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Abstract: Sign language is a complex language that uses hand gestures, body movements, and facial
expressions and is majorly used by the deaf community. Sign language recognition (SLR) is a popular
research domain as it provides an efficient and reliable solution to bridge the communication gap
between people who are hard of hearing and those with good hearing. Recognizing isolated sign
language words from video is a challenging research area in computer vision. This paper proposes a
hybrid SLR framework that combines a convolutional neural network (CNN) and an attention-based
long-short-term memory (LSTM) neural network. We used MobileNetV2 as a backbone model due
to its lightweight structure, which reduces the complexity of the model architecture for deriving
meaningful features from the video frame sequence. The spatial features are fed to LSTM optimized
with an attention mechanism to select the significant gesture cues from the video frames and focus
on salient features from the sequential data. The proposed method is evaluated on a benchmark
WLASL dataset with 100 classes based on precision, recall, F1-score, and 5-fold cross-validation
metrics. Our methodology acquired an average accuracy of 84.65%. The experiment results illustrate
that our model performed effectively and computationally efficiently compared to other state-of-the-
art methods.

Keywords: sign language; gestures; attention mechanism; CNN; LSTM

1. Introduction

More than 70 million people are prone to hearing and speech impairments, according
to the World Federation of the Deaf. It signifies that a considerable portion of the world
population has a communication gap with others in society, which hinders their daily
interactions and promotes inequality. Sign language is a non-verbal interaction mode that
uses gestures and facial expressions to convey thoughts and emotions. A sign is composed
of mainly two components, namely manual and non-manual. The former consists of palm
orientations, shape, and movement of hands. The facial expressions and body postures
constitute the non-manual elements. The main motive of sign language recognition (SLR)
is to develop a mode of communication between the deaf community and people without
any hearing impediments, and it plays an essential role in implementing human–computer
interaction (HCI).

SLR understands the language of gestures and transforms them into text or voice
forms. There are two categories of SLR: one is isolated based on word sign gestures, and
another is continuous, which considers sentence-level sign gestures. We focused on isolated
SLR in this paper. Sign language possesses various regional and dialectal variations; many
of the same sign gestures can be expressed using different hand shapes and motions. Due
to this variability, it is challenging for SLR to predict and distinguish similar gestures.
Earlier SLR techniques acquired data using data gloves or specific sensors for capturing the
position, velocity, and orientation of hands. Although SLR delivers more accurate results
through these devices, this approach is quite expensive and unnatural for the signers.
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With the further advancement of deep learning, researchers focused on vision-based SLR
techniques that use cameras for capturing data and making the process more natural. The
vision-based approach faces challenges like cluttered backgrounds, varying illumination
and image resolutions, and occlusions. All these factors make the architecture of SLR more
complex. Numerous scholars have proposed machine-learning and deep-learning methods
to recognize sign language. The conventional tradition-based SLR approach uses various
feature descriptors to extract relevant features and separate classifiers for recognition. A lot
of preprocessing is required to enhance the model’s efficiency. These approaches could be
more efficient in dynamic sign language gestures [1–5].

The traditional SLR methods involve extracting handcrafted features followed by
classification using the hidden Markov model (HMM) or dynamic time warping (DTW)
for learning the temporal features from the video sequence. In [6], the authors designed
an HMM-based framework using the camera for real-time hand tracking to recognize
ASL words in 40 classes [7]. In 1997, a scholar from Germany recognized isolated words
using HMMs with an accuracy of 89.8%. Then, some researchers used an artificial neural
network (ANN) for SLR. In [8], Huang and Huang recognized 15 hand gesture classes with
a 3D Hopfield neural network with an accuracy of 91%. The authors in [9] proposed a
framework based on similarity assessment for the recognition of Chinese sign language
using trajectory features by DTW and visual and contour features. Hikawa and Kaida [10]
proposed a hybrid ASL framework using a self-organizing map (SOM) for computing
features and a Hebbian network to classify 24 classes. Selecting an appropriate feature
descriptor for developing any model is a major problem that requires a long process of hits
and trials.

