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Abstract: This paper focuses on the development of an improved Generative Adversarial Network
(GAN) specifically designed for generating color portraits from sketches. The construction of the
system involves using a GPU (Graphics Processing Unit) computing host as the primary unit for
model training. The tasks that require high-performance calculations are handed over to the GPU
host, while the user host only needs to perform simple image processing and use the model trained by
the GPU host to generate images. This arrangement reduces the computer specification requirements
for the user. This paper will conduct a comparative analysis of various types of generative networks
which will serve as a reference point for the development of the proposed Generative Adversarial
Network. The application part of the paper focuses on the practical implementation and utilization
of the developed Generative Adversarial Network for the generation of multi-skin tone portraits.
By constructing a face dataset specifically designed to incorporate information about ethnicity and
skin color, this approach can overcome a limitation associated with traditional generation networks,
which typically generate only a single skin color.

Keywords: generative adversarial networks; image generation; image recognition

1. Introduction

The field of artificial intelligence (AI) has experienced rapid progress in recent years,
driven by advancements in computing capabilities and the availability of large datasets.
The progress in artificial intelligence has led to the development of versatile applications
across various domains, such as image recognition [1–3], object detection [4–6], medical
diagnosis [7–9], and Internet of Things (IoT) [10–12]. In many applications, the development
of image recognition is relatively well-advanced. The progress in this field is attributed
to the development of sophisticated algorithms, the availability of large datasets, and
increased computing power. The development of the Convolutional Neural Network
(CNN) can be viewed as a crucial point in the advancement of image recognition and
computer vision. The convolutional layers in CNNs employ filters that scan the input
image to detect local patterns. Motivated by the advent of CNN networks, there are some
variants, including R-CNN, Fast R-CNN, Faster R-CNN [13–16], and Mask R-CNN [17–19].
In addition, recognition performance can be further improved using the Residual Network
(ResNet) with deep learning.

While there have been significant advancements in image recognition, generative
networks, which are used for tasks like image generation, still face several challenges.
In the earlier stages of developing generative models, manual assessment of generated
results followed by algorithm modifications was a common practice. Automatically judging
the quality of results and optimizing generative models has been a crucial challenge in
deep learning, especially for tasks involving generative models. In traditional supervised
learning, the training process involves using labeled data to train a model to map input
features to corresponding target labels. However, in generative networks, it is hard to
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define a correct answer for a generated result. This is the most difficult issue encountered by
generative networks in applying deep learning. The emergence of Generative Adversarial
Networks (GANs) has solved this problem of generative networks. GAN is centered
around two models set against each other, namely, a generator and discriminator. These
two models are trained simultaneously through adversarial training. In general, GANs
provide a framework for training generative models that can be applied to various domains,
including image generation and text-to-image synthesis. Image-to-image models focus on
transforming one type of image into another, while text-to-image applications specifically
involve the generation of images from textual descriptions. These concepts showcase the
versatility of generative models in learning complex mappings and generating diverse
types of data [20–23].

The integration of Generative Adversarial Networks (GANs) with transformer-based
or diffusion-based models has indeed been a focus of recent research efforts. In a transformer-
based GAN, both the generator and discriminator architectures are built upon transformer
models, which are widely employed in natural language processing tasks for their ability
to capture long-range dependencies and contextual information effectively. On the other
hand, a diffusion-based GAN leverages the principles of diffusion models, which simulate
the iterative process of diffusing noise into data to generate realistic samples. Several inter-
esting works have explored these integrated learning approaches [24–29]. For instance, a
recent study introduced a GAN network that employed transformer models to enhance text
semantics, improving the relevance of generated images [24]. Another study presented a
discriminator structure integrated with a specific transformer model to enhance the quality
of image restoration [25]. Additionally, a transformer-based GAN was proposed for sonar
images to remove speckle noises, thereby enhancing the accuracy of analysis tasks on sonar
images [26]. Moreover, a method for imputing missing traffic state data was proposed
based on a Diffusion Convolutional Neural Network–Generative Adversarial Network [27].
Furthermore, a method based on adversarial diffusion modeling was developed to enhance
performance in medical image translation tasks [28]. Lastly, a denoising diffusion GAN
was introduced to achieve large-step denoising, sample diversity, and training stability [29].
While transformer-based GANs and diffusion-based GANs offer advantages for image
generation tasks, they also have certain limitations. Transformer models often require
substantial computational resources, particularly for large-scale image generation tasks. On
the other hand, diffusion models may have slow sampling speeds due to the multiple steps
of noise diffusion required to generate each sample, compared to other GAN architectures.

