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Abstract: The use of a digital twin as an enabling technology for industry 4.0 provides control systems
engineers with novel tools for modelling, designing, and controlling complex systems, providing
a deep understanding of the physical asset based not only on its physics but also the real system’s
response. It is particularly critical for uniformity temperature control applications, where providing a
reasonable model of the system’s diffusion is always affected by the physical behavior of the system’s
components required for heating, cooling, or power distribution. In this paper, a digital twin is used
to represent a multivariable thermoelectric system employed for temperature uniformity distribution
control with potential applications in semiconductor manufacturing. The modelling employs a five-
step methodological framework consisting of the stages: target system definition, system description,
multiphysics and data-driven simulation, behavioral matching, and implementation to represent the
system’s temperature distribution accurately. The temperature distribution is measured using an
infrared thermal camera to perform model behavioral matching on heating and cooling temperature
uniformity applications. The obtained results indicated that using digital twins not only increases the
accuracy of the system’s representation but can also provide the system with novel information that
can be leveraged for the design and implementation of smart control systems.

Keywords: digital twin; behavioral matching; uniformity temperature modelling; sensitivity
analysis

1. Introduction

Uniformity temperature control is present in almost every manufacturing process, such
as oil and gas, semiconductor, battery management, or steel casting, so accurate modelling
of the system’s thermal dynamics is crucial for the process analysis and controller design
and implementation. For example, Ref. [1] presents the modelling and controls of the
temperature distribution of a rotating cylinder surface using a tracking reference controller,
which is designed using a finite elements approach by dividing the cylinder into several
volumetric elements to define the correct electrode positions. Additionally, Ref. [2] shows
the uniformity control of an industrial gas furnace for aluminum alloy manufacturing
modelled based on the system partial differential equations and approached by a radial
basis neural network to design a set of fuzzy PID regulators. Likewise, Ref. [3] expands the
scope for the gas furnace by introducing optimal control rules to improve the temperature
minimum margin on the system.

Moreover, temperature uniformity control plays a crucial role in the semiconductor
manufacturing industry, considering that in a run-to-run and wafer-to-wafer execution
of the system, the wafer temperature variability and its repeatability should be the same
to keep stable conditions along the chip-making process. In Ref. [4], a thermal multizone
approach is used to model a wafer heating process used in semiconductor lithography,
which is used as a pseudo-inverse control approach to compensate for the air gaps on
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the plasma. In addition, Ref. [5] proposes another spatial multi-heating zone approach
to control uniformity temperature on a wafer, but it is based on a multi-level fuzzy logic.
Likewise, Refs. [6,7] perform uniformity temperature control for lithography processes
based on adaptive control or standard PI controllers based on reduced-order models of the
wafer thermal behavior.

In that sense, this idea can be leveraged on different heating systems that use a thick
metal plate to provide uniform surface heating or cooling. For example, Ref. [8] presents
a temperature control mechanism based on moving plates to improve the performance
of a thin surface plate. Likewise, Ref. [9] proposes a finite element grid modelling of
an aluminum plate to develop a model predictive control method based on the average
temperature control. In addition, in Ref. [10], a neural network-based controller is employed
to regulate the temperature distribution on the hotplate of a power converter system.
Furthermore, Ref. [11] presents a modelling method for piezoelectric heaters’ temperature
uniformity distribution based on single elements vibrations as heating energy sources.
Notice that in the mentioned applications, the heating element employed corresponds to a
semiconductor device (MOSFET), piezoelectric, or electrical resistor.

Another popular thermal application element is the Peltier thermoelectric device
for heating and cooling conditions based on the current flow through the semiconductor
material [12,13]. In that sense, there have been several applications where a Peltier cell,
or an array of these, is employed for temperature uniformity control. For example, Ref. [14]
presents the design of a 16 Peltier heating elements system for temperature uniformity
control of a thin plate, modelled using a MIMO transfer function array and controlled using
data-driven methods.

It is important to notice that the mentioned applications for temperature uniformity
modelling and controls employ complex models to represent the system complexities like
non-linearities, a multivariable nature, and the system’s interaction with its environment.
However, these models require a substantial computational load, a fine grid, finite element
analysis methods, and temperature gradient considerations.

In that sense, a digital twin can be built based on some of the temperature modelling
methods presented for temperature uniformity control applications with lower compu-
tational capability and reasonable accuracy. A digital twin can be defined as a virtual
representation of physical assets that provides control systems designers with a high-
fidelity model of a system that can be used not only for the design of advanced feedback
control strategies but also to enable additional capabilities like fault detection, data an-
alytics, or remaining useful life estimation [15–19]. Notice that the computational load
of a virtual digital twin depends on the computational approach employed to represent
the system (lumped elements, finite element analysis, partial differential equations, deep
learning). As we emphasize in [19], a digital twin can be used as an enabling technology to
provide awareness capabilities to a physical asset to develop smart control systems able
to self-optimize with minimal user intervention to achieve a set of desired performance
objectives based on analytics derived from the use of the digital twin like health prognosis,
fault detection, or model predictive control.

