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Abstract: Connected and Autonomous Vehicles (CAVs) technology has the potential to transform the
transportation system. Although these new technologies have many advantages, the implementation
raises significant concerns regarding safety, security, and privacy. Anomalies in sensor data caused by
errors or cyberattacks can cause severe accidents. To address the issue, this study proposed an inno-
vative anomaly detection algorithm, namely the LSTM Autoencoder with Gaussian Mixture Model
(LAGMM). This model supports anomalous CAV trajectory detection in the real-time leveraging
communication capabilities of CAV sensors. The LSTM Autoencoder is applied to generate low-rank
representations and reconstruct errors for each input data point, while the Gaussian Mixture Model
(GMM) is employed for its strength in density estimation. The proposed model was jointly optimized
for the LSTM Autoencoder and GMM simultaneously. The study utilizes realistic CAV data from a
platooning experiment conducted for Cooperative Automated Research Mobility Applications (CAR-
MAs). The experiment findings indicate that the proposed LAGMM approach enhances detection
accuracy by 3% and precision by 6.4% compared to the existing state-of-the-art methods, suggesting
a significant improvement in the field.

Keywords: cybersecurity; anomaly detection; falsified trajectories; CAVs; LSTM; Gaussian Mixture
Model

1. Introduction

Connected and Antonymous Vehicles (CAVs) have the potential to transform the
transportation system. CAVs can continuously share information, such as vehicle speed,
location, and acceleration/deceleration to their surrounding vehicles or infrastructure
by taking advantage of Vehicle-to-Vehicle (V2V) and the Vehicle-to-Infrastructure (V2I)
communication. These technologies are expected to help alleviate traffic congestion and
improve traffic efficiency and safety. Although these new technologies provide several
advantages, safety, security, and privacy are the major concerns for real-world applica-
tions [1]. CAVs heavily rely on data from sensors. Anomalous sensor readings caused by
errors or cyberattacks can have severe consequences, including crashes and traffic delays.
There are different types of internal and external cyberattacks in CAV systems. Khattak
et al. [2] identified three types of cyberattacks in CAVs environments: (i) attack points that
are compromised in V2V communication at the application level, e.g., message falsification
attack, shutdown attack, and reply attack; (ii) attack points that are compromised in V2I
communication at the network level, e.g., spoofing attach, denial of service attack, and
radio jamming attack; and (iii) attacks that occur in CAVs themselves by gaining physical
access to the CAVs. More details and examples of different attacks can be found in [2–4].

Cybersecurity is one of the most significant concerns in the CAV applications. The
threat of cyberattacks on CAVs poses a significant risk not only to the travelers within these
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vehicles but also endangers pedestrians, cyclists, and other road users who interact with
them. These attacks can lead to many safety issues, from loss of vehicle control to breaches
of data privacy, showing the urgent need for robust anomaly detection methodologies.
To address these challenges effectively, it is imperative to develop sophisticated anomaly
detection systems capable of identifying and mitigating such threats in real time. These
systems need to analyze vehicle behavior patterns continuously and detect deviations that
may indicate a cyberattack or system failure. Most of the existing studies have relied on
improving the security of the communication channels or sensors within the CAV network
to avoid the type (i) attacks [5–7]. Yet, type (iii) attacks are significantly more threatening
to the system. For instance, the hacker can gain access to these attack points and take
control of CAVs. They can manipulate advisories of V2I lane control, making the target
CAV accelerate when another CAV merges to the same lane in front of the target CAV. These
attacks can disrupt key functionalities of CAVs, e.g., acceleration, vehicle speed, position,
braking, lane changing, and ramp metering behaviors. It will not only put the target
CAVs in danger but also disrupt the traffic flows by creating more congestion and causing
accidents. Guo et al. [8] introduced a non-linear control scheme to handle the dynamic
uncertainties of platoons. The methodology can also be employed to gain back the control
of the attacked CAVs and maintain the stability of the network. Unfortunately, it cannot
manage large disturbances and operate under certain assumptions regarding uncertainties.
Some researchers have contributed by using CAV bus data from a normal human-driven
vehicle to develop machine leaning-based anomaly detection algorithms while neglecting
the temporal relationship between anomalous trajectories. Neglecting these temporal corre-
lations can result in models that fail to recognize complex, time-dependent circumstances,
which compromise the system’s performance to address potential threats. Therefore, de-
signing an efficient and effective anomaly detection algorithm for CAVs is significant to
identify anomalous behavior in real time, thereby preventing the severe consequences of
cyberattacks or sensor anomalies.