Recently, the research related to GANs has attracted much attention; typical appli-
cations include image de-raining [30–32], image inpainting [25,33,34], image reconstruc-
tion [35–37], and image synthesis [38–40]. Image de-raining is a computer vision task
that involves removing or reducing the effects of rain from images. Outdoor surveillance
and autonomous driving are typical applications, situations where clear vision is crucial.
In [25], a conditional Generative Adversarial Network was proposed for the single de-
raining problem, considering both quantitative and visual performance. Image inpainting
can be performed for various reasons, such as removing unwanted objects, restoring old
photographs, or completing regions that are occluded or corrupted. In [35], an attention-
generating adversarial image painting method was presented, aiming to capture global
semantic data. Image reconstruction aims to produce a high-quality image from limited
or noisy information; the applications for medical imaging and remote sensing are typical
ones. In [38], a GAN framework was addressed to the recovery of high-quality PET images
from filtered back projection PET images with streaking artifacts and high noise. Image
synthesis refers to the generation of new images from scratch or the combination of existing
images to create novel visual content. In [40], an auto-embedding Generative Adversarial
Network was presented, aiming simultaneously to encode the global structure features and
capture the fine-grained details.

The COCO dataset is among the most widely used and comprehensive datasets for
object recognition and other computer vision tasks [13,16,41]. Researchers often use the
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COCO dataset as a testbed for developing and testing models related to object recognition,
instance segmentation, and image captioning. The progress of GANs has been significant,
leading to impressive results in various domains, including image generation, style transfer,
and data augmentation. However, there are challenges and considerations associated with
the usage of GANs, including dataset limitations. This paper constructs a self-made image
dataset for GAN learning that includes diverse skin colors. It can be verified that an image
with colored skin can be generated from its sketch portrait.

This paper aims to contribute to the field of image generation by introducing an
improved GAN designed for creating color images from sketches. The utilization of GPU
computing is highlighted for efficient model training. Additionally, the focus on multi-skin
tone portraits and the consideration of ethnicity and skin color in the dataset construction
distinguish this research from traditional approaches. The comparative analysis adds
a valuable reference point for understanding the strengths and weaknesses of various
generative networks. Generating realistic and diverse images from sketches is a challenging
task, and achieving success in this area has practical applications in various fields, including
art, design, and entertainment. This paper contributes to the field of image generation
by introducing an improved approach to creating color portraits from sketches using a
Generative Adversarial Network (GAN) architecture. The key contributions of the paper
can be summarized as follows:

1. This paper applies the Generative Adversarial Network architecture to improve the
training process of the generative model. This enables a more effective transformation
of a sketch image into a color portrait.

2. The use of the U-Net architecture for constructing the generative model allows for the
retention of fine facial features, ensuring that the generated color portraits accurately
capture the details from the input sketches.

3. Incorporating a Convolutional Neural Network as the discrimination model facilitates
interactive training with the generative model. This adversarial training process
enhances the quality and realism of the generated color portraits.

4. The creation of datasets classified based on ethnicity and skin color enables the training
of generators capable of producing color portraits with diverse skin tones.

