perception or
prediction modules of the Apollo system.

2. Cruising scenario: The EGO engaged in cruising, collides with an NPC that cuts
in from the right, as shown in Figure 9b. As the EGO cruises, an NPC from the
adjacent right lane cuts in. The insufficient safe distance between the EGO and the
NPC, coupled with the failure of the EGO to yield to the NPC in a timely manner,
results in a collision between the two vehicles. In this scenario, if the EGO maintains
a sufficient safe distance from the NPC and brakes promptly to yield, the collision
could be avoided.

In the cruising scenario, the traffic regulation is “when motor vehicles are traveling
on the road, they should yield to other vehicles and maintain a necessary safety distance”.
When the NPC in the right lane merges into the cruising lane, the EGO fails to yield in a
timely manner, resulting in a collision between the two vehicles. Therefore, it is evident that
the lack of maintaining a necessary safety distance by the EGO and its failure to decelerate
and yield to the NPC are the most likely causes of the collision. The former indicates a
safety issue in the positioning or planning module of the Apollo system, while the latter
suggests a safety issue in the prediction or control module of the Apollo system.

3. Following scenario: The EGO following another vehicle, collides with a decelerating
NPC in front, as shown in Figure 9c. As the NPC in front decelerates while approach-
ing an intersection, the EGO following behind, maintains its current velocity. The
inadequate safe distance between the EGO and the NPC leaves insufficient time for
deceleration and braking, leading to the EGO rear-ending the NPC. In this scenario,
maintaining a proper safe distance between the EGO and the NPC could have averted
the rear-end collision.

In the following scenario, the traffic regulation is “when motor vehicles are following
other vehicles, they should maintain a sufficient safety distance from the vehicle in front”.
In this instance, the EGO fails to uphold a proper safety distance while following the NPC,
leading to a rear-end collision when the NPC decelerates. This underscores that the failure
of both the EGO and NPC to maintain an adequate safety distance is the primary cause of
the rear-end collision, thereby highlighting a safety issue in the positioning or planning
module of the Apollo system.

4. Lane changing scenario: The EGO abruptly changes direction and plans to switch
to the right lane as it approaches the intersection, as shown in Figure 9d. As the
EGO is about to reach the intersection and the adjacent right lane NPC is traveling
at a high speed, the sudden lane change by the EGO nearly causes a traffic accident.
Furthermore, the abrupt lane change of the EGO obstructs the normal movement of
the NPC behind it, almost resulting in a rear-end collision. In this situation, the EGO
should maintain its original lane and proceed through the intersection as usual.

In the lane changing scenario, the traffic regulation is “motor vehicles should not
change lanes when approaching an intersection”. As the EGO approached the intersection,
it abruptly changed lanes, narrowly avoiding a traffic accident. This implies that while
no accident occurred, the sudden lane change violation of the EGO is likely to result in
a traffic accident, indicating a safety issue within the planning or control module of the
Apollo system.

5. Overtaking scenario: The EGO erroneously plans an overtaking route, as shown in
Figure 9e. As the front NPC decelerates and the NPC in the adjacent lane behind
accelerates rapidly, the EGO generates a trajectory to change lanes to the right for a
forced overtaking, almost resulting in a traffic accident. In this situation, both the EGO
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and NPC should maintain a sufficient safe distance, and the EGO should decelerate
and continue in its original lane.

In the overtaking scenario, the traffic regulation is “overtaking motor vehicles should
not impede the normal driving of motor vehicles in the relevant lane”. When the NPC
in the front lane decelerated while the NPC in the adjacent lane rapidly approached,
the EGO generated a trajectory to forcefully overtake by changing lanes to the right,
blatantly violating the traffic regulations. This indicates that although the EGO and NPC
did not collide, the severe traffic violation of the EGO is likely to cause a traffic accident,
underscoring a very serious safety issue within the planning module of the Apollo system.

From the above analysis, it can be concluded that TraModeAVTest can not only identify
issues where AVs are involved in collisions, but also reveal a broader spectrum of traffic
regulation violations by AVs. For example, TraModeAVTest has identified cases where AVs
have incorrectly planned overtaking maneuvers, and such violations represent significant
safety risks that can lead to traffic accidents. In conclusion, the test cases generated by
TraModeAVTest have the ability to characterize traffic regulations and effectively identify
violations of traffic regulations by AVs. These violations are also crucial factors leading
to traffic accidents involving AVs, which shows the effectiveness and rationality of the
application of TraModeAVTest to test the violations of AVs.

5.3.2. Efficiency Analysis

In order to assess the efficiency of TraModeAVTest in generating violation scenarios,
we compared TraModeAVTest with two representative baseline methods, Random and
AV-Fuzzer [53], in terms of both the number and time taken to discover autonomous vehicle
violations. Random testing does not account for the influence of traffic regulations and
simply generates test cases through parameter combinations. AV-Fuzzer, represents an
advanced autonomous driving testing technique. It utilizes genetic algorithms to search
for high-risk scenarios that contravene safety requirements and subsequently employs a
local fuzzer to identify safety violations. This method is widely utilized in the assessment
of autonomous driving testing techniques [54]. The experimental comparison results of
TraModeAVTest, Random, and AV-Fuzzer are shown in Table 4.

