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Abstract: In the realm of manufacturing processes, equipment failures can result in substantial
financial losses and pose significant safety hazards. Consequently, prior research has primarily been
focused on preemptively detecting anomalies before they manifest. However, within industrial
contexts, the precise interpretation of predictive outcomes holds paramount importance. This has
spurred the development of research in Explainable Artificial Intelligence (XAI) to elucidate the in-
ner workings of predictive models. Previous studies have endeavored to furnish explanations
for anomaly detection within these models. Nonetheless, rectifying these anomalies typically ne-
cessitates the expertise of seasoned professionals. Therefore, our study extends beyond the mere
identification of anomaly causes; we also ascertain the specific adjustments required to normalize
these deviations. In this paper, we present novel research avenues and introduce three methods
to tackle this challenge. Each method has exhibited a remarkable success rate in normalizing detected
errors, scoring 97.30%, 97.30%, and 100.0%, respectively. This research not only contributes to the
field of anomaly detection but also amplifies the practical applicability of these models in industrial
environments. It furnishes actionable insights for error correction, thereby enhancing their utility and
efficacy in real-world scenarios.

Keywords: anomaly detection; data normalization; feature value analysis; industrial applications;
manufacturing processes

1. Introduction

This research highlights the significant challenges facing the manufacturing industry,
particularly the costly problems caused by equipment failures in the manufacturing process
and the limitations of human experience and knowledge, which are largely relied upon
to solve these problems [1,2]. Product defects in new equipment and frequent process stop-
pages due to equipment anomalies pose a serious threat to worker safety and underscore
the need for data-driven quality failure prediction systems to address these issues. While
much of the current research is focused on using in-process data to predict failures, there
is relatively little research on Explainable Artificial Intelligence (XAI) for clarifying and
resolving the causes of failures when they occur. Furthermore, existing XAI that has been
studied in manufacturing simply suggests the most relevant features [3,4]. The knowledge
of how to modify certain features to normalize the quality of a product still relies heavily
on experienced experts [5]. These issues suggest that in order to improve efficiency and
safety on the industrial floor, solutions should be sought through data-driven analytics
and increased transparency of artificial intelligence. In this study, AI techniques were
applied to perform anomaly detection of products based on various variables available

Electronics 2024, 13, 1384. https://doi.org/10.3390/electronics13071384 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071384
https://doi.org/10.3390/electronics13071384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6209-4570
https://orcid.org/0009-0004-5086-172X
https://orcid.org/0000-0001-6504-3333
https://doi.org/10.3390/electronics13071384
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071384?type=check_update&version=1


Electronics 2024, 13, 1384 2 of 13

in the manufacturing industry, such as temperature, voltage, current, injection time, etc. [6].
When a product is predicted to be defective, relevant features were identified to understand
what factors led to the prediction. The method proposed in this study is an ensemble
tree-based method for selecting features based on the mode value of nodes, which was
compared with the existing SHapley Additive exPlanation (SHAP)-based feature detec-
tion method. Furthermore, this study proposes a methodology that goes beyond simply
identifying the key features that are anomalous but also proposes a methodology for how
much the features should be modified to normalize the product. This study proposes
three methods: a SHapley Additive exPlanation (SHAP) method, a method using the most
frequent node, and a method using conditional statements at the end node that ultimately
influences the decision. This study found that these methods achieved normalization
rates of 97.30%, 97.30%, and 100.0%, respectively. This paper is organized as follows:
First, in Section 2, we describe the machine learning used in our paper, including prior
work on anomaly detection in manufacturing processes, and SHAP, a type of XAI. Then,
in Section 3, we describe the data we used and show how we processed the data and
how we performed the outlier detection using different machine learning models. Finally,
we present our interpretation of what input variables caused the outlier data, which is
the most important aspect of our work, and how we propose to modify them to normalize
them. Section 4 evaluates how well the proposed normalization methods work in practice,
followed by a discussion in Section 5, and this paper concludes with further analysis and
conclusions in Section 6.

