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Abstract: Named entity recognition (NER) is a critical subtask in natural language processing. It is
particularly valuable to gain a deeper understanding of entity boundaries and entity types when
addressing the NER problem. Most previous sequential labeling models are task-specific, while
recent years have witnessed the rise of generative models due to the advantage of tackling NER
tasks in the encoder–decoder framework. Despite achieving promising performance, our pilot
studies demonstrate that existing generative models are ineffective at detecting entity boundaries and
estimating entity types. In this paper, a multiple attention framework is proposed which introduces
the attention of entity-type embedding and word–word relation into the named entity recognition
task. To improve the accuracy of entity-type mapping, we adopt an external knowledge base to
calculate the prior entity-type distributions and then incorporate the information input to the model
via the encoder’s self-attention. To enhance the contextual information, we take the entity types as
part of the input. Our method obtains the other attention from the hidden states of entity types and
utilizes it in self- and cross-attention mechanisms in the decoder. We transform the entity boundary
information in the sequence into word–word relations and extract the corresponding embedding
into the cross-attention mechanism. Through word–word relation information, the method can
learn and understand more entity boundary information, thereby improving its entity recognition
accuracy. We performed experiments on extensive NER benchmarks, including four flat and two long
entity benchmarks. Our approach significantly improves or performs similarly to the best generative
NER models. The experimental results demonstrate that our method can substantially enhance the
capabilities of generative NER models.

Keywords: named entity recognition; attention; generative model

1. Introduction

Named entity recognition (NER) is a subtask of information extraction that seeks to lo-
cate and classify named entities mentioned in unstructured text into predefined categories,
such as the entity types of person, organization, and location. NER is one of the funda-
mental research problems in natural language processing, which has been widely adopted
in information retrieval and question-answering systems [1–3]. Previous works [4–9] have
addressed NER tasks with task-specific token-level sequential labeling or span-level classi-
fication methods. In token-level sequential labeling methods, each token is assigned a label
to represent its entity type. On the other hand, span-level classification methods enumerate
all possible spans in the sentences and classify them into predefined entity types.

Recently, sequence-to-sequence (seq2seq) generative approaches [10,11] have gained
attention in the NER community due to their ability to jointly model all NER tasks in
a unified framework. Although these models have shown promising results across all
three NER categories (flat NER, nested NER, and discontinuous NER), NER faces two
limitations that require the proposal of suitable methods for addressing them. First, these
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generative models are ineffective at utilizing information about entity boundaries. For
example, consider a seq2seq method tasked with identifying entities in a complex sentence;
the model might successfully recognize “New York” as an entity but fail to discern the
boundary between “New York” and “University” in the phrase “New York University”. It
incorrectly identifies the entire phrase as one entity instead of two separate entities: the
location “New York”, and the organization “University”. This ineffectiveness stems from
the autoregressive decoding process inherent in seq2seq models failing to capture the inter-
word relationships within a sentence that are essential for identifying entity boundaries.
Current seq2seq models generate coarse-grained entities and leverage context insufficiently,
making a more precise and fine-grained approach required. Second, the seq2seq framework
does not explicitly consider the effect of entity types on NER. While entity-type generation is
based on the compounding tokens, the incorrect generation of these tokens from the decoder
can lead to misguided entity-type mapping information. Access to prior knowledge
from external entity databases aids the model in precisely determining entity types, and
these entity types can in turn can shape the contextual learning of sentences, thereby
improving the representation of entities. Therefore, it is crucial to incorporate entity-type
mapping and entity boundary information into seq2seq NER models in order to overcome
these limitations.

In this paper, we present a novel approach to address the limitations of existing seq2seq
NER models. We propose a novel approach incorporating attention mechanisms built on
the entity type and the word–word relation. Specifically, we leverage external knowledge
bases such as Wikipedia to learn entity-type information, further improving entity-type
mapping. We integrate entity-type distributions into the encoder. Within the decoder, we
embed the entity type through self-attention and cross-attention mechanisms, improving
the associative mapping between entities and their respective types. Furthermore, we
integrate representations of word–word relations into the decoder in order to enhance the
capability to distinguish entity boundaries.

Our proposed approach promotes the smooth incorporation of entity-type informa-
tion and word pair relational knowledge into the seq2seq NER framework. The main
contributions are summarized as follows:

• We propose a generative NER framework which merges entity-type embedding and
word–word relation representation to improve named entity recognition performance.

• We leverage two novel attention mechanisms in the NER framework, namely, en-
tity type-aware attention and word–word relation-aware attention, improving the
interaction between entities, entity types, and word–word relations for better contex-
tual information.

• We present a series of experiments demonstrating the effectiveness of our method
against various baselines. Ablation studies further show the contribution of each
component within our approach, confirming their individual effectiveness.

2. Related Work
2.1. Named Entity Recognition

Named entity recognition (NER) is a significant research area in natural language
processing. Various methods have been proposed for named entity recognition. Traditional
research on NER performed modeling as a sequence labeling task, primarily focusing
on flat NER [4–6,12]. The focus later shifted to complex-structure NER [13–18], which is
studied separately. Different approaches to NER include sequence labeling, span-based,
hypergraph-based, and generative methods.