However, the perspective about using a digital twin shown in [19] is focused on its
implementation under an edge/embedded/hardware approach instead of a cloud solution.
It means bringing the digital twin closer to the source of information to provide awareness
capabilities to the system, leveraging the existing computational capabilities of processing
systems installed on the physical assets without relying on additional cloud/enterprise
solutions that could make the system sensitive to intellectual property violations or external
attacks. In that sense, a digital twin should look to develop a physical asset representation
that can be used as a reduced-order model (ROM) executable on embedded processors or
the register transfer level (FPGA) to enable the development of smart controllers, bringing
the process knowledge to the edge/embedded domain.

In this paper, a physics-based reduced-order digital twin model is developed to model
a plate-based multivariable Peltier thermoelectric uniformity control system. The system
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uses two Peltier heating elements to manage the temperature distribution on a planar
copper plate. It uses an infrared thermal camera as a feedback sensor to capture the
temperature distribution over the plate. The digital twin is modelled using the five-step
design framework proposed by [20]. The physics-based model for the system is built in
Matlab/Simscape R2022b. The Peltier thermoelectric heating elements are represented
using the thermal and electrical properties. Likewise, the copper plate and its heat transfer
properties are modelled using a discrete heat elements network representing the spatial
conduction and convection heat transfer interactions between the plate, the Peltier heating
sources, and the environment as shown in [21]. Thus, behavioral matching is performed
to find the accurate values of the Peltier and thermal plate parameters, including heat
capacities, thermal resistances (conduction and convection), copper coefficients, or Peltier
thermoelectric parameters like the Seebeck coefficient, specific heats, and thermal masses,
among others.

The behavioral matching employs real data from the infrared thermal camera corre-
sponding to certain zones of the thermal plate that represent the temperature uniformity
of the system. Likewise, a sensitivity analysis is performed via Monte Carlo simulation
to determine the most influential parameters on the digital twin model, which can be
used to design an awareness mechanism and control systems. The contributions of this
manuscript are as follows:

• The development of a digital twin for multivariable temperature uniformity control
systems based on Peltier thermoelectric heating elements using a discrete lumped ele-
ments approach and multiphysics behavior based on the DT development framework,
which can be used for developing reduced-order models of the physical assets for its
real-time execution on embedded devices.

• The use of the digital twin development framework to perform a series of behavioral
matching algorithms to find the real values of the digital twin system’s parameters
using optimization tools.

• A sensitivity analysis is performed to determine the most influential parameters on
the digital twin model based on its real behavior.

This paper is structured as follows. Section 2 briefly describes a digital twin and
the five-step development framework. Section 3 shows the case study and the modelling
employed for the digital twin. Section 4 presents the digital twin behavioral matching and
sensitivity analysis. Finally, the Conclusions and Future Works are presented.

2. Digital Twin Development Framework
2.1. What Is a Digital Twin?

According to Refs. [22,23], a digital twin (DT) can be defined as a virtual representation
of a physical system running alongside the real asset that reflects its behavior. A digital
twin combines several representations to obtain the best system representation, including
physics-based, data-driven, machine learning, or parametric models, among others [19,20].
Figure 1 represents a digital twin. It begins with a physical system comprising many
different subsystems or elements that perform a specific task. The data streams from the
physical system are sent in real time to the digital twin environment using the Internet of
Things and edge computing devices. Inside the digital twin environment, a DT prototype
describes the physical behavior of each component of the physical system and its interaction
using multidomain physics tools and data-driven models incorporated in the digital twin
environment. Thus, each DT instance sets a single representation of the physical system for
a specific task, such as controller design, system component health, and prognosis.

It is important to notice that in Refs. [22,23], the replication of big physical assets
inspires the target of digital twin applications and their conceptualization. Some examples
include electric vehicle fleets, social behavior, climate change, and large manufacturing
facilities. This is one of the most relevant applications for several industries on the path of
DT adoption for digital transformation.
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Therefore, from an industrial manufacturing point of view, digital twins can be an-
alyzed on several levels, starting from subsystems and components, process replication,
equipment modelling, shop floor simulation, manufacturing facility, and multi-factory
simulation. Notice that most of the digital twin references and frameworks available in the
literature are designed for their application at the shop floor level and above, the benefits
of which are valuable from an enterprise and operational point of view. Due to the sys-
tem’s size and complexity, these approaches require more intensive utilization of breaking
technologies like data analytics, artificial intelligence, or cloud computing.

However, similar ideas can be applied to the subsystem, process, and equipment
modelling levels, which are the main target of this paper. According to Ref. [24], a digital
twin can be differentiated from a pure simulation model in the sense that a physical asset
must exist to be replicated into a virtual domain. Thus, the DT built for the uniformity
temperature control system portrays the fundamentals of a digital twin.

Thus, the obtained DT model will be the starting point for the implementation of
enabling technologies like fault detection, prognosis, or self-optimizing control methods.
Likewise, the DT will be leveraged as a reduced-order model for its execution in embedded
configurations, bringing the mentioned capabilities closer to the asset without additional
hardware and communication infrastructure. A more detailed discussion regarding the
digital twin concept and applications can be found in [19,20].

Physical System

Digital Twin instances

DT 1: control DT 2: (aggregation)

Subsystem 1 Subsystem 2 Subsystem n

...