2. Materials and Methods
2.1. Image Generation

The rapid development of image recognition, particularly in the context of deep
learning, can be attributed to several factors, including advancements in hardware, the
emergence of specific architectures like Convolutional Neural Networks (CNNs), and the
ability to easily identify and quantify the correctness of the recognition outcomes. During
the training process, we provide the model with labeled examples, indicating the correct
answers or ground truth for each input. It is expected that the model will produce the
same answer. However, the situation with image generation is different compared to the
cases of image recognition or classification. In image generation tasks, the goal is to create
entirely new images rather than simply recognizing or classifying existing ones. There is
no predefined ground truth for the generated images, and the produced outputs could be
diverse. These situations make it difficult to develop image generation in the field of deep
learning.

Due to the difficulty in defining an effective loss function, the development pace of
generative networks is relatively slower compared with other deep learning applications.
It was not until 2014, when Ian Goodfellow released the paper “Generative Adversarial
Network” (GAN) [38], that a researcher came up with the idea which could solve the
biggest problem of generative networks. In the GAN framework, a generator and a
discriminator are pitted against each other. The generator creates synthetic data, and the
discriminator tries to distinguish between real and generated data. The objective is for the
generator to produce increasingly realistic data, and for the discriminator to become better
at distinguishing between real and fake samples. The process involves adversarial training,
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in which both networks iteratively improve their performance. The judgment in image
recognition is influenced by the discriminative model, which is tasked with evaluating
the quality of the outputs generated by the generative model. The discriminator plays a
crucial role in distinguishing between real data from the training dataset and synthetic data
generated by the generative network. Pre-trained discriminators can reduce the number of
epochs required for training the entire GAN system so that the desired training results will
be potentially faster and better [23].

The idea of Generative Adversarial Networks, first published in 2014, has been rec-
ognized as a turning point for generative models [42]. While GANs introduced a ground-
breaking concept and demonstrated the ability to generate realistic data, their practical
adoption initially faced issues such as long training times and training instability, leading to
unsatisfactory results in some cases. This situation prevailed until the Deep Convolutional
Generative Adversarial Network (DCGAN) was proposed; it was only then that the core
idea of Generative Adversarial Networks was widely applied. The Deep Convolutional
Generative Adversarial Network applies transposed convolution to improve the effect of
generating the model, resulting in reduced training time. Transposed convolutional layers
are placed in the generator to gradually upsample the low-dimensional feature maps. This
process starts with a small spatial dimension and progressively increases it, creating a hier-
archy of features. There have been various versions of Generative Adversarial Networks
built upon the foundational concepts introduced by DCGAN.

Pix2Pix, introduced in 2016, is indeed a notable variant of GAN, specifically designed
for image-to-image translation tasks [43–46]. It is particularly known for its use of an
encoder–decoder architecture, which has been influential in various image conversion
applications. Under the traditional encoder–decoder architecture, the encoder is used to
capture image features, and some information will be lost in the process of transmitting to
the decoder, resulting in the incoming image features not being fully represented. Therefore,
U-Net was used in later variants; the main difference was that U-Net had a concatenate
layer. The concatenate layer connects identical layers of the encoder and the decoder and
transmits the output of each layer of the encoder to the corresponding decoder layer, which
is merged before being sent to the next layer, in a manner such that the image position
information is preserved.

2.2. System Architecture

The whole system described in this study is mainly divided into two parts: the user
host and the GPU computing host, shown as Figure 1. The GPU computing host has a high
computing efficiency, which aims to save time in model training. The system classifies,
retouches, and pairs a large number of images on the GPU host and builds generation
and discrimination models for adversarial training. The user host performs simple image
preprocessing and generates images using the trained model from the GPU computing
host. In this study, the GPU host is dealing with deep learning training. The first task is
to set up an environment where the deep learning neural networks can be executed, for
which the Ubuntu 20.04 is considered the operating system. After the generative model
is trained on the GPU computing host, the user host only needs to perform simple image
preprocessing, and the generative model trained by the GPU host can be executed without
consuming too many computing resources.