NER is typically treated as a sequence labeling problem which assigns a tag to each
token and uses a sequence model [4,6,14,19–23] to predict labels of the sequences (e.g., BIO).
Collobert et al. [20] introduce the linear-chain conditional random field (CRF) in convolu-
tional neural networks (CNNs) and made the sequence labeling problem one of determining
the respective likelihoods between adjacent tags. Strubell et al. [5] obtained features for
the sentences via CNN. Following this work, Lample et al. [4] adopted bidirectional LSTM
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with CRF to obtain the token representations. A number of studies [24,25] have combined
CNNs and RNNs to extract features and learn word representations. Ju et al. [26] used
dynamically stacking flat NER layers in the LSTM model for nested NER. Tang et al. [27]
extended BIO to the BIOHD label scheme for discontinuous NER. However, these methods
primarily require the design of different tagging schemes, and do not effectively address
structurally complex or longer sentences such as nested and long NER. In contrast, our
generative model can simultaneously handle this issue. Furthermore, we incorporate entity-
type embedding from external knowledge and the encoder, while, word–word relation
representation is merged to enhance entity boundary information.

Span-based methods commonly tackle complex NER tasks, e.g., nested NER. Re-
searchers have proposed various approaches to obtain reasonable spans. Wang et al. [28]
proposed a model which allows for interaction between spans from different layers.
Yu et al. [15] utilized bi-affine attention to measure the possibility as a mention of span.
Tan et al. [29] first predicted the boundary and then performed classification over the span
features. Ouchi et al. [30] built a feature space with similar entity spans. However, these
span-based models must enumerate all possible spans, while our model directly generates
the entities. Li et al. [9] and Zhang et al. [31] presented a similar NER model, treating it as
a span-based machine reading comprehension task. These methods require the design of
template-based questions and multiple accesses to models, however, which raises compu-
tational costs; our proposed framework is able to avoid these issues. Lin et al. [32] offered a
method that first detects the type of an anchor word and then locates the entity’s bound-
aries. Shen et al. [16] presented a two-stage object detection method for nested entities. In
addition to the above issues, these models have problems with gaps or chaining errors
in the results of different stages. This paper proposes a method that enables interaction
between entity type and entity boundary information to directly generate entity sequences.

Hypergraph-based methods have been proposed to cover many possible mentions
in a sentence effectively. Lu et al. [33] introduced a method for joint mention extraction
and classification using hypergraphs, followed by similar work from Muis et al. [23,34],
who utilized a multigraph representation to address overlapping NER. Katiyar et al. [35]
developed a hypergraph representation for nested entities, leveraging features extracted
from an RNN. Wang et al. [7,36] proposed the idea of neural segmental hypergraphs.
However, these models have trouble dealing with long inputs or many entity categories,
as their hypergraph structures become extremely complex. These methods additionally
struggle with spurious structure and structural ambiguity during inference [37]. In this
paper, we aim to further investigate a simple and efficient model that learns entity type
and boundary information for NER.

Generative methods treat the entity span sequence as a generation task, aiming to
generate entities and entity types directly without requiring unique design of the tagging
schema or ways to enumerate spans. Seq2seq methods have been proposed that directly
generate entity label sequences from the input [5]. Strakova et al. [14] proposed a seq2seq
method for nested NER that directly outputs the label of each token, associating the relation
between words and labels via hard attention. Yan et al. [10] presented a pointer-based model
which splices the label’s embedding with the token representation. Zhang et al. [11] offered
data augmentation from a causal perspective to generate entities. However, generative
models do not fully utilize the entity boundary information implicit in the entity itself,
which is critical for named entity recognition.

2.2. Attention Mechanism

Attention mechanisms have been employed in machine translation, machine com-
prehension, named entity recognition, and related natural language processing tasks.
Attention-based methods have achieved impressive results, in that attention mechanisms
have a large amount of memory and can build cooperation between the sequence of in-
put. In addition, attention mechanisms allow models to automatically concentrate on the
essential parts of the information while ignoring the less relevant details, thereby enhanc-
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ing the model’s ability to process complex data. The transformer model, first introduced
by Vaswani et al. [38], has revolutionized the field of named entity recognition with its
self-attention and cross-attention mechanisms, allowing long-range dependencies within
the data to be captured. Based on this, many works [39,40] have leveraged attention
mechanisms to integrate features from various sources of information, such as character
representations, word embeddings, and position embedding. These integrated approaches
enable models to focus selectively on the most pertinent information and select valuable
knowledge, facilitating more nuanced language understanding. Ren et al. [39] proposed
using an attention-based architecture over the word embedding and character-level com-
ponent to learn the same semantic features for each word. Tan et al. [40] directly utilized
attention mechanisms to capture the global dependencies of the input in order to enhance
the performance of Chinese NER. TENER [41] is an adapted encoder based on attention
mechanisms to merge the character- and word-level features. FLAT [42] uses a variant of
self-attention to leverage the relative span position encoding.