Subsystem 1 Subsystem 2 Subsystem n

...

System dataControl actions

Virtual Environment

DT n: Safety analysis

Digital Twin Entity

Figure 1. Digital twin conceptual diagram based on [19]. The physical asset domain shares the sys-
tem’s and subsystems’ data with the virtual environment, where representations of each component
are defined on a virtual prototype that can produce instances for different analysis and control tasks.
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2.2. DT Development Framework

The DT methodological framework proposed by [19,20] shown in Figure 2 can be used
to develop a digital twin application. It consists of five steps: target system definition, sys-
tem documentation, multidomain simulation, DT behavioral matching, and DT evaluation
and deployment. In the first step, target system definition, the physical asset is identified
and assessed to establish its current status, operation mode, and feasibility for digital twin
representation using CAD/CAM tools and physics-based and data-driven models. In the
second step, system documentation, all the information related to the system, including
existing manuals, blueprints, schematics, P&ID diagrams, datasheets, fault reports, and
operation manuals, are collected to provide an in-depth understanding of the physical
asset to replicate. Thus, the third step, multidomain simulation, consists of developing a
comprehensive simulation model for the DT subsystems’ dynamics based on multiphysics
simulators like COMSOL, ANSYS, MSC-ADAMS, Matlab Simscape, among others, or data-
driven methods like machine learning or reduced-order models. This model is validated
based on the existing knowledge of the system. Once the DT is operative, the fourth step,
behavioral matching, is performed, which consists of setting the DT within an optimization
algorithm to match its operation with the physical asset using historical datasets, which
allows for determination of the correct values of the system’s parameters like frictions,
stiffness, thermal capacitance, electrical inductance, sensor noise, among others. An ex-
tended discussion on DT behavioral matching for dynamical systems can be found in [25].
Finally, the fifth step, DT implementation and deployment, consists of delivering the model
through user interfaces that enable the interaction between the users, the physical asset,
and the DT. Depending on the system’s complexity, it can be performed via edge computing
with direct asset interaction or a cloud-based service if there are thousands of assets like
a drone swarm or a fleet of autonomous vehicles. Each deployment can be used to moni-
tor system faults, and enable awareness capabilities and remaining useful life prediction,
among other functionalities.

Figure 2. Digital twin five-step development framework.

3. Case Study: Uniformity Temperature Control Process Based on a Thermal Plate with
Multiple Peltier Heating Elements
3.1. Steps 1 and 2: System Definition and Documentation

The multivariable temperature uniformity control system shown in Figure 3 is selected
as a case study for its digital twin development and adjustment. The system is composed
of four critical elements: a FLIR infrared thermal camera (B) and two Peltier thermoelectric
modules (A1) and (A2) interconnected by a thin copper plate (A). The control unit is a
LattePanda board (C) running Windows 10 and Matlab in a hardware-in-the-loop config-
uration (HIL) for manipulating Peltier cells and temperature readings from the thermal
camera, which is communicated via TCP-IP. The dual power driver (D) controls the heating
elements fed from a 12 V battery (E). Table 1 briefly summarizes the critical properties of
the power driver, the Peltier modules, the infrared thermal camera, and the copper plate.
The datasheet for the system’s components can be found in [26–29]. A block diagram repre-
sentation of the multivariable temperature uniformity control system is shown in Figure 4.
The dual H-bridge manages the system’s energy consumption via a PWM generator for
each Peltier cell. Thus, the thermoelectric circuit of each Peltier device is connected to the
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thermal distributed circuit corresponding to the metal plate, whose temperature is read by
the thermal camera and sent to the LattePanda Board for data acquisition.

Figure 3. Case study: dual Peltier system with copper thin plate heating surface for temperature
uniformity control applications. The system is composed of a thin copper plate (A) coupled with two
Peltier thermal cells (A1), (A2) controlled using the power driver (D) with the energy provided by the
battery (E). The Lattepanda Computer (C) performs the temperature uniformity control using the
infrared thermal camera (B) as feedback sensor.

Table 1. Multivariable Peltier thermal system documentation.

Component Features

FLIR Lepton Thread
Infrared Thermal Camera

Wavelength: 8 to 14 µm
Resolution: 80 × 60 pixels

Accuracy: ±0.5 ◦C

TEC1-12706
Peltier Module

Qmax = 50 W
∆Tmax = 75 ◦C
IMax = 6.4 A

Vmax = 16.4 V

URC10
Dual Output Power Driver

Input: 0–5 V
Output: 8–25 V

Peak Current: 30 A
Built-in Arduino Uno

LattePanda board
5 inch Windows 1064 bits PC

Intel Atom µp
4 GB of RAM

Thin Copper Plate
Size: 25 × 10 × 0.1 cm
(length, height, width)