The GPU host is responsible for both training a generative model and performing
image retouching during the model-building process. The user host performs image
pre-processing and uses the pre-trained generative model provided by the GPU host for
image generation. In terms of environment construction, the user host and the GPU
computing host use the same operating system, environment management platform, and
GPU acceleration tools.
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Figure 1. The scheme of the proposed system.

Deep learning frameworks help to accelerate the development and execution of algo-
rithms, particularly in the context of utilizing NVIDIA GPUs (Graphics Processing Units).
Frameworks often integrate with GPU-specific libraries like CUDA and CuDNN, which are
optimized for deep learning tasks. Google’s TensorFlow, Facebook’s Pytorch, Berkeley’s
Caffe, and Microsoft’s Cognitive Toolkit have indeed been popular open-source deep learn-
ing frameworks. Among the many deep learning frameworks, TensorFlow is an especially
widely used open-source deep learning framework. It has been adopted by researchers
for a variety of applications. TensorFlow, developed by Google, is the most widely used
open-source mathematical computing framework. TensorFlow is designed to be highly
flexible and can be built and run on various computing architectures, including systems
with multiple CPUs and GPUs. In this study, TensorFlow 2.0 is adopted as the learning
framework, and Anaconda is utilized for the environment management.

2.3. Experimental Methods

The experimental process, shown in Figure 2, is mainly divided into three steps:
dataset preparation, model training, and image generation. In the dataset preparation part,
the datasets used for model training are provided, including raw data, ethnicity-enhanced
data, and skin color-enhanced data. In the model training step, the prepared datasets are
used to train the GAN model, and then the trained generation model is provided for the
subsequent image generation.
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2.3.1. Dataset Preparation

In this work, the goal is to transform images from sketches into realistic portrait images.
The datasets used to train the generative model include the real portrait photos and the
corresponding sketch images. The CelebA-HQ dataset, containing about 30,000 images of
1024 × 1024, is a collection of portraits of American celebrities [47–50]. In this study, the
CelebA-HQ dataset was used as the image source of the self-built dataset to create sketch
images. As trained by the traditional GAN scheme, the outcomes are shown in Figure 3. At
this stage, only Caucasian images can be generated, no matter what the original skin color
is. If the training set is composed entirely of images with a single skin color, it is expected
that the generative model, when trained on such data, may have limitations in generating
realistic images with diverse skin tones. The model learns from the patterns present in the
training data, and if the data is not diverse enough, it might not generalize well to other
skin tones. In this case, we added multiple-skin-tone images to the training dataset, but the
output did not change as desired under the traditional GAN framework.
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Based on the CelebA-HQ Dataset, a new dataset was constructed based on classifica-
tions of ethnicity, namely Caucasian, African American, Asian, and Middle Eastern. There
are 200 images of each category, and the samples from the dataset are shown in Figure 4.
The architecture of the training model was re-planned, three independent generative mod-
els were added, and four generative models were used to generate images associated with
different ethnicities for each of the four people.
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To further describe the possible diversity of skin tones, the following skin colors are
considered: pale white, light brown, dark brown, and deep dark brown. This categorization
helps acknowledge the diversity of skin tones, emphasizing the variations that exist within
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different populations. In this work, the U-Net network will be used to preserve the face
structure, and the skin color tone can be preserved in the up-convolution’s kernel. The
samples of the skin tone classification are shown in Figure 5.
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dark brown.