With the advancement of technology, deep learning neural networks like CNN have
been widely used in SLR systems. It has revolutionized the field of computer vision with
its enhanced performance. It eliminated the extra steps involved in traditional approaches
by combining feature extraction and classification stages. Generally, models like two-
dimensional (2D)-CNN, three-dimensional (3D)-CNN, and networks with multimodal
inputs are used by the researchers for SLR [3]. The deep learning neural network pro-
posed in 2012 on the ImageNet dataset encouraged researchers to develop more CNN
frameworks like VGG-16, VGG-19, Inception V3, MobileNetV2, etc. Pigou et al. [11] used
2D-CNN as a backbone model for feature extraction from the video frame sequence and
classification model using fusion techniques. Unfortunately, the CNNs failed to capture
temporal information and efficiently extracted spatial features from the video sequence.
Then, 3D-CNNs were introduced, which have proven effective in simultaneously removing
spatial and temporal features. The author in [12] used 3D-CNN for dynamic hand gesture
classification with depth and intensity input data and achieved relatively high accuracy.
Still, the network is computationally expensive due to many parameters. The 2D-CNN can
only extract spatial features but fails to learn temporal features, which is crucial in dynamic
SLR. The recognition of dynamic sign language gestures is quite challenging compared
to static SLR. It involves extracting spatial and temporal features from long sequential
data. Hence, some researchers used 3DCNNs to learn spatiotemporal features from the
video sequence, which gave good results but suffered from high computational time. Many
researchers have employed recurrent neural networks (RNNs), which are effective at pro-
cessing sequential data but insufficient for learning spatial characteristics [13]. However,
these networks need help with the problem of gradient explosion for learning long sequen-
tial data. The introduction of long short-term memory (LSTM) solved this problem. Many
researchers extracted features from images using CNN and fed those to RNN. The author
in [14] developed an ASL recognition system using the Inception network for spatial and
RNN for temporal learning. In Ref. [15], the authors proposed an architecture combining
pre-trained CNN (InceptionV3) and LSTM for ISL recognition tasks for spatial feature
extraction and sequential learning, respectively. In Ref. [16], the authors implemented a
robust cascaded SLR network using a single shot detector (SSD), CNN, and LSTM from
video frame sequences to learn spatiotemporal information. More neurons are needed to
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store more information, which further makes the model complex and results in an overload
of information. This issue can be resolved using an attention mechanism by selecting
and processing the most relevant information from the observed data and discarding the
redundant information with limited resources. This mechanism works on the principle
of the human visual system to pay attention to significant regions helpful in detecting
objects. Natural language processing tasks used attention-based networks; now, they are
used extensively in the computer vision domain [17]. In our work, we have proposed a
hybrid network using the benefits of CNN and LSTM with an attention mechanism for
recognizing isolated sign language words. We have used the MobileNetV2 network, which
has a lightweight structure with depth-wise convolutions for filtering valuable features
from the frame sequence to minimize the complexity of the overall architecture [18]. Then,
we cascaded the attention module to LSTM to optimize the weight distribution and learn
the spatiotemporal relationships for acquiring the desired information from the temporal
sequence. The attention module reduces the loss of information and improves the stability
of the model.

The major contributions of this paper are listed as follows:

• We propose a CNN and LSTM-based method with an attention mechanism that is
substituted over the output layer of the LSTM to detect the spatiotemporal features.

• The attention layer assigns different weights by employing probability distribution to
focus on relevant cues in the sequence for the recognition of sign language gestures.

• The designed architecture is lightweight, with an optimum parameter count, and
computationally efficient compared to the related existing methods.

• Various performance metrics and the K-fold approach were used to assess the model’s
efficiency and contributed to assuring the model’s resilience.

The remaining portion of this paper is arranged as follows: Section 2 explains the
model architecture. Then, the network’s performance is analyzed and compared to the
existing methods using various metrics in Section 3. Finally, in Section 4, we present
our conclusions.