2. Related Works
2.1. Preliminary Research on Predicting Anomaly Data on the Factory Floor

Several studies have been conducted on proactive manufacturing sites. Paul et al. pro-
posed a series AC arc fault detection method based on Random Forests, achieving simplic-
ity and high accuracy compared to conventional ANN- and DNN-based algorithms [7–9].
This method employed grid search algorithms for hyperparameter tuning and precision–recall
trade-off analysis to find the optimal classification threshold. However, it relies on tradi-
tional machine learning models that may lack transparency in the decision making process.
This opacity can make it difficult to interpret why certain features are considered important,
especially in complex manufacturing settings where understanding the root cause of de-
fects is crucial for actionable insights. Fang et al. introduced a machine learning approach
for anomaly detection in intelligent bearing fault diagnosis of power mixing equipment [10].
This method utilized features such as wavelet packet transformation for vibration-based
analysis and extraction, combined with genetic/Particle Swarm optimization for feature
selection, showing high efficiency and accuracy in detecting bearing and gear defects. How-
ever, these feature extraction and optimization techniques can contribute to the complexity
of the model, making it difficult for decision-makers to interpret the model’s predictions and
understand the underlying reasons for specific anomalies. Additionally, the computational
complexity of the model may limit its applicability in real-time scenarios. Li et al. used
a novel machine learning model called deep forest to predict the risk of rockburst [11]. Deep
forest, integrating the characteristics of deep learning and ensemble models, demonstrated
the ability to address the complex and unpredictable nature of rockbursts, using Bayesian
optimization methods to adjust the hyperparameters of the model [12]. While this model
exhibited outstanding accuracy, its narrow focus on underground rock engineering limits
its applicability. Furthermore, the high accuracy in controlled test scenarios may not fully
translate to real-world settings where data can be noisier and conditions more variable.

2.2. Machine Learning Models

For predicting the quality of manufacturing data, various classifiers were employed:
K-Nearest Neighbors Classifier [13,14], Decision Trees Classifier [15,16], Random Forest
Classifier [17,18], Extra Trees Classifier [19,20], and Gradient Boosting Classifier [21,22].
The K-Nearest Neighbors Classifier operates by classifying or predicting based on the
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k-nearest neighboring data points to a given data point, offering an intuitive approach but
suffering from increased computational costs as the dataset size grows. The Decision Trees
Classifier segments data through ’if-then-else’ decision rules, making decisions on features
at each node, representing the outcomes of those decisions at each branch, and repeat-
ing the process until a pure subset is derived or a specified maximum depth is reached.
The core idea of the Random Forest Classifier is to combine multiple decision trees to reduce
the overfitting issue of individual trees and enhance the overall model’s generalization
ability. Each decision tree is trained on a random subset of the data, and the final outcome
is determined by selecting the class most frequently chosen by the trees. The Extra Trees
Classifier is a variation of Random Forest that increases randomness to decrease overfitting.
It builds trees using randomly selected data subsets and random splits rather than searching
for the optimal split, thereby reducing computational costs and speeding up the learning
process. The Gradient Boosting Classifier sequentially trains multiple weak predictors
and assembles them into a robust prediction model. At each stage, new models are added
in a direction that reduces the errors of the previous models, and the model’s performance
is continuously enhanced by adjusting the weights in a direction that minimizes the loss
function of the model, utilizing gradient descent.

2.3. SHAP

In modeling for improving defect rates in the manufacturing process, identifying
causal factors and understanding their impact on the results is crucial. One of the tools
enabling such explainability in results is the eXplainable AI method known as SHapley
Additive exPlanation (SHAP) [23]. Figure 1 below represents the entire process of SHAP.

Figure 1. Overview of SHAP methodology.

Initially, there is a black-box model f and its corresponding predictions [24]. In-
stead of using identical input values, simplified input values are used to find a Surrogate
model g that satisfies g(z′) = f (hx(z′)) [25]. Essentially, the Surrogate model uses trans-
formed inputs to generate outputs similar to those provided by the original black-box
model. SHAP is model-agnostic and distributes the impact of each feature additively, not
only for the overall model feature importance but also for the influence of each feature
on individual prediction values. In other words, SHAP represents the impact of specific
variables on individual predictions as the sum of the influences of the actually existing
variables. The Shapley Value is used as the metric for measuring this influence, offering
an additive feature importance measure that satisfies three properties of feature attribution:
Local Accuracy, Missingness, and Consistency. For tree-based models like Random Forest and
Gradient Boosting Machine, Tree SHAP is utilized [26]. Traditional methods of measuring
feature importance in Tree Ensemble Models, such as Gain [27] and Split Count [28], have limi-
tations due to their inconsistency across models or individual trees. It is unreliable if feature
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importance varies even though models are trained from the same data. However, SHAP
allows for the computation of consistent feature importance regardless of the order of splits.