Specific heat 390 Jkg−1K−1

The temperature uniformity distribution response of the system is shown in Figure 5
for different time instants: (a) 100 s, (b) 300 s, and (c) 500 s when a 50% duty cycle is
applied to each cell. As can be observed, the dual Peltier cells heat the thermal plate, and
it is noted that one of the cells has a stronger thermal interaction with the plate. This is
caused by the mechanical attachment between the Peltier element and the copper plate,
which is loose, producing a smaller thermal interaction. Likewise, notice that the infrared
camera resolution of 80× 60 pixels can provide a maximum of 4800 pixels with temperature
measurements. Although this great feature provides superior sensing capabilities, it can
make the digital twin computationally expensive for its evaluation and behavioral matching.
For this reason, the thermal plate is divided into 12 heating zones and 3 central taps,
as shown in Figure 5d for 15 temperature measurements. The first 12 correspond to the
average temperature at each heating zone T11 − T16 or T21 − T26. The remaining parameters
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correspond to the center taps TAM, TBM, and TCM for the zones (A), (B), and (C), which
provide information regarding the plate and Peltier heaters’ interaction. The temperature
response of each thermal zone T11 to T26 for 50% and 75% duty cycle inputs applied to
the Peltier cells is shown in Figure 6. It can be observed that there is a difference in the
maximum and minimum temperatures as shown in the thermal image.

Figure 4. Block diagram of the multivariable Peltier uniformity temperature control system.

Figure 5. Uniformity temperature distribution acquired using the infrared thermal camera for the
Peltier multivariable system. As can be observed, the copper plate heating process is performed
for (a) 100 s, (b) 300 s, and (c) 500 s. The temperature measurements are distributed in three zones
A, B, C divided as 2 × 6 grid as shown in (d), where the temperature where each partition is
performed is the average temperature (T11 − T16 and T21 − T26) including the central tap measure-
ments (TAM, TBM, and TCM).
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Figure 6. Temperature response for the copper plate measured temperature zones (a) T11 − T16,
T21 − T26 and central taps for zones (A), (B), and (C) with the (b) PWM profiles of 50% and 78% for
each Peltier element.

3.2. Step 3: DT Multidomain Simulation

This section’s goal is to model the multivariable thermoelectric process shown in
Figure 3 and its thermal interactions using two thermally coupled equivalent circuits as
shown in [21]. The first circuit corresponding to the Peltier element is built with discrete
electrical and thermal components. It is coupled to the second circuit corresponding to the
equivalent RC spatial network that models the heat transfer by conduction and convection
through the copper plate to determine the spatial performance of the thermoelectric process.
Its modular design makes it easier to add other thermal and electrical subsystems when it
is necessary to change the operating conditions of the process.

3.2.1. Thermal Distributed Element Circuit

The thermal distributed circuit is shown in Figure 7 with the proposed volume el-
ements’ Vnm distribution for the copper plate as shown in Figure 7a. The area of these
elements is selected to be equal or proportional to the Peltier device area. This spatial
coincidence makes it easier to connect the equivalent thermal circuits. Thus, the equivalent
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circuit for heat transfer is based on the finite difference method and assumes that the
temperature of each element of volume Vnm is spatially uniform at any instant during the
transient process [30,31].

Figure 7. Thermal distributed element circuit: (a) copper plate volume elements’ spatial distribution
where the Peltier heating device is fixed to one element and (b) the discrete thermal circuit for a single
volume element.

On the other hand, Figure 7b, shows the thermal circuit of one volume element where
CT is the thermal capacitance representing the storage energy rate in a small volume
of solid [32]. The conduction heat transfer resistance is modelled with the six thermal
resistances oriented from the center of the volume element [33,34]. The other two resistors
are used to model the convective heat flow between the metal surface and the environment.
In a volume element, the energy storage change ∆U in a time interval ∆t is expressed by
(1), where m is the mass of the solid and c the specific heat, which is a thermal property of
the material. CT is defined as the thermal capacitance of the material.

∆U
∆t

= mc
∆T
∆t

= CT
∆T
∆t

, Then CT = mc. (1)

According to Fourier’s law for a solid [32], the heat transferred by conduction ∆Q in a
time interval ∆t is given by (2) where A is the cross-sectional area of the volume of element.
∆l is the distance between the two ends at temperatures T1 and T2. k is a proportionality
constant called the thermal conductivity, which is a property of the material. RTcd is the
material’s thermal resistance to the heat transfer by conduction.

∆Q
∆t

= −kA
T1 − T2

∆l
=

T1 − T2

RTcd
Then RTcd =

∆l
KA

. (2)

From (2), the six 3D-oriented thermal resistor of Figure 7b can be calculated by [33]:

RTcdx =
∆x

2K∆y∆z
RTcdy =

∆y
2K∆x∆z

RTcdz =
∆z

2K∆x∆y
. (3)

Likewise, in the equivalent circuit shown in Figure 7b, RTcv is the thermal resistance
to convective heat transfer between the surface of the volume element and a fluid around.
According to Newton’s cooling law [32], when a solid is in thermal contact with a fluid,
the convection heat ∆Q transferred in a time interval ∆t is (4) where A and Ts are the area
and temperature of the surface of the solid in contact with the fluid, T∞ is the temperature
of the fluid far from the surface, h is the convection transfer coefficient property of the fluid,
and RTcv is the resistance to heat flow between the surface and the fluid.