The CelebA-HQ dataset is considered a collection of original images, and the associated
sketches can be obtained using Adobe Photoshop, as shown in Figure 6. The workflow
to generate sketches from Photoshop includes serval steps. After opening the image, the
process to be followed is to duplicate the background layer to preserve the original image
and then convert the duplicated layer to grayscale. To preserve the characteristics of the
sketches, Gaussian blur is applied to smooth the details of images. The negative image
is created by utilizing the function of inverting color. Finally, a sketch-like effect can be
generated by setting the blending mode of the duplicate layer. There is a set of paired
images, in which each sketch image is associated with its corresponding original image.
The pairs are used for image-to-image translation, in which the goal is to transform an
image from a sketch into a second realistic image. In the image-to-image generative model,
the paired images will be used as markers in training. The sketch image is the input of
the generated model during training, and the original image is the expected output of the
generated model.
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To assess the effectiveness of different data augmentation methods in improving image
generation results, there was a particular focus on horizontal and vertical sketches. The
two methods evaluated were left–right rotation and left–right flip. Experimental results
indicated that left–right rotation yielded more accurate image generation for horizontal
sketches, while left–right flip produced better results for vertical sketches. However, left–
right rotation led to discoloration in certain areas, such as teeth, in vertical sketches, as
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shown as in Figures 7 and 8. Considering the typical drawing direction of users vertically,
the left–right flip was chosen as the preferred data augmentation method for the dataset.
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While preparing the images, it was also observed that some photos exhibited face
occlusion or poor lighting conditions, as depicted in Figure 9. Using these photos as real
images could potentially affect the accuracy of the discrimination judgments between real
and fake images during the training process. Consequently, the training effectiveness of
the generative model may be constrained, as the feedback of the discriminator is essential
for guiding the learning process of the generator. These flawed photos were excluded from
the self-built dataset in this study. In addition, it was observed that many photos appeared
clear at first glance, but upon magnification, the noise became apparent, as illustrated in
Figure 10. This situation could potentially lead the generative model to extract unnecessary
features from the noisy images, ultimately degrading the quality of the generated output.
Therefore, it is imperative to meticulously examine each photo by zooming in to check for
noise and optimize the image quality of the dataset as much as possible. In CelebA-HQ,
the majority of the images are of American celebrities. The dataset may likely be skewed
towards individuals with lighter skin tones. Gathering a diverse set of images representing
different skin tones can indeed be a challenging task. Combining multiple datasets with
different color tones can help overcome the limitations in using a single source. Also, data
augmentation techniques could be helpful for artificially increasing the diversity of the
dataset. In this work, a total of 224 images were prepared for each of the four following
datasets: Pale White, Light Brown, Dark Brown, and Deep Dark Brown. After image
augmentation, 1792 images were prepared for the consequent model training.
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2.3.2. Model Training

In this paper, 70% of the total images are used for model training and the rest of the
images, the remaining 30%, are used for validation. During each training epoch, the model
learns from this set of images, adjusting its parameters to minimize the loss function. The
validation set is used to evaluate the model performance after each epoch. The input of
the traditional generative model is a multi-dimensional vector. It is often the case that the
up-convolution layers are used in the decoder to transform the low-dimensional latent
representation into a higher-dimensional output resembling the original input. Unlike the
traditional GAN, the generative model of this study is applied to the image transformation,
and the inputs to the generative model are the sketch images. This paper uses CNN as the
encoder to construct the model in the form of an Encoder–Decoder [51,52]. The trained
generative model can extract the facial features of the sketch image in the encoder stage
and fill in the color features of the color portrait in the decoder stage. The goal of this work
is to convert color-skinned portraits from sketch images. To preserve the image structure of
the original sketch image as much as possible, the U-Net architecture is added to the model.
The sub-layers of the Encoder–Decoder can be concatenated, and the spatial information in
images can be preserved.