This study counters these limitations and focuses on the detection of the attacks by
utilizing realistic CAV data from a platooning experiment. In this paper, we proposed
an anomaly detection model, namely Long Short-term Memory Autoencoder Gaussian
Mixture Model (LAGMM), to detect anomalous behavior in a platoon of CAVs. An LSTM
Autoencoder was applied to generate low-rank representations and reconstruction the
error for each input data point. The Gaussian Mixture Model (GMM) was leveraged
to deal with density estimation tasks. The proposed model was jointly optimized for
the LSTM Autoencoder and GMM simultaneously. There are generally two types of
behaviors/CAV trajectories: normal operations with vehicle sensor data and falsified
trajectories caused by cyberattacks (different types of cyberattacks are considered in this
study). The study utilizes realistic CAV data from a platooning experiment conducted
for Cooperative Automated Research Mobility Applications (CARMAs). Details of the
experiment and data are provided in Section 3. This study has the following contributions:

1 This research employed data from an actual CAV platooning test to simulate anomalies
and identify falsified activities in vehicle platoons containing leading and following
vehicles.

2 We created a real-time anomalous CAV trajectory detection algorithm LAGMM. This
model considers the temporal dynamics of CAV trajectories, which is often over-
looked in previous research. It enhances detection accuracy compared to the existing
techniques.

3 LAGMM applied a two-step strategy of decomposition and density estimation, which
were optimized concurrently. It helps avoid local sub-optimal solutions and further
reduce reconstruction errors.

4 Different types of cyberattacks in CAV systems were investigated and validated with
the proposed model. The proposed model demonstrates its effectiveness in detecting
the various attacks on the influences of CAV operations.
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This work is organized as follows: the recent studies and literature are reviewed to
send a clear picture to the audience in the second section. The experiment and data are
organized and explained in Section 3. Anomalies emulation is introduced in the following
Section 4. The formulation and improvements of the existing study are introduced in
Section 5 as well as the model topology. Lastly, the experiments are analyzed, and the final
conclusion is drawn in the Sections 6 and 7, respectively.

2. Literature Review

There are some existing studies utilizing deep learning models for anomaly detection.
Most of the studies aim at detecting falsified Autonomous Vehicle (AV) trajectories in
an offline manner. That is, after collecting AV data (normal and falsified trajectories),
different types of supervised and unsupervised learning methods are applied to classified
the trajectories. Van Wyk et al. [9] developed a Convolutional Neural Network (CNN)
with Kalman filtering to detect and identify the anomalous behaviors of CAVs. Their
experiment results demonstrated that the proposed model can achieve high accuracy,
sensitivity, and F1 score. Javed et al. [4] proposed a multi-stage attention mechanism with a
Long Short-Term Memory (LSTM)-based CNN model. The method achieved the gain of
up to 3.24% in F-score. Huang et al. [3] developed a trajectory-embedding model from a
natural language processing (NLP) community. The model generated vector representation
of CAVs trajectories to compute the similarities between trajectories. The algorithm first
trained a neural network to obtain vector representation of trajectories. Then, a hierarchical
clustering algorithm was applied to estimate the distance matrix between each pair of
trajectories and identify falsified trajectories. The proposed method could achieve a high
detection rate (>97%). Wang et al. [10] proposed an Adaptive Extended Kalman Filter
(AEDF) method to detect anomalies. This study focused on the platoon movements instead
of that of a single vehicle. They used the speed and location data of the surrounding
traffic of the target vehicle in anomaly detection. Kamel et al. [11] created a misbehavior
detection algorithm (MDA) by utilizing data from a simulated environment in SUMO. They
produced compromised data through six different attack methods and applied machine
learning techniques for detecting misbehavior. Dong et al. [12] conducted simulated attacks
on cooperative adaptive cruise control platoons to study their impact on traffic flow and
safety. They found that an escalation in both the frequency and severity of these attacks on
targeted vehicles resulted in a negative influence on traffic and increased collision risks.
Yen et al. [13] analyzed the performance different back pressure-based traffic signal control
algorithms such as delay-based and queue-based under cyberattacks. They observed that
delay-based algorithms are vulnerable to spoofing attacks where a vehicle’s arrival time is
altered. Singh et al. [14] studied the impact of cyberattacks on a platoon of ten cooperative
adaptive cruise control vehicles. They found a severe variation in acceleration profiles
and the stability of the platoon. Nguyen et al. [15] developed a misbehavior detection
algorithm by tracking host vehicle signals and verification of industry consensus Roadside
Units (RSU) in a V2X (Vehicle-to-Everything) environment. So et al. [16] analyzed location
spoofing using plausibility checks by a k-neural network and SVM to classify misbehavior
using a vehicular reference misbehavior dataset simulated through VEINS. They observed
their algorithm to improve the plausibility checks by 20%. Another study [17] analyzed a
Cooperative Adaptive Cruise Control (CACC) platoon of six vehicles against time-delay
attacks and observed their CACC algorithm to be stable against attacks with no cruise
or jerks.