Table 4. Experimental comparison results.

Random AV-Fuzzer TraModeAVTest

Total number of test cases 437 392 384
Number of test cases for the violation scenarios 113 96 125

Number of types of violation scenarios 4 3 5
Average time for each violation scenario 2.5 h 3.3 h 2.0 h

As shown in Table 4, TraModeAVTest generated 384 test cases, Random generated
437 test cases, and AV-Fuzzer generated 392 test cases, indicating that TraModeAVTest pro-
duced the fewest test cases. Compared to the baseline method, TraModeAVTest reduced the
total number of test cases by 12.13% and 2.04%, i.e., 384 vs. 437 and 384 vs. 392. However,
TraModeAVTest generated 125 test cases for violation scenarios, including 102 violation
scenarios for the EGO and 23 violation scenarios for the NPC. Random generated 113 test
cases for violation scenarios, including 89 violation scenarios for the EGO and 24 violation
scenarios for the NPC. AV-Fuzzer generated 96 test cases for violation scenarios, including
75 violation scenarios for the EGO and 21 violation scenarios for the NPC. The number
of violation scenarios generated by the three methods for EGO and NPC is illustrated in
Figure 9.

From Figure 10, it is evident that TraModeAVTest generated the highest number of
test cases for EGO violation scenarios. Compared to the baseline method, TraModeAVTest
increased the number of valid test cases by 14.61% and 36%, i.e., 102 vs. 89 and 102 vs.
75. This indicates that, in comparison to the baseline method, TraModeAVTest is capable
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of identifying more behaviors of traffic regulation violations by AVs while reducing the
overall number of generated test cases. In other words, although the baseline method
generated a larger quantity of test cases, it identified fewer behaviors of traffic regulation
violations, suggesting that TraModeAVTest generates a greater number of effective test
cases while the baseline method generates more redundant test cases.
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The experimental results in Table 4 also indicate that the test cases generated by
TraModeAVTest for EGO violations cover all five basic scenario types, excluding parking
scenarios. In contrast, the EGO violation test cases generated by Random encompass
four basic scenario types, excluding the scenario of incorrectly planned overtaking routes.
Meanwhile, the EGO violation test cases generated by AV-Fuzzer include three basic
scenario types, omitting violations such as running red lights at intersections and changing
lanes near intersections. Furthermore, the violation scenario types for all three methods are
observed within the initial 10 h of the experiment. The average time to generate different
types of violation scenarios during the search process is computed as the ratio of the total
simulation time to the number of violation scenario types. Specifically, the average time
for Random to generate different types of violation scenarios is 2.5 h, for AV-Fuzzer it is
3.3 h, and for TraModeAVTest it is 2 h. Consequently, it is apparent that, in comparison to
the best baseline methods, TraModeAVTest achieves an average time reduction of 0.5 h in
generating different types of violation scenarios within the constrained time allocation for
test case generation, signifying an efficiency improvement of 20%.

Furthermore, it is noteworthy that all three methods can identify issues related to
collisions involving AVs, yet TraModeAVTest excels in identifying a greater number of
violations of traffic regulations by AVs. For instance, Random failed to identify instances of
AVs incorrectly planning overtaking routes, and AV-Fuzzer did not identify instances of
AVs running red lights at intersections. These violations of regulations by AVs represent
significant safety hazards that can lead to traffic accidents.

6. Conclusions

A method has been proposed for modeling scenarios using traffic regulations and
generating test cases to address the compliance and safety testing issues of ADSs, with
the aim of identifying the safety violation behavior of ADSs. For compliance testing, a
method has been developed to construct Petri net models of complex autonomous driving
scenarios based on traffic regulations and the combined relationships of scenarios. Formal
methods were employed to verify the consistency between the scenario model design and
the system’s regulatory attributes, with the goal of providing scenario model support to
identify behaviors of ADSs that violate traffic regulations. For safety testing, coverage
criteria suitable for Petri net models were introduced, and a search strategy was used to
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generate test paths for scenario models. Additionally, a parameter combination method
was employed to generate test cases for covering model paths, specifically representing test
cases for traffic regulations, with the aim of providing specific test scenarios for testing the
behaviors of ADSs that violate safety regulations. The results of simulation experiments on
the Baidu Apollo platform demonstrate that the test cases generated by TraModeAVTest
can effectively uncover safety violations in ADSs, including three types of safety violation
scenarios and two types of regulatory violation scenarios. The most probable cause of
these safety violations is identified as the AVs’ non-compliance with traffic regulations,
which is also the fundamental cause of traffic accidents involving AVs. This validates the
effectiveness of TraModeAVTest in utilizing traffic regulations to construct scenario models
and test safety violations in AVs. In addition, TraModeAVTest can effectively improve the
efficiency of generating different types of safety violation scenarios. By comparing with the
experimental results of the baseline method, TraModeAVTest improves the efficiency of
generating different types of safety violation scenarios by 20%.

Future work will involve researching additional methods, such as evolutionary meth-
ods, for modeling complex autonomous driving scenarios based on traffic regulations
and testing the violation behavior of AVs. Furthermore, there will be a focus on studying
optimization methods for test cases to improve the testing efficiency of ADSs.
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