∆Q
∆t

= hA(Ts − T∞) =
(Ts − T∞)

RTcv
Then RTcv =

1
hA

. (4)

The thermal equivalent circuit implemented in Simulink/Simscape for the copper plate is
shown in Figure 8. The serial connection between the resistors of the volume elements allows
for a reduction in the number of components in the circuit. The equivalent resistances RT f x and
RTcy (5) are the serial sum of two adjacent resistors in the x- and y-axis, respectively. Likewise,
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in Figure 8, RTex, RTey, and RTez given by (6) are the serial sum of the resistances to heat transfer
by convection and conduction in the three-dimensional space, which is perpendicular to each of
the environment contact surfaces. Finally, the thermal capacitances CTnm of the volume elements
serve as a spatial reference. In Figure 8, the equivalent circuit nodes of each volume element can
be used as measuring points of the temperature on the metal plate.

RT f x = 2RTcdx & RTcy = 2RTcdy, (5)

RTex = RTcdx + RTcvx; RTey = RTcdy + RTcvy; RTez = RTcdz + RTcvz. (6)

Figure 8. Simscape/Simulink model conductive and convective heat transfer equivalent on the plate.

3.2.2. Peltier Thermoelectrical Equivalent Circuit

The thermoelectric simulation circuit of Figure 9b was built based on the circuit of
Figure 9a and [30]. This circuit includes the thermoelectric effects of Seebeck, Joule, and
Peltier and the conduction heat transfer between the two sides of the device. In this case,
the Peltier device transforms thermal energy into electrical energy by the Seebeck effect.
The Electromotive Force E.M.F(V) is given by (7) where α, Th, and Tc are the Seebeck
coefficient and temperatures on the cold and hot sides of the Peltier.

EMF = α(Th − Tc). (7)

(a) (b)

Figure 9. Case study: Peltier thermoelectrical equivalent circuit. (a) Theoretical model (in a similar
manner as described by the study in [30]); (b) simulation model in Matlab/Simulink. The elements in
blue are electrical, and those in orange are thermal.

Figure 9a shows the EMF implemented like an electric voltage-dependent source that
depends on the temperature difference between the cold and hot sides. For the Joule effect,
the heat rate qJ generated by the electrical current I through the electrical resistance RE of
the devices is given by (8).

qJ = I2RE. (8)
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In the same way, Figure 9a shows how, in the thermal domain of the circuit, the Joule
effect in (8) is divided into two dependent heat flow sources qJ

2 , connected to the hot and
cold nodes, respectively. Finally, the device transforms electrical energy into thermal energy
by the Peltier effect. The heat rate dissipated qc and absorbed qh on the hot and cold side is
calculated by (9) where π and α are the Peltier and Seebeck coefficients, Tc and Th are the
temperatures on the cold and hot sides of the Peltier device, and I is the electric current
that flows through the device.

qc = π I = αTc I qh = π I = αTh I. (9)

The Peltier equivalent circuit is implemented in Simulink/Simscape using discrete
thermal and electrical components as shown in Figure 9b. The heat flow sources in the
Peltier device are modelled with two dependent heat flow sources qEc and qEh. These
sources integrate both Joule qJ and Peltier (qc; qh) effects. The electrical and thermal in-
put/output ports are depicted as (V+, V−) and (Th, Tc). The heat capacity ch,c of Ch and Cc
was calculated by equivalent thermal capacitance Ct taken from the study in Refs. [30,35],
and the mass m of the device from the datasheets [36]. Likewise, according to [30], the See-
beck coefficient α, the electrical resistor RE, and the thermal RTh can be calculated using
the manufacturer’s specifications [36] by substituting this device’s specifications into the
equations below (10).

α =
VMax

Th
; RE =

(
VMax
IMax

)(
Th − ∆TMax

Th

)
; RTh =

(
∆TMax

IMaxVMax

)(
2Th

Th − ∆TMax

)
. (10)

The thermal and electrical performance of the Peltier circuit is evaluated using a DC
Sweep analysis and compared to the manufacturer’s performance datasheet. The schematic
for the DC Sweep analysis in the Peltier circuit operating in cooling mode is shown in
Figure 10. The temperature source connected to the hot side of the Peltier circuit provides
an ideal heat sink. The cold side is connected and the ideal load Mload is used to measure
the heat absorbed. The DC sweep specifications are set on the PWL (Piecewise Lookup
Current) source connected to the electric circuit input.

Figure 10. DC Sweep Simulink schematic for Peltier equivalent circuit performance.

Thus, the heat capacity ch,c was calculated with (10) and the equivalent thermal
capacitance Ct estimated from the study in [30,35]. Using the values from Table 2 in (10),
we can obtain the Seebeck coefficient and the electrical and thermal resistances listed in
Table 3. The parameters used in the simulation are extracted from manufacturer datasheet
CCP10-127-05-L1-W4.5 and given in Table 2 [36].



Electronics 2024, 13, 1419 12 of 21

Table 2. Peltier specifications CP10-127-05-L1-W4.5 [36].