Some studies have qualitatively assessed the cyber risks. Bertini et al. [18] carried
out a survey among staff members of the Oregon Department of Transportation (DOT) to
assess their preparedness for the deployment of CAV systems. Their findings indicated
that approximately 39–40% of the survey participants expressed concerns regarding the
security risks associated with CAVs. Bhavsar et al. [19] investigated the potential failure
from autonomous vehicle malfunctions within a mixed traffic flow. By employing fault tree
analysis to estimate the likelihood of failure for each autonomous element, the research
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found a 14% rate of failure for the components within autonomous vehicles. Hasan
et al. [20] conducted a comprehensive survey of the V2X system, examining security
measures, standards, and current defense strategies. Additionally, they pinpointed existing
shortcomings in security solutions and highlighted unresolved problems.

Several research efforts have employed quantitative approaches to evaluate the effects
of cyberattacks on CAVs. Amoozadeh et al. [21] employed OMNET++ for the analysis of
ten CACC vehicles in a single-lane scenario, focusing on the consequences of jamming
and message falsification attacks. During message falsification, adversaries modified the
desired acceleration settings, increasing the instability across the vehicle fleet. Similarly,
when subjected to radio jamming, the vehicles reverted to adaptive cruise control mode,
adopting larger time gaps between each other. Islam et al. [22] explored cyberattack
identification and mitigation using the CVGuard framework. CVGuard was observed
to reduce the conflicts when the conflicts before and after the activation of CVGuard
were compared. Another study [23] employed microsimulation to examine a fleet of ten
CACC vehicles in a single-lane scenario subject to cyberattacks. Jamming emerged as a
significant cyber threat, leading to fluctuations in speed and collisions. Khattak et al. [24]
investigated the cybersecurity vulnerabilities within the communication channel of an
Active Traffic Management (ATM) system. They created a prototype for a threat monitoring
system designed to restore the compromised ATM system to normal functionality following
cyberattacks. Li et al. [25] investigated the effects of cyberattacks on a single vehicle on the
longitudinal safety of CAVs. The attack remained active for a brief period. The positions
and speeds from leading vehicles were leveraged as elements of the attack, indicating that
a minor cyberattack significantly affects the acceleration profiles more than the deceleration
profiles of nine vehicles. Wardzinski [26] proposed a model for autonomous vehicle
control systems, which assesses the risk of present and anticipated scenarios to create a
vehicle control strategy. This approach maintains the risk level within the bounds of the
minimally acceptable safety risk. It concluded that enhanced performance and safety are
attainable through V2V communication and collaboration. Wang et al. [27] evaluated the
impact of cyberattacks on a single platoon moving in a single lane, treating cyberattacks as
similar to the dissemination of malicious information. The observation revealed that these
cyberattacks notably disrupted the flow of traffic.