The training process of the traditional Generative Adversarial Network is depicted in
Figure 11. A sketch from its paired image is fed into the generator for image generation,
and the generated image is called a fake image. Both the fake and real images will be
fed into the discriminator for distinction. The discrimination results will be fed back, not
only to the generator, but also to the discriminator itself. The generator is updated based
on the feedback from the discriminator when the generated fake image is judged as fake.
By iteratively updating the parameters of the generator and discriminator based on the
feedback from each other, the GAN learns to generate increasingly realistic images.
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The proposed ethnicity-enhanced or color-enhanced Generative Adversarial Network
(GAN) learning process involves training multiple generative models to specialize in
generating images of people of different ethnicities or skin colors, as shown in Figure 12. In
the case of the ethnicity-enhanced training process, the real images are divided into four
racial groups: Caucasian, African American, Asian, and Middle Eastern. In the case of
the skin color-enhanced training process, the real images are categorized into four skin
color groups: pale white, light brown, dark brown, and deep dark brown. Paired sketch
images corresponding to each racial or skin color group are fed into individual generative
models. Each generative model is trained to generate images specific to its assigned racial
or skin color group. The real images and their associated fake images produced by each
generator are fed into a discriminator. The discriminator evaluates the authenticity of
the real and fake images and provides feedback in the form of loss. The parameters of
each generative model are updated based on the loss calculated from the discriminator’s
evaluation, aiming to improve the quality of the generated images relative to its assigned
racial or skin color group. By training multiple generative models in this manner, the
proposed GAN framework can effectively address the challenge of generating images with
varied racial or skin color characteristics.
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3. Experimental Results
3.1. Epoch Training Results

In the context of deep learning training, an epoch refers to one complete pass through
the entire training dataset. The number of epochs represents how many times the learning
algorithm will work through the entire training dataset. In general, too few epochs may
result in underfitting, and too many epochs may lead to overfitting. In this work, the testing
results regarding different numbers of epochs are shown in Figure 13. During the training
process, the images in the image samples are randomly selected for testing. Significant
improvements in facial features can be observed in the generated images from epoch 5 to
epoch 50. Moreover, the improvement from epoch 100 to 200 is much more subtle. In this
paper, the number of epochs selected for the model training is 200.

3.2. Ethnicity-Enhanced and Skin Color-Enhanced Training

Figure 14 renders the training result of the ethnographic classification dataset. From
top to bottom, the top is the real image, the second row is the sketch image entering the
generation model, and then at bottom is the training result of the original CelebA-HQ
dataset. It can be seen that only single-skin-color images can be generated. The original
CelebA-HQ dataset, being derived from celebrity faces, might have a lack of representation
of diverse ethnicities and skin tones. As in Figure 12, the results generated by individual
ethnicity-enhanced GAN are shown in Figure 14, where the blue box is the generated image
corresponding to its real ethnography. For purposes of visual comparison, the generated
images from pix2pix are also depicted in Figure 14. It is obvious that the blue-boxed images
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are much more similar to their real counterparts. For the purpose of skin color-enhanced
GAN learning, the real images are categorized into four groups: Pale White, Light Brown,
Dark Brown, and Deep Dark Brown. The testing results of the skin color-enhanced GAN
model are shown in Figures 15–18. To describe the points of resemblance between the
generated and real images, blue boxes are used to highlight the feasibility of the proposed
skin color-enhanced image generation.
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Figure 18. Image generation with skin color-enhanced GAN: (a) real image (deep dark brown),
(b) pale white, (c) light brown, (d) dark brown, and (e) deep dark brown.

3.3. Test Comparisons

In the context of Generative Adversarial Networks, there are two main categories;
one is information-to-image, and the other is image-to-image. In information-to-image
applications, the goal is to generate images based on textual descriptions. The quality
assessment of a generative model, especially in information-to-image applications, often
involves evaluating whether the generated result can be identified as the desired object or
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concept described in the input text. In image-to-image applications, the primary goal is
to generate an output image that closely resembles a given real input image. The quality
assessment involves examining the generated images in comparison to real images or
ground truth images. In the area of image-to-image generation, commonly addressed
criteria include the Structural Similarity Index Measure (SSIM) and the Feature Similarity
Index Measure (FSIM) [53–56]. SSIM is a widely used metric for assessing the structural
similarity between two images. It quantifies the perceived quality of an image by consider-
ing luminance, contrast, and structure. FSIM is another metric designed to evaluate the
quality of images, which it performs by measuring the similarity in feature space. The
ethnicity-enhanced and skin tone-enhanced generation models were compared with the
benchmark test of SSIM and FSIM with pix2pix, as shown in Tables 1 and 2. All values were
averaged over 70 images. It can be concluded that the ethnicity-enhanced model is better
than the pix2pix, and the skin color-enhanced is the best among the three image translation
models. Compared to the traditional pix2pix, there is an average improvement of 14.3% in
SSIM and 5.3% in FSIM with the skin color-enhanced mode. Samples of sketch-to-image
are shown in Figures 19 and 20.