Hot Side Temperature at Th = 300 K

Symbol Description Value

QcMax
Maximum amount of heat absorbed at a Certain

Load Specification when ∆T = 0 K 33 W

∆Tmax
Maximum temperature differential. This point

occurs when Qc = 0 W 345.5 K

Imax
DC current level which will produce the

maximum possible ∆T 4 A

Vmax
DC voltage which will deliver the maximum

possible ∆T across the device 13.9 V

m Mass of the Peltier devices 9 × 10−3 Kg

Table 3. Peltier simulation parameters.

Hot Side Temperature at Th = 300 K

Symbol Description Value

α Seebeck coefficient 0.0421 V/K

RE Electrical resistance 2.65 Ω

RTh Thermal resistance 3.22 K/W

Ch,c Thermal equivalent capacitances (hot and cold sides) 5.68 J/K

DC Sweep obtains the Peltier response with the hot side temperature set to 300 K,
which is shown in Figure 11a,b where Qc − I and COP − I are the output characteristics of
Peltier that were obtained by setting the initial temperature of the thermal load according
to the temperature difference. It means that if the temperature difference is 60 K, the initial
temperature of the load is set at 240 K. Otherwise, if the temperature difference is 30 K,
the initial temperature of the load is set at 270 K, etc. This specification provides the initial
temperature required for DC Sweep and ensures a better match with the performance of
the datasheet.

Figure 11a presents the heat flow rate absorbed at the cold side concerning the input
current. Notice that when the input current increases, the heat absorbed on the cold
side increases to a maximum value. This behavior takes place by increasing the Joule
effect. Moreover, Figure 11b shows the performance as a function of current for different
temperature differences. The device’s dependency on temperature differences can be
observed with the same input current value; the COP value is smaller for larger temperature
differences. It means that the heat absorbed on the cold side is lower.

(a) (b)

Figure 11. Peltier equivalent circuit performance. (a) Heat pumped on cold side Th = 300 K.
Dashed line, simulation circuit behavior. Solid line, graphic digitized from manufacture datasheet.
(b) Coefficient of Performance (COP = Qc/Pin) at Th = 300 K. Dashed line, simulation circuit behavior.
Solid line, graphic digitized from manufacture datasheet.
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3.2.3. MIMO Digital Twin for the Uniformity Temperature Control System

The assembly of the digital twin for the multivariable temperature uniformity system
presented in Figure 3 is composed of the Peltier thermoelectric circuit shown in Figure 9b
and the thermal plate circuit for which the spatial volume elements’ distribution is shown
in Figure 12a. It consists of 24 individual volumes V11 − V18, V21 − V28, and V31 − V38.
Of these elements, 10 of them have dimensions of 4 cm × 4 cm × 0.1 cm (length, height,
width), coinciding with the Peltier heating elements connected to the volume elements V23
and V26. Additionally, with regard to the six elements representing the plate boundaries,
V11, V21 have dimensions of 1 cm × 4 cm × 0.1 cm, V31 has dimensions of 1 cm × 3.5 cm
× 0.1 cm, V18, V28 have dimensions of 1.5 cm × 4 cm × 0.1 cm, and V38 has dimensions of
1.5 cm × 3.5 cm × 0.1 cm. Finally V15, V25 have dimensions of 3 cm × 4 cm × 0.1 cm and
V35 has dimensions of 3 cm × 3.5 cm × 0.1 cm. Likewise, the thermal distributed network
circuit for the copper plate implemented in Simulink/Simscape is shown in Figure 12b.
As can be observed, the 24 thermal elements’ nodes are interconnected via discrete thermal
resistors and capacitors as discussed in Figure 7b. The resistances on the top, bottom, left,
and right sections of Figure 12b correspond to the heat transfer (conduction and convection)
between the copper plate and the environment.

Thus, the fully assembled digital twin of the system is presented in Figure 13a. As can
be observed, it is based on the thermal plate (distributed thermal circuit block) and the
Peltier thermoelectric models (Peltier1 and Peltier 2 controller by a PWM input signal for
each cell) provided in the previous sections.

(a)

(b)

Figure 12. Spatial thermal plate volume elements distribution. (a) Thermal network for the copper
plate with asymmetric volume elements on the left and right boundaries. (b) Simulink/Simscape
model of the volumetric elements’ interconnection based on discrete thermal elements (resistors and
capacitors).
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The thermal, electrical, and physical parameters employed on the digital twin are
shown in Table 4, where Cesp is the copper-specific heat, RTh and RE are the thermal and
electrical Peltier resistances, and the equivalent resistances RT f x and RTcy are the serial
sum of two adjacent resistors in the x- and y-axis, respectively. The resistors (RTex, RTey,
and RTez) are the serial sum of resistances to heat transfer by convection and conduction
in the three-dimensional space. In the case of the thermal capacitances, CTnm = 28.4 J/K,
and this is the same value for all the elements except for CT11 = CT12 = CT13 = 7.1 J/K,
CT15 = CT25 = CT35 = 21.3 J/K, and CT18 = CT28 = CT38 = 10.65 J/K. The code for the
MIMO Peltier digital twin and the datasets can be found in https://github.com/tartanus/
digital-twin-MIMO-peltier (accessed on 30 March 2024).