Recent work has explored using machine learning methods and deep neural networks
like convolutional and recurrent networks for effective feature learning from time-series
data. Most statistical anomaly detection methods struggle to model volatility and long-term
trends in time-series data. This is because they often depend on methods that work better
on simpler datasets and fail to capture the fluctuations of variables with little correlations
in the system [28–30]. In recent years, deep neural networks have become very popular
and are used in many advanced models. Ma et al. [31] uses a Bi-Transformer architecture to
extract features from two dimensions in parallel. The model also incorporates an adaptive
multi-head attention mechanism to capture relationships between different time-series vari-
ables. These contributions build on established techniques like Transformer networks and
multi-head self-attention, adapting them to the multivariate time-series anomaly detection
task. Wang et al. [32] proposed a framework that combines an Extended Kalman Filter
(EKF) to denoise sensor readings and Support Vector Machine (SVM) to identify attacks.
Notably, the EKF model incorporates heterogeneous time delays and augmented states
to improve accuracy under stochastic delays and model errors. The authors also conduct
a theoretical analysis relating the detection rate to “pseudo-string stability”, introducing
this new concept to capture platooning stability under model uncertainty. Yang et al. [33]
presents an anomaly detection framework to identify attacks against CAVs by learning
normal driving behaviors. This work adopts inverse reinforcement learning (IRL) to learn
an optimal policy from demonstrated trajectories and then detects anomalies by comparing
observed behavior to policy-based predictions. The key innovations of this work are using
maximum entropy IRL to learn driving behaviors from a small number of trajectory exam-
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ples and creating measures of difference between the predicted and actual driving paths to
feed into a classifier that detects attacks.

The current stage of research in the field has several limitations. Firstly, due to the
unavailability of real-world CAV data, most studies have used Controller Area Network
(CAN) bus data from conventional human-driven vehicles to simulate cyberattacks. As
a result, there is a gap in the literature regarding the assessment of cyber risks and the
detection of anomalous behaviors in real CAV environments. Additionally, a significant
portion of these studies have applied offline models for anomaly detection, further high-
lighting the need for advancements in real-time online methodologies. The existing studies
suffer from heavy computational burdens, making it challenging to implement in real
time. Second, existing studies did not differentiate various types of the attacks, i.e., faulty
CAV sensor behaviors. For example, graduate drift sensor failure is different from bias
sensor failure [9,10]. The proposed model is expected to detect different types of attacks.
Third, existing studies that utilize conventional machine learning or more advanced deep
learning models did not account for the temporal relations of the falsified CAV trajectory
data, which can have a significant impact on anomaly prediction. Traffic flows and vehicle
trajectories are continuously and dynamically updated over time. The temporal domain of
speed and location should be considered in the model.

3. Data

The Federal Highway Administration (FHWA) conducted numerous field tests in
partnership with the Volpe Center to collect real-world data. In [34], the researcher aimed at
leveraging the data for demonstrating a platooning concept utilizing CACC and adaptive
cruise control (ACC). The field tests were carried out at the Aberdeen Center in Maryland
on a 4.5-mile track. The track is intended to imitate the geometry of a standard US highway.
It was designed with geo-locations which are called waypoints to send signals, e.g., target
speeds to the testing vehicles. A platoon of five Cadillac SRX, including leading vehicles
(LVs) and following vehicles (FVs), is installed with CACC controllers and tested for various
configurations. Once the waypoints send the signal to LVs, LVs utilized this information
along with GPS data to fine-tune their CACC settings. The fleet will navigate from the
first waypoint to the last to be counted as one complete test run. Figure 1 illustrates the
layout of the test track and identifies the waypoints used during the platooning testing [34].
According to the study in [35], the speed and acceleration data are pre-processed. For ex-
ample, speed profiles are smoothed with the moving average technique, while acceleration
data are derived from the smoothed speed data, which effectively minimized discrepancies
between acceleration values calculated from raw versus smoothed speed data.

Figure 1. Test track for field experiments.
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The cleaned CAV trajectory data from CARMAs [11] were used to develop anomaly
detection algorithm. Each CAV trajectory consists of four features every 0.5 s: speed of the
CAV, acceleration of the CAV, average speed of non-CAV in the same vehicle platoon, and
steering wheel angle of the CAV. Each CAV trajectory lasts for 10 s.

4. Cyberattack Emulation

Due to the unavailability of publicly accessible anomalous CAV sensor data, this work
simulated the CAV sensor anomalies with real CAV trajectory data. The existing literature
proved that these sensors are vulnerable to cyberattacks and sensor malfunctions [36–38].
We consider three types of attacks that could result in four sensor anomalies. For example,
an attack involving the injection of misleading data through the CAN bus or the on-board
diagnostic (OBD) system could affect in-vehicle speed and acceleration. Similarly, an
adversary possessing legitimate credentials could tamper sensor readings by engaging in
GPS jamming or spoofing attacks, thereby inducing anomalies. Additionally, an acoustic
injection can undermine the integrity of the acceleration sensor, leading to additional
irregularities. This study is focused on detecting between normal and abnormal CAV
trajectories. In light of the attack scenarios described, abnormal trajectories were created,
incorporating four types of anomalies across four scenarios, aligning with findings from
previous research [10]:

i Short anomaly is characterized by an abrupt change in the recorded CAV trajectory
data. A random Gaussian variable having a zero mean and variance of 0.001 was used
to simulate the anomaly. This was scaled by N ∈ (0, 0.01) to capture the anomaly
magnitude, where N belongs to 25, 100, 1000, and 1000. The value was added to the
sensor base value.