Table 1. Comparison with SSIM benchmark.

PW LB DB DDB Average

pix2pix 0.702 0.657 0.733 0.756 0.712

Ethnicity-enhanced 0.703 0.710 0.746 0.792 0.738

Skin color-enhanced 0.798 0.836 0.807 0.813 0.814

Table 2. Comparison with FSIM benchmark.

PW LB DB DDB Average

pix2pix 0.633 0.634 0.648 0.615 0.633

Ethnicity-enhanced 0.632 0.637 0.662 0.633 0.641

Skin color-enhanced 0.638 0.681 0.686 0.657 0.666
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Figure 20. Sketch-to-image generation: dark brown and deep dark brown.

4. Discussion

The quality of the generation of color skin images has been improved with the ethnicity-
enhanced or skin color-enhanced GAN model. However, there exists a problem in the
background generation. In Figure 21, there are two images in a group; the left image is
the real image, and the right image is the generated image. Even though the proposed
enhanced models successfully generate face images, there are challenges with generating
corresponding backgrounds. The differences in style and color among the backgrounds
is too large, making it difficult to fully learn the relationship during training. Addressing
this challenge requires handling diverse background styles and colors. We have considered
this problem when building the training dataset. We have also tried to choose candidate
images with less difference in their backgrounds. In practice, nearly 27,000 images out of
the 30,000 images available in the CelebA-HQ dataset were selected for the current training
set. If the criterion of background selection is further raised, the number of image samples
in the dataset may be insufficient.

There are two ways to solve this problem. The first is to increase the source of images,
choosing the same background style as much as possible. Due to the possibility of diverse
backgrounds as to both color and style, the scale of the source images should be increased.
The second method is to remove the background and retain the face portrait, which can
make the generation network focus on the desired task without the complexity introduced
by diverse backgrounds. Based on the current training datasets, the generation of face
images is attained, but the generation of backgrounds still needs to improve. When training
a generative model, especially in scenarios where real images have diverse backgrounds,
issues with the discriminator misjudging real images as fake or vice versa can occur. The
produced loss during model training is biased, and the face generation could be adversely
affected with respect to its color.
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5. Conclusions

This paper utilizes the Generative Adversarial Network architecture to improve the
training of the generative network, leading to the development of a system capable of
transforming sketch images into color portraits. The U-Net architecture was employed
to construct the generative model, ensuring the retention of facial features. Meanwhile,
a convolutional neural network was utilized as the discrimination model to iteratively
train with the generative model. By collecting and classifying numerous images, two
image datasets were established, categorized by ethnicity and skin color. This classification
enabled the improvement of the quality of image generation. In addition, an additional
dataset was created, comprising sketches paired with their corresponding real images.

This study aims to address a limitation of traditional generation models, specifically
their ability to generate only a single skin tone. This work has successfully trained gen-
erators that can generate images with four different skin tones. Experimental tests were
conducted to validate the effectiveness of the trained models. The experimental results
indicate that the skin color-enhanced model has demonstrated improvements compared
to a traditional image generation model, as measured by SSIM and FSIM. In the future,
the multi-skin color image generation model trained in this paper can be used to expand
the sample size of the dataset and further optimize the image quality. When preparing the
dataset, Mask R-CNN could be employed to remove the background. This would help
avoid interference from the background for both the generation model and the discrimina-
tion model during the training process.
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