The temperature uniformity of the system is shown in Figure 13b, where the two
Peltier heaters working with a 50% duty cycle show a temperature gradient over the
copper plate starting on the volume elements V23 and V26. It shows the difference in the
temperature distribution on the copper plate, which is caused by a loose mechanical and
thermal coupling between one of the Peltier cells and the plate, which is accounted for
during the parameter estimation process for the thermal elements associated with the
volumetric elements V23 and V26.

(a)
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m
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(b)

Figure 13. Consolidated MIMO digital twin for the uniformity temperature control system
(a) Simulink/Simscape model with Peltier heating elements and the distributed thermal network
for the copper plate. (b) Thermal uniformity distribution of the copper plate when a 50% duty cycle
PWM signal is applied to the Peltier cells for heating applications.

3.3. Fourth Step: Digital Twin Behavioral Matching

The multiphysics model built in the previous section is intended to replicate the
same behavior exhibited by the real system. In that sense, behavioral matching (BM) is
required to match the digital twin response with the asset. The BM is performed through

https://github.com/tartanus/digital-twin-MIMO-peltier
https://github.com/tartanus/digital-twin-MIMO-peltier
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an optimization process where the input/output data of the real system are compared with
those from the digital twin. Thus, the quadratic error between the system’s response ŷ(k)
and its DT y(k) (11) is used as a cost function to minimize the θ critical parameters on the
model.

Jbm(θ) =
1
N

N

∑
k=1

(y(k)− ŷ(k, θ))2. (11)

For the proposed multivariable uniformity temperature application, several parame-
ters influence the digital twin response matching, such as thermal resistances (conduction
and convection) Ra1−3, Rxp1−3, Ryp1−3, specific heats Cesp, or thermal masses Qs, which
are defined in the previous section and can be grouped as θ = [Cesp, Ra1−3, Rxp1−3,
Ryp1−3, Rp, Rc, Rph, RE]. Although these parameters can be calculated from the material’s
thermal properties and the volume element’s physical distribution, these values will differ
from the physical system. Thus, the behavioral matching can help to find the values corre-
sponding to the physical system to match the response. The Simulink Design Optimization
(SLDO) Toolbox [37] is used as an optimization tool to find the values of θ. The initial
values of θ are set as shown in Table 4. Non-linear least squares is used as an optimization
method with an error tolerance of 1 × 10−3 as stopping criteria.

Table 4. Behavioral matching parameter estimation results.

Name Variable Initial
Value

Final
Value Min Max Units

Peltier-specific heat Cesp 1200 1959 0 2000 [J/(kg· K)]
Peltier Thermal Resistance RTh 1.86 9.75 0 12 [K/W]
Peltier Electrical Resistance RE 1.96 0.01 0 10 [Ω]

Thermal resistance RT f x and RTcy 0.49 0.20 0 2 [K/W]
Thermal resistance RTez 24.5 18.54 0 36 [K/W]
Thermal resistance RTez1 50 95.5 0 200 [K/W]
Thermal resistance RTez2 16.6 0.52 0 32 [K/W]
Thermal resistance RTez3 33.3 0.82 0 70 [K/W]
Thermal resistance RTey 197 149.6 0 400 [K/W]
Thermal resistance RTex1 196.91 199.5 0 400 [K/W]
Thermal resistance RTex3 196.94 16.11 0 400 [K/W]
Thermal resistance RTey1 788.3 3.9 0 2000 [K/W]
Thermal resistance RTey2 262.7 367.9 0 200 [K/W]
Thermal resistance RTey3 545.5 315.5 0 200 [K/W]
Thermal resistance Rph 0.6 6.9 × 10−5 0 2 [K/W]
Thermal resistance Rpc 0.3 1.1 0 2 [K/W]
Thermal resistance RT f x2 0.42 0.2 0 2 [K/W]

Copper-specific heat Cco 196.94 16.11 0 400 [J/(kg· K)]

The behavioral matching results using the SLDO are shown in Figure 14 and in the
fourth column of Table 4. It uses the input/output data shown in Figure 6 with 50%
and 75% duty cycles for both Peltier heating elements for 500 s each. Each parameter is
constrained based on its physical limitations. Likewise, the response of the digital twin
against the physical asset is shown in Figure 15. For the 12 heating zones evaluated, it can
be observed that the simulated response provided by the digital twin provides an accurate
representation of the thermal plate temperature distribution. Although there are some
cases like T16 or T31 where there is a small mismatching on some of the steady states,
the transient response of the digital twin corresponds to the system’s physical behavior.
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Figure 14. Digital twin behavioral matching results. The parameter optimization algorithm search
for the correct values for the model parameters to match the digital twin with the real data acquired
from the physical system.

Figure 15. Digital twin’s adjusted response (red line) after behavioral matching process for the 12
thermal zones and central taps. The parametric adjustment process shows that the digital twin’s
response is closer to the physical asset providing an accurate representation of the temperature
distribution on the plate.