3. Generative NER Task Formulation

In this section, we define the problem of seq2seq named entity recognition. Given an
input sentence of n tokens X = {x1, x2, . . . , xn}, the goal of seq2seq NER is to generate a
target sequence Y = {s11, f11, s12, f12, . . . , s1k, f1k, g1, . . . si1, fi1, si2, fi2, . . . , sij, fij, gi}. Here,
s and f are the starting and ending indices of a span, k is the span index in an entity, and
gi ∈ {g1, . . . , gN} is the entity type, where N is the total number of possible entity types.
The generated schematic can be shown in Figure 1.
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Figure 1. The architecture of our method, which contains both entity type-aware and word–word
relation-aware attentions in the seq2seq framework. We incorporate the word–word relation-aware
attention into the decoder and the entity type-aware attention into both the encoder and decoder. For
the attention concatenation, refer to the process shown in the following sections.

4. Methodology

In this section, we introduce our proposed methodology. We outline the overall
framework and describe the details of the modules (entity type-aware attention and word–
word relation-aware attention) for implementing our method. The process in generative
entities is introduced as well. Readers can expect a comprehensive overview of the supports
that form the backbone of our framework.

4.1. Model Overview

Our model consists of an encoder that encodes the input sequence to its contextual
embedding and a decoder that generates the output sequence with entity annotations. In
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addition to the entity generation task, we design a relation representation learning task
over the token pairs to better capture the correlations among the entities. The entity token
relation attention and entity type attention are introduced and fused into the encoder and
decoder as shown in Figure 1. We present the details of each component separately in the
following subsections.

4.2. Entity Type Aware Attention

Heterogeneous factors such as entity types and entity boundaries [15,43–45] greatly
impact named entity recognition. In this section, we discuss the modeling of entity types
in our seq2seq NER framework, allowing for interactions with the input sequences and
guiding the model to learn more effective token representation. We merge the entity
type-aware attention in the encoder and the decoder.

In the encoder, we incorporate entity types as part of the input, which are concatenated
with the given sentence. To achieve better representations of entities, we try to obtain the
entity type aware attention from an external entity base. Prior knowledge can be obtained to
improve the NER task. Then, we feed the entity type-aware attention into the self-attention
layers in the encoder.

As shown in Figure 2, the comprehensive representations of entity types are obtained
from an external entity base incorporated into the encoder through entity type attention.

The representation of an entity type T is a weighted sum of the entity representations.
For example, assuming that the entity label set is G = {person, location, organization},
as shown in Figure 2, if entity type T = location contains entity set CT = {Beijing, London,
. . . , New York}, the initial embedding of entity type T can be obtained as follows:

ET = θiEC1
T
+ · · ·+ θiECi

T
(1)

where ECi
T
∈ Rdh is the embedding of the i-th entity in the entity set CT and θi is the weight

of the entity, such as its frequency. Note that if the entity types are not in the external source,
we may obtain entity type embeddings by random initialization or entity type tokens.

Wikipedia Entity Type Embedding

LOC

ORG

PRODUCT

. . . . . .

We want to travel to New York .

This Walkman is popular this year

. . . . . .

President Chen travels abroad

Anwar arrived in Shanghai from
Nanjing yesterday afternoon .

I am about to buy a car and am
considering a toyota camary

B
A

R
T Em

bedding

Entity Values

ORG

PRODUCT

LOC

. . . . . .

Eurpean Union
Reuters
The Times
......

Walkman
Carmary
Ipods
......

New Jersey
Chicago
New York
......

Xinhua  Agency  ,  Shanghai  ,  31 
August, by reporter Jierong Zhou .

Figure 2. Entity type embedding from external entity knowledge.

To leverage the entity type information, we design an entity type-aware attention and
integrate it into the corresponding self-attention layers. The vectors KE ∈ RB×Nh×N×dk and
VE ∈ RB×Nh×N×dk represent the key and value of the entity type-aware attention, which are
concatenated with the original key K ∈ RB×Nh×n×dk and value V ∈ RB×Nh×n×dk vectors in
the encoder as follows:

R∗((KE, VE)) = MLPtype−aware(E) (2)

headl = Attention(Ql , (Kl
E ⊕ Kl), (V l

E ⊕ V l)) (3)
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where B is the batch size, Nh denotes the number of the heads, headl is the head representa-
tion of the l-th layer, KE, VE are obtained from the embedding E by an MLP layer [46],
E ∈ RN×dh is the embedding of entity types with N as the number of entity types,
Q ∈ QB×Nh×n×dk denotes the query of the attention, and ⊕ means the concatenation.
Figure 3 shows the merging of the entity type attention. The entity type-aware atten-
tion from the external entity knowledge base is only applied to self-attention layers in
the encoder.

K

V

concatenation

Multi-Head Attention

Input

Q KE

VE

Figure 3. Concatenation in a self-attention layer. In the encoder, KE and VE are calculated from the
entity type embedding of external entity knowledge via the type-aware MLP layer. In the decoder, KE

and VE are calculated from the hidden states of entity type tokens in the encoder via the type-aware
MLP layer.

In the decoder, E is from the hidden states of the entity type tokens, which are part of
the input. Then, we use Equations (2) and (3) to apply the entity type-aware attention. In
this process, we apply it to all self-attention and cross-attention layers.

4.3. Word–Word Relation-Aware Attention

Improving entity boundary detection is crucial for named entity recognition; therefore,
we integrate information relevant to entity boundaries into our framework. We utilize
word–word relation representations as feature information to learn about entity bound-
aries. Specifically, inspired by [45,47–49], which can be used to enhance relations between
tokens in an entity for NER, we extract these word–word relation features to improve the
representation of the predicted token in the decoder.