3. Method

The data utilized in this study were collected from plastic injection manufacturing
equipment employing a physical foaming molding method. This equipment incorporates
a novel technology, specifically a chemical foaming molding method, and utilizes an
eco-friendly manufacturing technique that reduces the use of plastic raw materials (resin)
and enables the use of recycled resin. An example of the injection equipment can be
observed in Figure 2.

Figure 2. Examples of plastic injection manufacturing equipment: (a) Equipment for injection
targeting. (b) Performance and defect management equipment. (c) Injection model application
equipment. (d) Data collection and management equipment.

Quality assessment of products manufactured by this injection equipment was con-
ducted through visual inspection, as shown in Figure 3, followed by manual entry into
the kiosk. Through data analysis of quality-impacting factors and elements, it is imperative
to identify the factors contributing to defects in injection quality and to enhance the accu-
racy of defect detection and reduce the error rate by utilizing machine learning models.
The total number of data used was 18,668, of which 70% was allocated to the training set,
15% to the validation set, and 15% to the test set. The training set was utilized to train all
the data, after which the model demonstrating the best results based on the validation set
was selected. The final accuracy was calculated using the test set to derive the optimal
solution. The overall workflow is illustrated in Figure 4 below.

Figure 3. Quality inspection method for the product.
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Figure 4. Overall flow of anomaly detection and optimal solution proposal for features capable
of normalizing anomalous data.

3.1. Data Preprocessing

The initial step of the analysis focused on analyzing the features influencing the qual-
ity of the product. Upon examining the uniqueness of data per feature, it was observed
that the majority possessed singular values. Furthermore, numerous features encom-
passed irrelevant information such as date details, a high proportion of missing values,
and redundant entries. Since such inconsequential features adversely affect the accuracy
of the model, a filtering process was undertaken to select 14 pertinent features, which are
detailed in Table 1.

Table 1. Mean, max, min, and standard deviation for each feature used as input data.

Mean Max Min Std

P1_Max 184.4 253.1 0.3 14.5
P2_Max 326.4 400.3 0.2 20.7
Cycle Time 49.8 100 0 6.2
Actual Barrel Temperature HN 202,2 257.9 0 21.7
Actual Barrel Temperature H1 207.9 230.3 0 21.4
Actual Barrel Temperature H2 213.1 230.3 0 21.9
Actual Barrel Temperature H3 222.6 225.8 0 22.9
Actual Barrel Temperature H4 217.5 221.6 0 22.4
Actual Barrel Temperature H5 207.6 212.1 0 21.4
Filling Time 0.9 6.1 0 0.1
Metering Time 17.1 41.8 0 2.5
Max Injection Pressure 93.2 132.2 0 10.5
Max Injection Velocity 107.4 118.2 0 11.1
Cooling Time 18.1 32 0 2.1

Additionally, the distinction between normal and abnormal products was based
on the product’s weight, with the weight range of 450 to 650 kg being indicative of normal
products and any deviation from this range representing abnormal data. A correlation
analysis was conducted for each of the 14 chosen features and the weight. Figure 5 below
shows the correlation between each feature.
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Figure 5. Correlation analysis of selected features.

The subsequent step involved labeling the data as normal or abnormal to address
the problem of predicting product quality as a binary classification issue using the weight
range. An examination of the total dataset revealed 18,124 entries as normal and 959 as de-
fective, representing a significant imbalance at a ratio of approximately 19:1. We used
the Synthetic Minority Oversampling Technique (SMOTE) [29,30] to solve this imbalance
problem. SMOTE generates new synthetic samples by utilizing the differences between
the data points of the minority class, proving more effective than simple duplication in over-
sampling scenarios. Finally, to solve the problem that the scale of each feature may have
different influence on model learning, all feature values were normalized to fall within
the 0 to 1 range [31].