2. Materials and Methods

In this section, we present the dataset description, data pre-processing, and working
mechanism of the proposed architecture.

2.1. Dataset

For the evaluation of our methodology, the Word Level American Sign Language
(WLASL) dataset [19] mentioned in the paper “Word-level Deep Sign Language Recognition
from Video: A New Largescale Dataset and Methods Comparison”, published in 2020, was
used. It is the largest signer-independent ASL dataset collected by native American signers
with different backgrounds, signing styles, and dialects from 20 websites. It comprises over
2000 words from over 100 signers, with 21,083 samples. Hence, it is a challenging dataset
with various subsets, with 100, 300, 1000, and 2000 glosses [20]. This paper experimented
on a subset of 100 glosses, with 2038 videos created by 97 signers. Figure 1 shows the
sample video frames from the WLASL dataset.
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2.2. Dataset Pre-Processing

Since the length of video frames differs for each video, we used padding to equalize it
according to the maximum frame sequence length. Then, we resized the frame to a size of
224 × 224. We normalized the resized frames by dividing each pixel value by 255. This
operation sets the pixel values in the range [0, 1], making the input data fit for training
machine learning models, especially neural networks.

2.3. Model Architecture

This section describes the architectural design of the model. The proposed model is
an end-to-end framework for the classification of sign gestures. The model architecture,
as shown in Figure 2, follows various stages explained in the subsections. First, the sign
language gesture videos are given as input to the designed framework. The videos are
transformed into an image/frame sequence and fed to CNN for feature extraction. CNN
plays a crucial role in computer vision, especially in image processing, object recognition,
and classification tasks. The human visual system inspires the structure of CNN to learn
hierarchical local and global features from images using various layers. It mainly consists
of the convolutional layer that extracts meaningful features from the image data. Finally,
the pooling layers are employed to reduce dimensionality. The fully connected layers
convert the feature vector obtained into a resulting output that predicts the classes using a
probability distribution. There is no need for training from scratch as it uses the weights of
an already trained network on the ImageNet database to finish the problem on the new
dataset. Transfer learning strategy enhances the model’s efficiency [21].
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Figure 2. The block diagram of the proposed approach, illustrating various steps involved in sign
language classification.

We used MobileNetV2 [22], a pre-trained network proposed by Google, for spatial
feature extraction from the frames. It empowers deep learning neural network applications
on mobile devices due to its compact, low-latency, and energy-efficient CNN framework.
It uses depthwise separable convolutions that divide the normal convolution process
into two separate phases: depthwise and pointwise convolutions. This step optimized
the computational efficiency and size of the model and minimized the parameters. The
enhanced version of MobileNet, known as MobileNetV2, comprises various components,
such as linear bottlenecks with skip connections, inverted residual blocks, and squeeze and
excitation blocks. These blocks play an essential role in improving the performance while
maintaining accuracy.
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It fulfills the diverse computational needs as the magnitude and dimensions of the
network can be modified [23]. The spatial features are captured from the last max-pooling
layer with a size of 1 × 1 × 1280. Thus, the proposed model generates feature vector se-
quences that have the shape of m× n, where m represents the size of the vector, and n gives
the video frame length. After extracting the feature vector from the MobileNetV2 network,
it is fed to the LSTM to learn the temporal relationship with the sequence. The LSTM
network proposed by Hochreiter and Schmidhub [24] is a variant of RNN. It consists of
memory cells and control units that save the sequential information for extended intervals.
The design structure of LSTM consists of three types of gates: input, forget, and output
gates with a sigmoid activation function. The cell state is an essential part of LSTM that
shrinks the values between 0 and 1 using the sigmoid activation function and helps pass
the information throughout the module. Traditional RNNs must deal with the gradient
vanishing and gradient explosion problems while processing long sequential data. The
gates in the LSTM module decide whether to keep or remove the information in the cell
state, providing a solution to the problems. The LSTM module comprises three main gates:
forget, input, and output gates. Each neuron of the memory cell of the LSTM has a present
state and a hidden layer.