Given a sentence X = {x1, . . . , xn}, we obtain the hidden representation H = {h1 . . . , hn} af-
ter the encoder layers. The word–word relation representation set R{rij|(i, j ∈ [1, n])} ∈ Rn×n×dh

in the sentence rij is the relation of word pair (xi, xj), and is obtained through the bi-affine layer.

si = MLP(hi), ej = MLP(hj)

rij = s⊤i W1ej + W2(si ⊕ ej) + b,
(4)

where W1, W2, and b denote the trainable parameters and MLP is the fully connected layer.
The word–word relation representations rij reflect the entity boundary information

and the syntactic structure of the sentence. These representations are valuable knowledge
with which the model can perceive and learn entity boundaries more accurately, which
plays a vital role in identifying entities. As the above rij cannot be directly used in our
proposed word–word relation-aware attention mechanism, we feed the representations
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between words into an MLP layer to obtain useful features. Meanwhile, this process can
generate keys and values that match the attention mechanism inherent in the seq2seq model
itself. Finally, the obtained word–word relation-aware attention key KR ∈ RB×Nh×M×dk and
value VR ∈ RB×Nh×M×dk matrices are concatenated with the original key K ∈ KB×Nh×n×dk

and value V ∈ RB×Nh×n×dk , respectively, in the cross-attention layers to enhance the model
generation with regard to the entity boundaries. The entity relation-aware attention is
defined as follows:

R∗((KR, VR)) = MLPrelation−aware(R) (5)

headl = Attention(Ql , (Kl
R ⊕ Kl

E ⊕ Kl), (V l
R ⊕ V l

E ⊕ V l)) (6)

where B is the batch size, Nh denotes the number of heads, M is the length of the word–
word relation-aware attention using the convolution operation, Kl

R and V l
R are from KR and

VR, respectively, and Kl
E and V l

E are calculated from the entity type embedding described
in the above section. However, the entity type embedding is the hidden state of the entity
types as a part of the input sequence. Figure 4 shows the word–word relation-aware
attention incorporated into the cross-attention layer.

K

V

concatenation

Multi-Head Attention

Output

Q
KE

VE

Add & Norm

K

V

Multi-Head Attention

Q
KR

VR

Encoder

Word-word 
relation 

representation

Entity type
embedding

Figure 4. Concatenation in a self-attention and cross-attention layer. In the decoder, KE and VE are
calculated from the hidden states of entity type tokens in the encoder by the type-aware MLP layer.,
while KR and VR are calculated from the word–word relation representations by the bi-affine and
relation-aware MLP layer.

4.4. Entity Decoding

The decoder decodes the token embedding from the encoder to generate the entities.
In particular, at step t, the decoder acquires the token embedding hd

t ∈ Rdh based on the
encoder output and all the previous decoded tokens as follows:

hd
t = Decoder(He, Y∧

<t) (7)
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where He ∈ Rn×dh , Y∧
<t =

[
y∧1 , . . . , y∧t−1

]
is the generated token sequence before t. To

enhance the accuracy of the generated tokens, we introduce a context fusion layer to further
decode the output. We join the entity type representations and hidden state of the tokens
in the encoder to the respective hidden states of the output, which can help to improve the
representation of context within the sentence:

h̄t
d
= (He ⊗ hd

t )⊕ (E ⊗ hd
t ) (8)

where E is the entity type representation in the encoder and ⊗ denotes the dot product.
Finally, the output token index distribution Pt can be obtained by the function

Pt = So f tmax(h̄t
d
). (9)

For a given sequence X = {x1, x2, . . . , xn}, we attempt to minimize the negative
log-likelihood concerning the corresponding ground truth labels, which can be defined as

L = − log p(Y|X). (10)

5. Experiments

This experiments section provides our detailed experimental setup, including the
NER datasets evaluated, the backbones with parameter settings, the evaluation metrics,
and the baseline models for comparison. In addition, we discuss the main results of the
datasets compared to the baselines. This section aims to provide readers with insight into
the validation of the proposed method and its performance against the baselines.

5.1. Datasets

We evaluated NER on CoNLL 2003 [12] and OntoNotes 5.0 (https://catalog.ldc.upenn.
edu/LDC2013T19 (accessed on 12 November 2023)) [50] in English, following the settings
splits in prior works [4,15,51]. We performed further testing using OntoNotes 4.0 (https:
//catalog.ldc.upenn.edu/LDC2011T03 (accessed on 12 November 2023)) [52], MSRA [53],
Weibo [54,55], and Resume [56] in Chinese.

To further validate the effectiveness of the model, we evaluated the long NER datasets
EBM-NLP (https://github.com/bepnye/EBM-NLP/) (accessed on 12 November 2023) [57]
and SemEval 2017 (https://scienceie.github.io/resources.html (accessed on 12 November
2023)) [58] as well. EBM-NLP annotates PICO spans, defining the Participants, Interven-
tions, Comparisons, and Outcomes in a clinical trial paper [59]. We processed it following
the works [60–62]. SemEval 2017 is a task involving extracting keyphrases and relations
from documents with mention-level keyphrase identification (the types are PROCESS,
TASK, and MATERIAL), mention-level keyphrase classification, and mention-level seman-
tic relation extraction between keyphrases. We merged the first two subtasks as the NER
task and prepared it following [58]. The statistics of the datasets are listed in Tables 1 and 2.