3.2. Anomaly Detection Using Machine Learning Models

Model training ensued next. To predict product defects using data collected from the
factory that had undergone preprocessing, a total of five machine learning-based classi-
fication models were utilized: K-Nearest Neighbors Classifier, Decision Trees Classifier,
Random Forest Classifier, Extra Trees Classifier, and Gradient Boosting Classifier. In em-
ploying each model, parameters such as the number of neighbors (n_neighbors), the number
of trees (n_estimators), the maximum depth of the trees (max_depth), and the learning
rate (learning_rate) were meticulously controlled to ensure a fair comparison of accuracy
across models [32–36]. Furthermore, the Grid Search method was employed to identify
the most optimal combination of parameters for each model [37]. Grid Search performs
5-fold cross-validation over all combinations within a predefined grid of parameters, se-
lecting the combination that best fits the model [38]. By appropriately adjusting these
parameters, the complexity of the models was constrained, and the risk of overfitting
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was minimized. The remaining parameters of the model were kept at default values.
Table 2 shows the optimal hyperparameters for each model found through Grid Search.

Table 2. Best parameters determined by Grid Search.

Model Parameters

n_neighbors n_estimators max_depth learning_rate

K Neighbors Classifier 5 - - -
Decision Tree Classifier - - 11 -
Random Forest Classifier - 20 13 -
Extra Trees Classifier - 15 17 -
Gradient Boosting Classifier - 25 11 0.1

Following the training of all models, performance evaluation on the validation and
test datasets was conducted. The metrics used for performance evaluation were Accuracy,
Precision, Recall, and F1 Score [39]. Through the evaluation of each model’s performance,
the most suitable classification algorithm for anomaly detection was identified.

3.3. Finding the Optimal Solution for Abnormal Data

Rather than merely determining whether the product is normal or abnormal, we ana-
lyzed which features contribute to the classification of data as abnormal and subsequently
proposed methods for optimizing these features to normalize abnormal data. This pro-
cess was carried out using the Gradient Boosting Classifier, which exhibited the best
performance. In this study, three methods were employed to identify the features with
the most significant influence on the model’s predictions and to propose optimal solutions
for normalizing values based on the selected features. The following provides detailed
explanations of each method.

3.3.1. SHAP

The primary method employed was the utilization of Tree SHAP. This technique
was applied to extract and analyze the feature importance, which holds a crucial role
in the model’s predictive decisions. Specifically, SHAP values were calculated for each data
sample classified as defective, enabling a quantitative assessment of the magnitude and
direction of each feature’s influence on the model’s predictions. Through this approach,
the top three features exerting the most substantial influence on the predictive decisions
for each sample were identified. By adjusting the values of the selected features to the
average values of those features in the normal data, optimal values for these features were
proposed. This adjustment of each feature’s influence provided insights into how such
changes could affect the model’s predictions.

3.3.2. Optimal Solution Presentation Using Mode

The paramount objective of XAI is to provide a logical explanation to users regard-
ing the derivation of a model’s outcomes. It elucidates the predictions of models that
are otherwise perceived as black boxes and plays a crucial role in enhancing the user’s
trust in the outcomes of the trained models. However, in the context of proposing opti-
mal solutions based on SHAP, the explanations may not be user-friendly for non-experts.
Moreover, the computational cost of calculating the contribution of each feature across all
possible combinations to find the optimal solution can be significant, potentially rendering
it unsuitable for real-time factory environments. Consequently, we propose an alternative
XAI technique that is applicable to tree-based machine learning models. In the manu-
facturing process, the quantity of data available for training neural-based deep learning
models is often insufficient, leading to frequent instances of models not fitting the data ade-
quately. Hence, anomaly detection issues are often resolved using machine learning-based
approaches, with multi-tree-based models frequently demonstrating superior performance.
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In our task, the multi-tree-based Gradient Boosting model exhibited the highest perfor-
mance in anomaly detection. Multi-tree-based models incorporate conditional statements
in each tree node, with each condition having the characteristics of an if-else statement
for a single feature [40].

We posited that the high frequency of features which appear in the node conditions
would have a more significant influence on decision making, and we selected the top N
features of abnormal data based on frequency. Subsequently, it was converted to the median
value of features in all normal data and presented as the optimal solution. Pseudocode that
succinctly describes the process of deriving the optimal solution using the second method
is shown in Algorithm 1.