The motive of the forget gate is to decide whether to discard or keep the data from
the cell state using a sigmoid function. If the sigmoid value is 1, the cell state saves the
information, whereas if the output is 0, it discards it entirely.

In Equation (1), Ft is the forget gate, xt is the information stored in the memory cell,
and ht represents the output in every cell. The weight vector

(
W f

)
and bias

(
b f

)
of the

forget gate are adjusted by the sigmoid activation function (σ).

Ft = σ
(

W f [ht−1, xt] + b f

)
(1)

Then, in the next step, LSTM decides which information to store in the cell state after
processing the sequence of inputs using Equation (2). The input gate It, with the activation

function, regulates the value between −1 and 1 to generate the new candidate values as
∼
Ct,

represented in Equation (3). After this, based on the two values It and
∼
Ct, the cell state is

updated and multiplied by ft to predict whether to keep the information of the previous
state or not [25,26].

It = σ(Wi [ht−1, xt] + bi) (2)
∼
Ct = tanh(Wc [ht−1, xt] + bc) (3)

Ct = Ft × Ct−1 + it ×
∼
Ct (4)

Finally, the output gate uses the sigmoid activation function to decide which memory
information to pass on to the next layer using sigmoid activation and determines the final
hidden state, as shown in Equations (5) and (6).

Ot = σ(Wo [ht−1, xt] + bo) (5)

Ht = Ot × tanh(C t) (6)

The sequence of spatial features acquired from the video frames at each moment ‘t’ is
represented as X of length n.

X = [x0, x1, . . . . . . , xn] (7)
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The input feature sequence is passed on to the LSTM network 1280 hidden units that
consist of several memory cells and output a series of hidden states that summarize the
temporal information as follows:

h = [h0, h2, . . . . . . , hn] (8)

After this, the Bahdanau attention mechanism [27] is integrated into the LSTM model
output, informing the model to focus on a particular portion of the feature sequence. The
attention layer learns the importance of each hidden state. Attention-based architecture
attends to every hidden state at every time step, and then, the most informative one is
decided for computing predictions, as shown in Figure 3.

Electronics 2024, 13, 1229 6 of 13 
 

 

After this, the Bahdanau attention mechanism [27] is integrated into the LSTM model 

output, informing the model to focus on a particular portion of the feature sequence. The 

attention layer learns the importance of each hidden state. Attention-based architecture 

attends to every hidden state at every time step, and then, the most informative one is 

decided for computing predictions, as shown in Figure 3. 

 

Figure 3. Structure of LSTM fused with an attention mechanism. 

First, the attention weights 𝛼𝑡𝑖 are calculated based on the matching of 𝑥𝑡 and ℎ𝑖. 

The attention mechanism normalizes the attention weights using a feed-forward frame-

work with a hyperbolic tangent as an activation function, as shown in Equation (9), where 

𝑣𝑡 and 𝑊𝑎 are the weight vector and weight matrix, respectively. 

𝛼𝑡 = 𝑣
𝑡tanh (𝑤𝑎[𝑥𝑡; ℎ𝑖])  (9) 

The obtained attention score is further normalized using the softmax function as follows: 

𝛼𝑡𝑖 = 
exp(𝑠𝑐𝑜𝑟𝑒(𝑥𝑡 , ℎ𝑖))

∑ exp(𝑠𝑐𝑜𝑟𝑒(𝑥𝑡 , ℎ𝑖))
𝑡
𝑖=1

 (10) 

The context vectors at time t, which is the sum of hidden states of the input sequences, 

are weighted by the attention score using Equation (11). In this equation, 𝛼𝑡𝑖 represents 

the present sequence’s output probability and demonstrates the sign gesture’s final state 

in the frame sequence [4,28]. 

𝑐𝑡 = ∑ 𝛼𝑡𝑖
𝑡
𝑖=1 ℎ𝑖  (11) 

The dynamic gesture spatiotemporal feature vector 𝒄𝒕, extracted from the LSTM out-

put, is fed to the dense layer with 128 units. Then, we used a dropout layer with a dropout 

value of 0.7 to avoid overfitting while training the model. Finally, the fully connected layer 

with neuron units is equivalent to the total classes in the dataset, and the softmax activa-

tion function gives the prediction of sign classes. Algorithm 1 lists the important steps in 

the proposed architecture. 