Table 1. Statistics of NER datasets other than SemEval 2017 and EBM-NLP.

CoNLL 2003 Ontonotes 5.0 Ontonotes 4.0 MSRA Resume Weibo

#sentences 20,744 76,714 24,371 48,442 4759 1890
#entities 36,431 111,868 30,783 81,249 16,565 2677

https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2011T03
https://catalog.ldc.upenn.edu/LDC2011T03
https://github.com/bepnye/EBM-NLP/
https://scienceie.github.io/resources.html
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Table 2. Statistics of the SemEval 2017 and EBM-NLP datasets.

SemEval 2017 EBM-NLP

#entities 5730 63,693
#unique entities 1697 47,916
#single-word entities 18% 19%
#entities, word length ≥ 3 51% 51%
#entities, word length ≥ 5 22% 30%

5.2. Implementation Details

We adopted BART-Large as the backbone network. Following previous works [10,45],
the encoder and decoder had twelve layers with 1024 dimensional embedding for our
experiments. For the English datasets, we used the BART-Large model [63]. For the Chinese
datasets, we used the BART-Large-Chinese model [64]. We used the AdamW [65] optimizer.
We executed a grid search of the hyperparameters shown in Table 3 and selected the set of
parameters that had the best performance on the validation set. The batch size was 32 for
OntoNotes 5.0 and 16 for the others. Finally, we used 1 × 10−5 for the BART-Large model
and 5 × 10−5 for the other components. When deriving the key KE and value VE of the
self-attention from the entity type embedding, we employed multilayer MLP similar to the
proj_down-proj_up structure [66], with down dim 512 and up dim 1024. For most baseline
methods, the hyperparameters were set according to the experimental configurations in the
original papers. However, there were a few variations; for the SemEval 2017 and EBM-NLP
datasets, the batch size and max sequence length were the same as those used for our
proposed method.

Table 3. Hyperparameters used to train our model.

Hyper-Parameters Range Final

Batch Size [16, 32, 64] 16/32
Dropout [0.2, 0.3, 0.5] 0.5
Learning Rate for Bart [5 ×10−6 , 1 ×10−5, 5 ×10−5, 1 ×10−4] 1 ×10−5

Learning Rate for Other components [5 ×10−6, 1 ×10−5, 5 ×10−5, 1 ×10−4] 5 ×10−5

Weight Decay [0, 0.01] 0.01
Warmup Ratio [0, 0.01] 0.01
Max Sequence Length [64, 128, 512] 128
Down_dim [128, 256, 512] 512
Up_dim [512, 768, 1024] 1024
MLP-hidden size [128, 256] 128

5.3. Evaluation Metrics

An entity was considered to be correctly predicted if the entity label and boundary
matched the ground truth. Following prior works [10,11,33], we computed the precision
(P), recall (R), and F1 (F) scores for each dataset, utilizing the F1 score on the validation set
as the criterion for selecting the optimal model. We ran each experiment five times and
report the average metrics.

5.4. Comparative Baselines

We compared our method with several previous baselines:

• LSTM-CRF/Stack-LSTM [4] and ID-CNNs [5] offer iterated dilated convolutional
neural networks.

• SH [7] propose the use of hypergraphs to address the NER task.
• Seq2Seq [14] obtains tokens with the labels in a sequence.
• BiaffineNER [15] offers a bi-affine module for span-based models to explore spans.
• BartNER [10] offers a unified NER model with a pointer generating the start–end

indexes of entities and types.
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• DebiasNER [11] designs data augmentation to eliminate incorrect biases from a causal-
ity perspective.

• W2NER [37] models the unified NER as word–word relation classification to tackle
the different NER tasks.

• LatticeLSTM [56] probes a lattice LSTM encoding the characters and words matching
a lexicon.

• TENER [41] uses an encoder to consider character, word, direction, relative distance,
and unscaled attention.

• LGN [67] uses a lexicon-based graph neural network with global semantics to interact
among characters, words, and sentence semantics.

• FLAT [42] is a flat-lattice model that converts the lattice structure into a flat structure.
• Lexicon [68] uses lexical knowledge in Chinese NER based on a collaborative graph net-

work.
• LR-CNN [69] uses a CNN-based approach with lexicons via a rethinking mechanism.
• PLTE [70] uses the characters and matches lexical words in parallel via the transformer.
• SoftLexcion [71] merges the word lexicon into the character representations and adjusts

the character representation layer.
• MECT [72] uses a multi-metadata embedding-based cross-transformer that fuses the

characters’ structural information.
• SciBERT [60], PubMedBERT [61], and VarMAE [62] are pretrained models based on

BERT [73] focusing on the scientific and biomedical domains. Finally, TIAL_UM [58]
ranks first on the SemEval 2017 keyphrase extraction leaderboard.

5.5. Results

We compared our model with seq2seq models [10,11,14], sequence labeling [4,5],
span-based methods [15], hypergraph models [7], and more.