ii Noise refers to a longer-lasting shift (spanning several consecutive readings) in the
variability of the tracked CAV trajectory data. The anomaly was simulated as an
independent and identically distributed sequence of the random Gaussian variable
with a mean of zero, length of l and variance of c.;

iii Bias is a deviation from the actual sensor measurements. This was simulated as a
temporary offset from the normal readings and captured for various magnitudes
using a random variable. A uniform distribution was used to sample the anomaly
magnitude. The anomalous readings are generated by adding the anomaly magnitude
to the true sensor readings for various durations d ∈ (25, 50, 100, 1000).

iv Gradual drift refers to a slow and steady change in the data observed over time. This
anomaly was simulated by offsetting the base values with linearly increasing values:
for instance, using a linearly increasing speed of 0–5 mph denoted by c ∈ (3, 5) using
a function linspace (0, c). The anomaly was simulated for various duration.

Anomalies were intentionally introduced into the sensors of CAVs. It was assumed
that the occurrence of sensor anomalies, whether due to cyberattacks or sensor malfunctions,
happened independently to simplify the process. Consequently, the predictive models
were designed without accounting for the possibility of correlated sensor errors. The
assumption was that at any given time epoch, only a single anomaly would occur, reflecting
the independent nature of attacks or sensor faults and the inherent reliability of the sensor
systems. These anomalies were randomly generated and applied to various sensors in a
stochastic manner. The simulated anomalies were then added on the baseline or normal
readings of the affected sensor, whether in the LVs or FVs. The nature and duration of these
anomalies varied. For example, some anomalies were simulated to last for 5 min, while
others lasted for 20 min. Additionally, a mixed-anomaly scenario was also simulated to
assess the sensitivity of the detection mechanisms.

5. Anomaly Detection Modeling Approach
5.1. Proposed Model: LAGMM

As shown in Figure 2, the proposed model is composed of two primary elements. (1)
The first is a compression network designed to create a low-rank approximation, denoted as
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z, of the input data using an LSTM Autoencoder. This process involves combining reduced
space features zc with features representing reconstruction errors zr. (2) The second is a
GMM model aiming at predicting likelihood or energy levels.

Figure 2. An overview of the LSTM Autoencoder Gaussian Mixture Model. The blue bullets in each
layer indicate individual neurons that are processing and passing on information within the network.

Given an input sample x, the LSTM Autoencoder computes the low-dimensional
representation z by Equations (1)–(4):

zc = h(x; θe) (1)

x0 = g(zc; θd) (2)

zr = f (x; x0) (3)

z = [zc, zr] (4)

where zc is the low-rank approximation learnt by the LSTM Autoencoder, zr represents
the features obtained from the reconstruction error, θe and θd signify the parameters of
the LSTM Autoencoder, and x0 is the reconstruction of x, with h(·) and g(·) indicating
the encoding and decoding functions, respectively. Moreover, f (·) is the function used to
compute the features associated with the reconstruction error.

Given the low rank approximation of the input data, the GMM-based estimation network
aims at estimating the density function. GMMs are usually employed to model class distri-
butions by learning parameters for each class during training. When classifying new data
points, GMMs calculate the likelihood of belonging to each class, allowing to select the class
with the highest likelihood. Additionally, GMMs can identify data points that substantially
deviate from the learned normal distribution. In the GMM, the unknown parameters include
the distribution of mixture components ϕ, the means of the mixtures µ and the covariance of
the mixtures Σ. A multi-layer neural network (MLNN) was utilized to determine the mixture
membership for each sample of data, as shown in Equations (5) and (6):

p = MLNN[z, θm] (5)

γ̂ = so f tmax(p) (6)
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where γ̂ represents a vector indicating the predicted soft membership in mixture compo-
nents, and p is the output from the MLNN. With N and the predicted memberships, the
parameters of the GMM can be further estimated as follows:

ϕ̂k =
N

∑
i=1

γ̂ik
N

(7)

µ̂k =
∑N

i=1 γ̂ikzi

∑N
i=1 γ̂ik

(8)

Σ̂k =
∑N

i=1 γ̂ik(zk − µ̂j)(zk − µ̂j)
T

∑N
i=1 γ̂ik

(9)

where ϕ̂k, µ̂k, and Σ̂k are the mixture probability, mean, and covariance for component k in
the GMM. The sample energy can be estimated by Equation (10):

E(z) = −log(
K

∑
k=1

ϕ̂k

exp(−1
2
(z − µ̂k)T)∑̂

−1
k (z − µ̂k)√

|2π̂k|
) (10)

During the testing phase, energy levels are utilized to determine whether the sample
data contain falsified trajectories. An increased energy level suggests a greater likelihood
of anomalies.

5.2. Objective Function

The objective function of the LAGMM is shown in Equation (11). L(xi, x
′
i) represents

the loss function that quantifies the reconstruction error generated by the LSTM Autoen-
coder, which can be defined by the L2-norm. E(zi) denotes the probabilities that the input
samples could be observed. Minimizing J aims at avoiding the singularity problem by
penalizing small values of the diagonal entries.

J(θe, θd, θm) =
1
N

N

∑
i=1

L(xi, x
′
i) +

λ1

N

N

∑
i=1

E(zi) + λ2P(Σ̂) (11)

5.3. Improvements from the Existing Study

To start with, we tried an LSTM-based network as a benchmark. LSTMs were trained
to recognize normal patterns of behavior. At each time step, predictions are made and
the errors in these predictions signal deviations from what is considered normal. Then, a
clustering method was employed to identify anomalies. It turns out that the performance
was not good, especially considering multiple types of cyberattacks. Hence, we have
proposed this new LAGMM for anomaly detection. Based on the study from Purohit [39],
this study has two improvements: (i) accounting for the temporal relations of CAVs
trajectory data by using a LSTM Autoencoder, and (ii) testing the model was against
multiple types of cyberattacks. Specifically, we have implemented the LSTM Autoencoder
instead of the multi-layer neural network used in the original paper [39].

6. Experiments and Results
6.1. LAGMM Configuration and Hyperparameters

For the CARMA dataset, the LSTM Autoencoder feeds a three-dimensional input into
the estimation network, consisting of one reduced dimension and two dimensions derived
from the reconstruction error. In particular, the LAGMM runs with an LSTM layer with
dimensions ((20, 4), 128, tanh) and eight Fully Connected (FC) layers with dimensions
(128, 64, tanh), FC (64, 32, tanh), FC (32, 16, tanh), FC (16, 1, none), FC (1, 16, tanh), FC
(16, 32, tanh), FC (32, 64, tanh), and FC (64, 128, none). The estimation network performs
with an FC (3, 10, tanh), a Dropout layer (0.5), and an FC layer (10, 4, softmax). Multiple
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combinations of LSTM and Deep Autoencoder Gaussian Mixture Model (DAGMM) are
also tested for our model. We have tuned the multiple hyperparameters in this study,
including LSTM layers, FC layers, dropout rate, and learning rate in the Adam optimizer.
The configuration is the best model we achieved so far.

6.2. Network Performance and Metrics

We consider precision, F1 score and accuracy to compare anomaly detection perfor-
mance. A threshold is chosen to identify anomalous samples. For example, in the case
of the LAGMM operating on the CARMA dataset, samples within the highest energy
percentiles are classified as falsified trajectories. We categorize the anomaly class as positive
and accordingly define metrics such as precision, F1 score, and accuracy. Three different
types of attacks are mixed up to create a more realistic environment, and no specific time
is set for its happening. Figure 3 illustrates the histogram of energy computed from the
LAGMM model. Larger values of energy indicate a higher probability of falsified CAV
trajectories. As shown in the figure, most of the samples have negative energy, while only a
small portion of samples have energy higher than 5 at the horizontal axis. This graph can
provide a clear picture on the dataset with a probability of cyberattacks for CAV operators.

Figure 3. Histogram of LAGMM energy.

Figure 4 shows the LAGMM energy of all samples. It suggests that a small portion
of samples have larger energy, e.g., larger than 10, which indicates a higher probability of
CAV falsified trajectories or driving patterns.