Algorithm 1 Correct Features Based on Frequency

Require: model: A multi-tree-based machine learning model
Require: normal_data: Dataset containing normal instances
Require: N: Number of top features to consider
Ensure: corrected_ f eatures: Feature vector with corrected values

1: Initialize empty dictionary f eature_ f requency
2: for each tree in model.trees() do
3: for each node in tree do
4: Extract feature from node’s condition
5: Increment count in f eature_ f requency
6: end for
7: end for
8: Determine top N features with highest frequency
9: Initialize corrected_ f eatures with input features

10: for each top N feature do
11: Calculate average value in normal_data
12: Calculate difference with feature’s value in corrected_ f eatures
13: Correct feature value in corrected_ f eatures
14: end for
15: return corrected_ f eatures

3.3.3. Optimization Using Conditions on Nodes

In this study, another proposed method also based on multi-tree-based models.
As with other methods, if the predicted result from the tree-based model is abnormal
data, it is predicted through various conditional statements in the node. This method places
more focus on these conditions. In reality, the range of features in normal data exhibits
a certain degree of variability around the median value. Therefore, in order to normalize
outlier data effectively, it is necessary to adjust the feature values within an acceptable
range rather than changing them to the median value. Taking this into consideration, we
utilized the node conditions of the tree-based model as the optimal solution for normalizing
outlier data. We acquired the condition values of all final prediction nodes in the multi-tree
model, arranged the values to be changed in descending order of the difference between
the input instance’s feature values and the condition values, and then fed them back into
the model to verify normalization. If normalization is achieved, the process is stopped, and
the proposed features and modified values are returned. Algorithm 2 is a pseudocode that
succinctly outlines this process.

This method presents the advantage of offering a reasonable magnitude of change
when proposing optimal solutions for features. It continuously attempts to adjust values
until the model’s prediction is normalized, thereby ensuring a higher rate of successful
normalization. Overall, we performed XAI in Methods #2 and #3 by analyzing the predic-
tions of the tree-based model from two perspectives: features that frequently appeared
in the predictions and features that were involved in the final prediction. The meaning
of each is shown in Figure 6.
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Algorithm 2 Adjust Features for Normalization

Require: model: A multi-tree-based machine learning model
Require: input_ f eatures: Vector of input features
Ensure: adjusted_ f eatures: Adjusted feature vector

1: adjusted_ f eatures← input_ f eatures
2: while model.predict(adjusted_ f eatures) is ’abnormal’ do
3: Initialize an empty list f eature_di f f erences
4: for each tree in model.trees() do
5: Determine the final node for adjusted_ f eatures
6: Extract condition and threshold at the final node
7: Calculate difference between adjusted_ f eatures and threshold
8: Add feature index and difference to f eature_di f f erences
9: end for

10: Sort f eature_di f f erences in descending order of differences
11: Select feature with largest difference
12: Adjust this feature in adjusted_ f eatures
13: end while
14: return adjusted_ f eatures

Figure 6. Example images to illustrate the nodes that influenced the prediction.

4. Results

The prediction results for each model are presented in Table 3 and Figure 7. We
conducted anomaly detection using a variety of machine learning-based models, with
unified data preprocessing and conditions for each model.

Table 3. The results of the performance evaluation.

Model Accuracy Precision Recall F1 Score

K-Nearest Neighbors Classifier 82.94% 0.8869 0.7551 0.8157
Decision Tree Classifier 85.88% 0.9110 0.7952 0.8492
Random Forest Classifier 90.73% 0.9724 0.8384 0.9004
Extra Trees Classifier 82.50% 0.8970 0.7343 0.8075
Gradient Boosting Classifier 94.80% 0.9851 0.9097 0.9459
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Figure 7. Results of confusion matrix for each model: (a) K-Nearest Neighbors Classifier; (b) Decision
Tree Classifier; (c) Random Forest Classifier; (d) Extra Trees Classifier; (e) Gradient Boosting Classifier.

As can be observed from Table 3, the data indicate that the Gradient Boosting Classifier
demonstrated the highest performance. We proceeded with the anomaly data normalization
using the Gradient Boosting Classifier. Table 4 below presents the normalization rates
for each of the three proposed methods.

Table 4. Results of normalization ratio for Gradient Boosting Classifier.

Method Explanation Rate of Anomaly Data
Normalization

Method #1 SHAP + feature mean 97.30%
Method #2 Most frequent feature + feature mean 97.30%
Method #3 Last node feature + last node condition 100.00%

Among of our dataset, there were 111 outliers, and it was observed that when the third
method was employed, all data previously predicted as outliers were successfully normal-
ized. Furthermore, with the first method, 108 out of the 111 defective data points were
normalized, and with the second method, 107 were normalized. These results confirm that
over 97% of the data was effectively normalized in both instances.