The results on all the datasets are shown in Tables 4–6. Several key observations can
be made from the comparison results. Our model performs better than some sequence
labeling, span-based, and generative models on most datasets. For CoNLL2003, our method
outperforms sequence labeling [4], the span-based method [15], and the hypergraph-based
method [7] by 2.6%, 1.02% and 3.04% in terms of F1 score. Compared with the seq2seq
models (Seq2Seq [14], BartNER [10], and DebiasNER [11]), CoNLL 2003 shows increases
of 0.56%, 1.02%, and 0.4%. For OntoNotes 5.0, our method improves the F1 score by
4.0% and 0.34% compared with the ID-CNNs [5] and W2NER [37] baselines. Compared
with generative models BartNER and DebiasNER, there is an improvement of 0.46% and
0.42%, respectively, in terms of the F1 score. For the Chinese NER datasets, all demonstrate
improvements in performance to varying extents. Compared to the generative method
BartNER, our method shows increases of 5.99%, 0.76%, 2.75%, and 7.68%, respectively.
For SemEval 2017 and EBM-NLP, the performance of our method shows significant im-
provement compared with both BartNER and W2NER. These experimental results validate
our hypothesis that our approach can effectively model word–word relations, thereby
improving entity decoding. Moreover, the entity type information incorporated into our
method further boosts model performance.

The results of our approach show slight improvement overall compared to W2NER.
The reason for this is that W2NER unites the position region-aware representation of the
grid and the relation representation of token pairs to estimate entities. Although our model
uses word–word relation representation, it has only coarse granularity and no directionality
during inference.
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Table 4. Results on the CoNLL2003 and OntoNotes 5.0 datasets; results are statistically significant
with p-value < 0.005. The best scores are in bold, while the second-best scores are underlined.

Model
CoNLL2003 OntoNotes 5.0

P R F P R F

LSTM-CRF/Stack-LSTM [4] - - 90.94 - - -
ID-CNNs [5] - - 90.65 - - 86.84
SH [7] - - 90.50 - - -
Seq2Seq [14] - - 92.98 - - -
BiaffineNER [15] 92.91 92.13 92.52 90.01 89.77 89.89
BartNER [10] 92.61 93.87 93.24 89.99 90.77 90.38
DebiasNER [11] 92.78 93.51 93.14 89.77 91.07 90.42
W2NER [37] 92.71 93.44 93.07 90.03 90.97 90.50

Ours 93.14 93.65 93.54 90.13 91.59 90.84

Table 5. Results on the Chinese NER datasets; results are statistically significant with p-value < 0.005.
The best scores are in bold, while the second-best scores are underlined.

MODEL
OntoNotes 4.0 MSRA Resume Weibo

P R F P R F P R F P R F

LatticeLSTM [56] 76.35 71.56 73.88 93.57 92.79 93.18 94.81 94.11 94.46 53.04 62.25 58.79
TENER [41] - - 72.43 - - 92.74 - - 95.00 - - 58.17
LGN [67] 76.40 72.60 74.45 94.50 92.93 93.71 95.37 94.84 95.11 57.14 66.67 59.92
FLAT [42] - - 81.82 - - 96.09 - - 95.86 - - 68.55
Lexicon [68] 75.06 74.52 74.79 94.01 92.93 93.47 - - - - - 63.09
LR-CNN [69] 76.40 72.60 74.45 94.50 92.93 93.71 95.37 94.84 95.11 - - 59.92
PLTE[BERT] [70] 79.62 81.82 80.60 94.91 94.15 94.53 96.16 96.75 96.45 72.00 66.67 69.23
SoftLexicon [71] 83.41 82.21 82.81 95.75 95.10 95.42 96.08 96.13 96.11 70.94 67.02 70.50
MECT[BERT] [72] - - 82.57 - - 96.24 - - 95.98 - - 70.43
BartNER [10] 79.18 80.21 79.69 95.30 94.75 95.86 96.72 90.90 94.21 67.25 63.88 65.52
W2NER [37] 82.31 83.36 83.08 96.12 96.08 96.10 96.96 96.35 96.65 70.84 73.87 72.32

Ours 83.39 87.92 85.68 96.26 95.93 96.62 96.03 96.85 96.96 69.87 68.32 72.68

Table 6. Results on the Long NER SemEval 2017 and EBM-NLP datasets; results are statistically
significant with p-value < 0.005. The best scores are in bold, while the second-best scores are underlined.

Model
SemEval 2017 EBM-NLP

P R F P R F

SciBERT [60] - - - - - 71.18
PubMedBERT [61] - - - - - 73.38
VarMAE [62] - - - - - 76.01
TIAL UW [58] - - 44.00 - - -
BartNER [10] 38.36 47.92 42.16 51.22 47.84 40.96
W2NER [37] 49.92 44.68 47.16 66.22 38.84 48.96

Ours 53.69 63.83 57.64 63.16 68.61 71.89

It can be seen that the improvement of our model over the baselines on the EBM-NLP
datasets is marginal compared to PubMedBERT [61]. The primary reason for this is that
PubMedBERT is a domain-specific pre-trained language model utilizing biomedical data.
Nonetheless, our model is capable of attaining comparable or superior performance.