Figure 4. LAGMM energy of all samples.
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Figure 5 illustrates the normal CAV trajectories (blue dots) and falsified CAV trajecto-
ries (red cross marks) in terms of each combination of two features out of a total of four
features (four rows and four columns).

Figure 5. LAGMM energy of different features.

We compare our proposed model with benchmark studies, including an NLP model
and DAGMM from [40], as shown in Table 1. We started by setting 99% of the sample as
anomalies. It turns out that the model precision and accuracy is similar to random guessing
with around 49.43% accuracy and 51.44% precision. As we decreased the percentile,
the precision and accuracy are also observed to increase, which are all higher than the
benchmark methods. The percentile drops will enable the data to have a more relax criteria;
thus, it is reasonable to have more accurate results. In addition, during our testing, the
proposed model can achieve a very fast prediction performance with 0.08 s on one sample.
This fast response will enable the driver of CAV to make a quick decision while seeing the
probability of the potential attacks in real time.

Table 1. Performance Comparisons.

Model—Percentile Precision Accuracy F1 Score

NLP 60.32% 63.88% 1.27
DAGMM 64.23% 71.96% 0.092

LSTM 50.87% 51.93% 0.27
LAGMM—99% 49.43% 51.44% 0.024
LAGMM—97% 64.76% 53.55% 0.058
LAGMM—70% 70.63% 74.99% 0.53

Furthermore, the validation performance of the proposed model is promising as shown
in Table 2. The LAGMM—70% still achieved a better score compared to the traditional
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LSTM or NLP model with 65% accuracy. It is reasonable to believe our model has a great
trade-off balance between the model complexity and the performance. Since the attacks are
generated randomly, it is not possible to accurately create a precise numerical comparison
between different type of attacks. However, we do notice a pattern of prediction, which
means certain attacks can usually be detected more accurately than others. For example,
a short anomaly can be identified more accurately than gradual drift, and noise is the
least accurate attack that can be found. In this case, identification represents a higher
possibility of cyberattacks, which is the energy. The reason for such behavior is likely
caused by the nature of the attacks. The patterns of the first two attacks are likely to be
caught by the model in the training session. On the other hand, the noise consists of more
random components, which might need a more complex model structure to identify or
learn. Then, the question circles back to the trade-off between model complexity and the
performance again.

Table 2. Validation testing.

Model—Percentile Precision Accuracy F1 Score

LAGMM—99% 50.63% 68.47% 0.034
LAGMM—97% 50.5% 55.1% 0.068
LAGMM—70% 63% 65.51% 0.54

7. Conclusions

In this paper, we proposed an anomaly detection model LAGMM to support anoma-
lous CAV trajectories detection in real time. LAGMM consists of two major components:
an LSTM Autoencoder and Decoder model which generates low-rank representations of
original samples while keeping the dominant information and a GMM model that can esti-
mate energy in a low-dimensional space. Specifically, the LSTM Autoencoder can extract
long-term temporal dependencies of CAV trajectory data. The proposed anomaly detection
method shows promising results in this study. The proposed LAGMM approach enhances
detection accuracy by 3% and precision by 6.4% compared to the existing state-of-the-art
methods, demonstrating the effectiveness of the proposed algorithm.

An important next step is validating the performance on diverse real-world au-
tonomous vehicle data. The authors will investigate opportunities to collect such data
through industry partnerships or public repositories. Expanding evaluation to various real-
istic scenarios would further demonstrate the generalizability of the approach. The future
work also includes enhancing model capabilities to distinguish between different anomaly
types such as short spikes, noise, gradual drift, etc. Being able to characterize the root
cause of anomalies is important for autonomous vehicles to take appropriate actions [41].
The model could be extended with techniques such as pattern-based classification on
the reconstruction errors to categorize different falsified trajectory behaviors. Incorpo-
rating Transformer-based models is another promising research direction. Self-attention
mechanisms in Transformers can effectively model complex sequential dependencies in
time-series data. Integrating a Transformer encoder into the proposed model architecture
could potentially improve representation learning from multidimensional sensor streams.
The self-attention layers can capture long-range correlations while maintaining computa-
tional efficiency. Fine-tuning on real AV data would allow the Transformer model to focus
on patterns highly relevant to vehicle trajectories.
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