5. Discussion

In the Results section above, it was observed that the normalization ratios for Method #1
and Method #2 are the same from Table 3. For further analysis, we also analyzed the actual
outputs from real input data to see which features each method suggests to normalize and
by how much. Table 5 displays examples of the suggested change features and values
for each method.

It is noteworthy that both Method #1 and Method #2 point to similar features and
suggest the same value of change in both samples. Also, in the case of Method #3,
the recommended change values for the overlapping feature ‘Max Injection Pressure’
were similar in size at 3.1238 and 3.4275, even though they were derived in a different
way from Method #1 and Method #2, and in the case of sample 2, the suggested change
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values for ‘Max Injection Pressure’ were similar in size at 3.2238 and 3.5285, as well. By
comparing the correction values for the different methods on a real-world example, we
found that the features and ranges of the corrections provided by each method were simi-
lar. This means that when our three methods actually encounter outlier data, we can be
confident that the feature is indeed significant in determining that it is an outlier because
the correction ranges are similar. In addition to Gradient Boosting, we also performed
normalization of the Random Forest model. The normalization ratio for Random Forest is
shown in Table 6.

Table 5. Examples of requested change features and amount for normalization for each method.

Sample Method Feature Value

Sample 1 Method #1 P2_Max −20.2260
Max Injection Pressure 3.1238
Max Injection Velocity 0.1854

Method #2 P2_Max −20.2260
Max Injection Pressure 3.1238
Cycle Time 0.8976

Method #3 Cycle Time 20.2875
Metering Time 5.5550
Max Injection Pressure 3.4275

Sample 2 Method #1 P2_Max −19.5260
Max Injection Pressure 3.2238
Actual Barrel Temperature H5 −0.0064

Method #2 P2_Max −19.5260
Max Injection Pressure 3.2238
Cycle Time 1.0976

Method #3 Cycle Time 20.4895
Max Injection Pressure 3.5285
- -

Table 6. Results of normalization ratio for Random Forest Classifier.

Method Explanation Rate of Anomaly Data
Normalization

Method #1 SHAP + feature mean 99.32%
Method #2 Most frequent feature + feature mean 86.59%
Method #3 Last node feature + last node condition 80.49%

As can be seen in Table 6, it is difficult to expect normalization performance with
Method #3 when the model’s inherent performance is not high. Methods #1 and #2 rely
on the model’s characteristics to detect relevant features within anomalous data, but
they employ values from normal data when it comes to adjustments for normalization.
However, Method #3 employs the model not only for feature detection but also for normal-
ization adjustments, thus producing outcomes more closely tied to the model’s architecture.
Since the model’s own accuracy is not high, the rate of normalization is also a result derived
from the model. Therefore, it is not necessarily indicative of a performance decline. Upon
reviewing the results, it can be confirmed that the methods which most deeply reflect
the model’s characteristics have a higher dependency on the model’s accuracy.

6. Conclusions

In this study, we conducted research that not only facilitates anomaly detection but
also provides explanations and improvement measures for the predicted results, which
can be more effectively utilized when using artificial intelligence-based models in actual
manufacturing settings. It was ascertained that to render the explanation of prediction
results more significant, the accuracy of the model itself must first be ensured. Through ex-
periments, we refined our data in various ways and secured accuracy to achieve sufficiently
reliable anomaly detection outcomes. Subsequently, we acquired features with high impact
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on the model’s predictions using three different methods. These included a method utiliz-
ing SHAP and two methods exploiting the intrinsic characteristics of tree-based models.
Furthermore, we presented strategies for how much correction of the influential features
is appropriate for normalizing instances predicted as abnormal. Indeed, we applied our
three proposed methods to the factory data and observed that the normalization rate of out-
lier data exceeded 95% for all methods, with total normalization achieved when the last
method was applied. Moving forward, we aim to conduct future research in two direc-
tions. Firstly, we plan to apply our methods to other factory data not utilized in this study
to validate their effectiveness across diverse datasets. Additionally, we intend to apply our
methodology to multivariate time-series data and develop anomaly detection methodolo-
gies that consider temporal pattern changes. This will be particularly helpful in precisely
detecting complex anomalies that can occur in dynamic manufacturing processes.
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