  

 

 

    𝒕 

 

 𝒕− 
   

   

  

   

 

   

 

 𝒕−  

 

   

 

                                                LSTM 

   y 

 

   

  

   

   𝒕−  

  

   

  

Context vector 

    𝒕−   𝒕    

Figure 3. Structure of LSTM fused with an attention mechanism.

First, the attention weights αti are calculated based on the matching of xt and hi. The
attention mechanism normalizes the attention weights using a feed-forward framework
with a hyperbolic tangent as an activation function, as shown in Equation (9), where vt and
Wa are the weight vector and weight matrix, respectively.

αt = vttanh(wa[xt; hi]) (9)

The obtained attention score is further normalized using the softmax function as follows:

αti =
exp(score(xt, hi))

t
∑

i=1
exp(score(xt, hi))

(10)

The context vectors at time t, which is the sum of hidden states of the input sequences,
are weighted by the attention score using Equation (11). In this equation, αti represents the
present sequence’s output probability and demonstrates the sign gesture’s final state in the
frame sequence [4,28].

ct = ∑t
i=1 αtihi (11)

The dynamic gesture spatiotemporal feature vector ct, extracted from the LSTM out-
put, is fed to the dense layer with 128 units. Then, we used a dropout layer with a dropout
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value of 0.7 to avoid overfitting while training the model. Finally, the fully connected layer
with neuron units is equivalent to the total classes in the dataset, and the softmax activation
function gives the prediction of sign classes. Algorithm 1 lists the important steps in the
proposed architecture.

Algorithm 1. Hybrid CNN-LSTM with attention to sign language recognition.

Input: Input sign gesture video frame sequence
Output: Prediction of class labels
Step 1: Spatial feature extraction
# Loop over each frame in the frame sequence to compute features
for frame in frame sequence do

for frame in frame sequence do
Features←MobileNetV2 feature extractor ()

end for
Step 2: Attention-based LSTM

for t in range (feature sequence length X):
# Compute hidden state ht using Equations (1)–(6)

Set LSTM output h to the sequence of hidden states h = (h1, h2,. . .,ht);
for each hidden state sequence h do

Compute attention weights αti, context vector ct using Equations (9)–(11).
context vector = Attention (xt, ht)

end for
# Apply a Dense layer with ReLU activation to the context vector
dense1 = Dense (128, activation=“relu”) (context vector)
# Apply Dropout layer with a dropout rate of 0.7
dropout = Dropout (0.7) (dense1)
# Apply a Dense layer with Softmax activation for classification of sign gesture class
output = Dense (100, activation=“softmax”) (dropout)
end for

3. Results and Discussion

The efficiency and superiority of the implemented methodology are analyzed in this
section, with a large-scale WLASL dataset. First, we described the implementation details of
the experimental setup and then demonstrated the performance of the proposed framework
with various statistical measures. Then, a comparative analysis is illustrated with the other
state-of-the-art networks based on accuracy and computational efficiency.

3.1. Implementation Details

The proposed network extracts frames from the sign language videos, and pre-trained
MobileNetV2 was adopted as a feature extractor. For the training of the model, an adaptive
moment estimation (Adam) was used for optimization with beta 1, beta 2, and epsilon as
0.99, 0.999, and 1 × 10−7, respectively. The exponential decay learning rate scheduler, with
an initial learning rate of 0.001, decay steps of 10,000, and decay rate of 0.96, was used
with the optimizer to decrease the learning rate with training that will allow the model
to properly converge at the optimal point where the loss is minimum. The “categorical
cross-entropy” loss function was used in the training. The epochs and batch size were set to
200 and 32, respectively. We experimented using NVIDIA GTX 1060 GPU with the Python
framework on the Windows 10 operating system, with configurations of Intel(R) Core (TM)
i7 processor, 2.40 GHz CPU, and 16 GB RAM. The model was trained for approximately
one hour.