6. Analysis and Discussion

In this analysis and discussion section, we analyze the results obtained from the
various components within our method to show the performance of our proposed approach.
Then, to assess our method’s robust ability to process long sentences and long entities, we



Electronics 2024, 13, 1407 12 of 19

explore the implications of our approach and compare its performance with that of the
baselines. Finally, by analyzing some instances of existing incorrect predictions, we aim to
provide insights for potential future work. This section contextualizes our results, and we
expect that the analysis will benefit future work.

6.1. Ablation Study

To estimate the impact of various components within our method, we conducted
ablation studies by sequentially omitting each component, namely, word–word relation-
aware attention (rel-att) and entity type-aware attention (type-att). In this section, we
designate the seq2seq model devoid of “rel-att” and “type-att” as the “baseline”. We refer
to the model that includes word–word relation-aware attention as “+ rel-att”. The same
nomenclature applies to “+ type-att” and “+ rel-att & type-att”.

The outcomes of the ablation studies are presented in Tables 7–9. The results indicate
that our proposed method significantly outperforms the baseline when incorporating word–
word relation attention (+ rel-att) or entity type attention (+ type-att). This validates the
effectiveness of both word–word relation attention and entity type attention. Moreover,
integrating word–word relation attention and entity type-aware attention into an NER
framework yields the most promising results.

Table 7. Ablation studies on the CoNLL2003 and OntoNotes 5.0 datasets.

Model CoNLL2003 OntoNotes 5.0

baseline 92.82 90.02
+ rel-att 93.19 ↑0.37 90.32 ↑0.30
+ type-att 93.39 ↑0.57 90.48 ↑0.46
+ rel-att & type-att 93.54 ↑0.72 90.84 ↑0.82

Table 8. Ablation studies on the Chinese NER datasets.

Model OntoNotes 4.0 MSRA Resume Weibo

baseline 82.73 95.01 94.56 65.32
+ rel-att 83.97 ↑1.24 95.77 ↑0.76 95.73 ↑1.17 68.55 ↑3.23
+ type-att 84.81 ↑2.08 95.98 ↑0.97 96.34 ↑1.78 69.46 ↑4.14
+ rel-att & type-att 85.68 ↑2.95 96.62 ↑1.61 96.96 ↑2.40 72.68 ↑7.36

Table 9. Ablation studies on the Long NER SemEval 2017 and EBM-NLP datasets.

Model SemEval 2017 EBM-NLP

baseline 52.55 66.15
+ rel-att 55.69 ↑3.14 69.61 ↑3.46
+ type-att 56.75 ↑4.20 70.24 ↑4.09
+ rel-att & type-att 57.64 ↑5.09 71.89 ↑5.74

The improvements have subtle differences considering the differences in the entity
types, domains, and complexity of entities. For the Chinese NER datasets, the improvement
is relatively significant. In addition to their simple structures, the external entity type
embeddings mitigate the diverse and complex expressions of Chinese entities, leading
to a closer representation of entities within the same type. For example, the entity
types in Weibo have similarities, such as per.nam and per.nom, representing specific
and general persons, respectively (i.e., “张三” is a per.nam, and “男人” is labeled as
per.nom). Integrating external entities to construct the embedding of entity types can help
to enhance the distinction between them. Furthermore, including the entity type as part
of the input enhances the in-context learning within the sentence. Leveraging entity type-
aware attention during decoding further reinforces the mapping between entity textual
information and entity types. Additionally, given Chinese tokenization traits, introducing
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word pair relation representation helps to understand the entity boundary information. On
the SemEval 2017 and EBM-NLP datasets, the performance of our proposed components is
better compared with the baseline. Our method can generate various length sequences and
learn more information from the entity type and word–word relation attention.

6.2. Effect on Long Sentences

In this section, we split the test set by sentence length in order to assess our method’s
ability to process long sentences. The results are shown in Figure 5. Specifically, we
categorized the test sets into subsets based on sentence length (#words), with ranges set at
[0–10, 10–20, 30–40, 50–60, ≥60]. It is obvious that our method provides the largest overall
gain compared to the generative model on long sentences (≥60 words) [10]. Note that the
amount of data with sentence lengths in [50–60, ≥60] is relatively tiny compared to other
groups; thus, the evaluation is relatively high. Nonetheless, our model performs better
than the baseline models, particularly in long-sentence scenarios.
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Figure 5. Results when sentence length changes (#words).

6.3. Effect on Long Entities

To verify the ability of our method to handle long entities, we report the experimental
results in Figure 6. In this section, we selected BartNER and W2NER as baselines. Con-
sidering the number of long entities, we set the entity length in the range from 1 to 5 for
CoNLL2003, 1 to 6 for SemEval 2017, and 1 to 8 for EBM-NLP. As can be observed, there
is little change in the performance of the sets with a small length of entities. However,
on CoNLL2003 with long entities (E(L) ≥ 5), the F1 score improves by up to 3%. For
SemEval 2017, when the entity length is less than 5, the effect difference of each model
is not noticeable; however, when it is greater than 5, the effect of our model is nearly 7%
higher than the other models [10,37]. For EBM-NLP, our method provides the largest gain
compared to the other models on long entities (E(L) ≥ 8).
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Figure 6. Results on various datasets when entity length changes.
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6.4. Effectiveness for Entity Boundary