3.2. Performance Measures

The network performance was measured through statistical metrics like accuracy,
recall, precision, F1-score, and K-fold cross-validation. These performance metrics are
critical in determining the efficiency of deep learning models across diverse positive and
negative samples. Accuracy is a widely used metric that demonstrates how many instances
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are classified adequately from all classified samples. The precision value is the ratio of
accurately categorized positive classes to the total sum of optimistic classifications. Recall
indicates how many samples are predicted as accurate out of all the predictions. It measures
how good the network is at predicting all the positives. The F1-score metric combines
precision and recall to create balance. It gives the harmonic mean between precision and
recall [21,29].

The evaluation metrics are calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1-score =
2× Precision× Recall

Precision + Recall
(15)

where TP, FP, TN, and FN signify the value of true positives, false positives, true negatives,
and false negatives. Furthermore, K-fold cross-validation (K = 5) tests the validation of the
classifier. This technique partitions the data into ‘K’ folds, and the model is trained for each
fold, ensuring the efficiency of the network is not affected by the train-test split. Figure 4a,b
demonstrates the accuracy and loss graphs of the model with an attention mechanism.
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Figure 4. Graphs for (a) accuracy and (b) loss.

In Figure 5, the bar chart demonstrates each fold’s precision, recall F1-score, and
accuracy. The highest accuracy of 85.47% is achieved for the 4th fold with precision,
recall, and F1-score values of 86, 87, and 84, respectively. The average values of accuracy,
precision, recall, and F1-score are 84.65%, 86.8, 87.4, and 84.4, respectively. These metrics
give comprehensive details of the model’s efficiency and indicate that the model has
performed relatively well, suggesting that it has made correct predictions while reducing
false positives and negatives. The confusion matrix in Figure 6 illustrates the per-class
accuracy of the dataset for K = 4-fold using the designed architecture.
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Our model showed good performance across almost the whole dataset; however, it
was not able to predict sign classes ‘full’, ‘soon’, ‘thin’, ‘Thursday’, ‘tell’, ‘pizza’, and ‘why’.
The sign class ‘bar’ was misclassified with class ‘theory’ and ‘brother’. The irregularity of
spatial and temporal features caused by similarity in the movement of gestures can be the
reason for this. After analyzing the dataset, we found that different signers have performed
the same sign class differently, which led our model to result in some wrong predictions.

3.3. Comparison with the Existing Techniques

The performance of the proposed methodology was compared to other RGB-based
and pose-based frameworks tested on the WLASL dataset, as shown in Table 1. The
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authors in [19] used VGG16 as a backbone model to extract spatial features with stacked
Gated Recurrent Unit (GRU) and Inception 3D convolutional networks for sequential
learning. The authors in [30] coarsely aligned the isolated signs and employed a temporal
attention strategy to recognize the sign language. A full transformer network, with a
Swin transformer as a spatial encoder and a mask future transformer, has been used for
recognizing word signs [31]. Pose-based methods: Sign Pose-based Transformer (SPOTER)
and Graph Convolutional Network (GCN) with BERT were used to detect sign videos. It
was observed from the comparison that by using only pose data as input, the accuracy
is considerably less than using full RGB data. Pose data lack in providing knowledge
about fingers and facial expressions, which are very useful for recognizing sign language
gestures. Our proposed network with hybrid CNN and LSTM with an attention mechanism
performed better than the existing methods by achieving 84.65% prediction accuracy.

Table 1. Performance comparison of the model with other state-of-the-art methods.

Method Used Input Parameters Training Epochs Avg Infer
Time

Top-1 Accuracy
(%)

I3D [19] (2020) RGB 12.4 M 200 0.55 s 65.89
TK-3DConvNet [30] (2020) RGB - - - 77.55

Full Transformer Network [31] (2022) RGB - - - 80.72
GCN-BERT [32] (2021) Pose - 100 - 60.15

SPOTER [20] (2022) Pose 5.92 M - 0.05 s 63.18
MIPA-ResGCN [2] (2023) Pose 0.99 M 350 0.0391 83.33
SIGNGRAPH [1] (2023) Pose 0.62 M 350 0.0404 72.09

Ours
(MobileNetV2 + LSTM + ATTENTION) RGB 0.374 M 150 0.0302 84.65

3.4. Computational Performance Analysis

In this study, we conducted a comparison of our proposed architecture with I3D (an
appearance-based method), SPOTER, (MIPA-ResGCN), and SIGNGRAPH (pose-based
methods) to evaluate the computational efficiency based on the number of model parame-
ters and average inference time taken to process each video. Our model has 0.374 million
parameters, which are less than those of MIPA-ResGCN, SIGNGRAPH, I3D, and SPOTER,
with 0.99 million, 0.62 million, 12.4 million, and 5.92 million model parameters, respectively.
Figure 7 shows that our model is computationally efficient, with fewer parameters, less
average inference time and reasonable accuracy than the other existing methods.
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We also analyzed the time complexity of the models using Big-Oh notation, which
computes the total time for each operation in the algorithm. This is the most commonly
used notation for handling worst-case scenarios, and it also describes running times and
space bounds based on a parameter ‘n’ that varies according to the task [33]. In case of
hybrid CNN with attention-based LSTM, we have used MobileNetV2, which consumes O(

∑L
i=1 CL−1 ×M2

L × CL × S2
L

)
, where M, S, and C represent the dimensions of the feature

map, size of the kernel, and channel count for every convolutional layer L. Then, we
used LSTM with an attention mechanism for classification, which has a computational
complexity of [2·O (k× h)], where k signifies the total outputs and h is the number of neuron
units in the hidden layer. The attention mechanism has time complexity of O (n × m), where
n represents the dimensionality of hidden states and m gives the length of the sequence.

The I3D Convolutional network is 3DCNN, which involves a 3D filter for convolu-
tion operations. The time complexity is O

(
∑L

i=1 CL−1 ×M2
L × CL × S3

L

)
. The S3

L term
signifies the cubic kernel that makes the network computationally expensive. In [32], the
authors used a transformer-based network with a multi-head attention mechanism that
consumes O (6 × n2 × d) + O (6 × n × d2), where n is the sequence length and d repre-
sent the dimensionality of the input embeddings. There are six layers for each encoder
and the decoder with nine heads. Also, the parameter count of this model is 5.92 M,
which makes it time-consuming during training and inference. The architecture proposed
in [1,2] employed a graph convolutional network (GCN) that has a time complexity of
O (k× e× d + k× n× d2), where the variables n, e, K, and d represent the total number
of nodes, edges, layers, and dimensions of the node hidden features utilizing pose data
as input.

Our model achieved high recognition accuracy with fewer model parameters, fewer
training epochs, less average inference time, and less temporal complexity than other
models. It also maintained an appropriate balance between accuracy and efficiency.

4. Conclusions

Both spatial and temporal features play a vital role in implementing dynamic SLR.
This paper presents a novel hybrid CNN-attention-based LSTM framework for recognizing
isolated word sign language gestures from the video frame sequence. We employed Mo-
bileNetV2 CNN to extract salient features from the video frames in this work. The attention
mechanism is based on weight allocation and detects the most significant information by
distributing higher weights. Hence, it positively optimized the traditional LSTM model by
allowing it to dynamically weigh the significance of different input elements. It improves
task performance with long sequences, alleviating the need to compress all information into
a fixed-size representation. It provides some interpretability as we can visualize where the
model is “looking” when generating an output. The features from the CNN are passed in
sequence to LSTM to learn the long-term dependencies. An attention layer is incorporated
into the hidden layers of LSTM to enhance its efficiency and determine more detailed
spatiotemporal information from the data. We have experimented on the WLASL dataset
with 100 classes. Our system achieved a classification accuracy of 84.65%, reporting nearly
2% to 3% improvements over the relevant existing methods.
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