We ran experiments to analyze the effectiveness of entity boundary recognition, e.g.,
for Instance #1 in Table 10, the prediction “(中韩, gpe)” has an error in entity boundary
detection even though the generated entity type is “gpe”. In this analysis, we only con-
sider the entity boundary metric and overlook whether the entity type is correct. The
F1 scores of different models on the datasets are shown in Figure 7. It can be observed
that our method has a positive impact on entity boundary detection. For CoNLL2003 and
OntoNotes 4.0, our method performs slightly better than W2NER, which employs relative
position representation and fine-grained token pair relation representation. For SemEval
2017, our proposed approach is significantly superior to the other models. These results
are consistent with our expectation that leveraging the entity type-aware attention and
word–word relation-aware attention into the generative NER framework can contribute to
enhancing entity boundary detection performance.
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50
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Figure 7. Results on entity boundary detection.
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Table 10. Error analysis. Text in color indicates predicted entities that are incorrect.

Instance

instance #1: 中韩经贸研讨会即将在北京举行
Pred: (中韩, GPE), (北京, GPE)
Gold: (中, GPE), (韩, GPE), (北京, GPE)

instance #2 : the Office of Fair Trade called for British Airways/American to allow
third-party access to their joint frequent flyer programme where the
applicant does not have access to an equivalent programme .

Pred: (Office of Fair Trade, ORG), (British Airways American, ORG)
Gold: (Office of Fair Trade, ORG), (British Airways American, ORG)

instance #3: These data were converted to standard triangulation language (STL) surface
data as an aggregation of fine triangular meshes using 3D visualization and
measurement software (Amira version X , FEI , Burlington , MA , USA).

Pred: (standard triangulation language, Process), (triangular meshes, Material),
(3D visualization, Process)

Gold: (standard triangulation language, Process), (triangular meshes, Material),
(3D visualization, Process), (Amira version X, Material)

instance #4: South Africa’s trip to Kanpur for the third test against India has given
former England test cricketer Bob Woolmer the chance of a sentimental
return to his birthplace .

Pred: (South Africa, LOC), (Kanpur, LOC), (India, LOC), (England, LOC),
(Bob Woolmer, PER) (test cricketer, PER)

Gold: (South Africa, LOC), (Kanpur, LOC), (India, LOC), (England, LOC),
(Bob Woolmer, PER)

6.5. Case Study

We selected a number of instances for analysis to promote further future works in the
field of NER. We have classified the incorrect entities into four classes, as shown in Table 10.

Incorrect Boundaries: As instance #1 shows, the generated entity has an incorrect
boundary. This sentence of instance #1 in Chinese mentions two countries, which were
misidentified as a single entity. In Chinese, the entity words denote abbreviations of the
two countries, and the model did not learn this knowledge, which conveys the boundary
difficulty of the entity. For multiple nested entities in sentences, the model is more prone
to misjudgment. Therefore, enhancing the learning of entity boundary information can
improve model performance.

Distract Context: As instance #2 shows, our model predicts the incorrect entity type
because of the ambiguous contexts that may be expressed in a similar context or lacking
the descriptive context. The same tokens may have different meanings in various semantic
contexts. For accurate recognition of entity types, it is necessary for the model to learn a
comprehensive understanding of sentence context and entity types in order to make the
correct judgment.

Missing Entities: As instance #3 shows, the result misses an entity. This may be
because the entity is rare or specific, caused by the unbalanced learning which makes the
model tend to judge sentences with a similar context to high-frequency entities. For this
type of error, improving the model’s understanding of critical information in sentences can
be achieved by enhancing the attention mechanisms and attempting data augmentation.

Extra Entities: As instance #4 shows, our model predicts extra entities that look right
but are not in the gold set. The reason for this may be that the entity appears repeatedly
in other sentences or the data are noisy. Combination with other tasks, such as entity
boundary detection, entity linking, and entity disambiguation, can helpto prevent excessive
entity recognition.

7. Conclusions

In this work, we have introduced a novel approach that merges entity type and
word–word relation into the generative NER framework to achieve better performance.
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Specifically, we combine entity type and word–word relation by attention mechanisms
with the original attention in the backbone network, improving the model’s ability to
discriminate entity types and detect entity boundaries. We further take the entity types
as special tokens and as part of the input for learning valuable knowledge from the
context. Experiments on various benchmarks show the superior performance of our
method. Integrating entity types as special tokens further enriches the model’s context
learning, allowing for more precise entity recognition. Furthermore, introducing entity
type attention further strengthens the connection between entity tokens in the sentence
and predefined entity types. We transform the information of the entity boundary to
the relations of word pairs and merge it in the proposed framework via the attention
mechanism, including the syntactic and semantic relationships between words to enhance
the accuracy of entity boundary detection. However, there are weaknesses in the potential
increase of model complexity and evaluation time. To address these issues, we will explore
further approaches, such as non-autoregressive methods, which can speed up the decoding.
Because our proposed method primarily relies on a large amount of annotated data, we

will focus on generative NER models based on large language models in a low-resource
setting and consider how to integrate resources such as images. The practical implications
of our proposed approach extend to relation extraction, where accurate entity recognition
is crucial. We are trying to use this method to improve knowledge graph construction.
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