3.4. Sensitivity Analysis

According to [38], a sensitivity analysis is employed to evaluate the influence of model
parameter errors on model results. It means quantifying how much the uncertainty in
the system’s parameters and inputs modifies the system’s outputs. It can be performed
in a local or total setup. A local sensitivity analysis, also called a variation method, only
examines the influence of the change of one parameter on the simulated results. On the
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other hand, a total sensitivity analysis examines the integrated influence of the change of
several parameters on the simulated results and the interaction among model parameters
based on simulation results. This technique has several applications, including oil and gas,
water management, or social sciences [39–41]. In the case of the digital twin, there are some
works where sensitivity analysis is used to analyze the performance of solar dryers [42],
biogas facilities [43], or battery management, where statistical indices like the Pearson
correlation is computed between the estimated and simulated performance indices of a
battery [44].

This paper performs a post-optimization local sensitivity analysis to quantify the
robustness of the cost function (11), corresponding to the model fit given by the quadratic
error in the presence of parameter uncertainty. This analysis is performed using a Monte
Carlo-like simulation. A set of normal distributions for each one of the digital twin pa-
rameters shown in Table 4 are generated using as the mean the values resulting from the
optimization with a ±25% variance. A uniformly sampled population of 50 candidate
solutions θ̂ were generated from the normal distributions and were evaluated on the digital
twin model. As the sensitivity index, the Pearson correlation computed for the 12 heating
zones and the central taps was selected. The resulting sorted correlation of the candidate
solutions is shown in Figure 16. As can be observed for most of the zones, the resistance
values for the interaction between the cell and the plate Rpc, and the Peltier electrical and
thermal Re and RTh resistances show the strongest correlation regarding all the measured
outputs of each volume element. In the case of extreme volume elements like T11, T21, the re-
sistance Rpc exhibits a negative correlation; they indicate an inverse relation between the
volume element temperature and that parameter. Likewise, the parameters Ra, Rp, RTey2,
as well as the specific heat Cco, exhibit almost no correlation (value close to zero) between
the fitness of the model and the temperature response. In addition, an intermediate level of
sensitivity is produced by the conduction and convection resistances along the copper plate
edges, which is mostly negative, indicating that the effect on fitness is bigger as the values
of the parameters are reduced. Thus, we can say that the Peltier electrical and thermal
parameters should be prioritized during the optimization and experimental validation
stages, considering their significant influence over the digital twin response fitness, which
can be crucial for the design of fault detection, prognosis, and closed-loop control strategies.

3.5. Result Discussion and Next Steps towards Digital Twin-Enabled Capabilities

The digital twin model built for this paper’s uniformity temperature control system
shows an average accuracy of 70% for representing the heat distribution and behavior along
the thermal plate for each heat zone. It means that the digital twin can support the design
of model predictive and optimal control strategies, as well as predictive maintenance and
data analytics applications. However, there are some aspects of the current digital twin
implementation that need to be addressed to make the digital twin a smart control system.

Initially, how often does the execution rate of the behavioral matching need to be
executed to determine the most updated parameters of the model? It requires an awareness
and monitoring mechanism that detects any significant change in the system’s response.
In that sense, using a self-optimizing control layer enables system awareness by performing
online optimization of the system’s parameters along with the system’s execution and
parallel instances of the system’s digital twin to accelerate its convergence and ensure that
unsafe or unstable conditions are tested on the virtual environment before a final update
of the DT model. In [45,46], some applications of self-optimizing control are employed
for control systems’ parametric updating, which could be used also for the digital twin
behavioral matching.

On the other hand, the concept of smart control engineering shown in [19] uses a
digital twin as an enabling technology to create smart systems. It means using a DT next
to the source of information running on embedded hardware, requiring a reduced-order
model digital twin compatible with the available hardware. Thus, the digital twin model
developed in this paper serves as a starting point for deriving reduced-order models



Electronics 2024, 13, 1419 18 of 21

compatible with embedded hardware whose execution speed is parallel and in real time
with the physical asset emulated. Although the execution speed of the digital twin built
in this paper needs to be assessed in depth, there are applications where digital twins
developed with the proposed framework can be deployed for real-time execution. For ex-
ample, Refs. [47,48] show the FPGA real-time DT implementation of a mechatronic system
executed on the millisecond time scale and a power electronics converter with dynamical
response on the microseconds range, respectively. Other applications like in [49,50] include
a DT for micro-grids and power boards with more powerful real-time hardware-in-the loop
platforms like Opal RT or Texas instruments System on a Chip.
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Figure 16. Digital twin sensitivity analysis. The tornado diagram shows that the thermal and electrical
resistances Rpc, Re, and RTh have the greater influence over the system’s response and adjustment.

4. Conclusions and Future Works

The development of a digital twin for a multivariable uniformity temperature control
system was presented based on the five-step methodological framework proposed in [19].
The physical system is composed of dual Peltier thermoelectric generators interconnected
via a copper plate, which enables the development of uniform temperature control appli-
cations. The temperature distribution was acquired using an infrared thermal camera for
the digital twin model calibration. The digital twin built-in Simulink/Simscape is based
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on a set of finite volume elements grids that represent the temperature dynamics on the
plate and a thermoelectric circuit for the Peltier heating elements. Behavioral matching
was performed to adjust the digital twin model’s behavior to that of the physical asset
by adjusting the system’s parameters. This calibration results in a good representation of
the temperature dynamics. It is important to note that although only certain parts of the
visual feedback from the thermal camera were used for the behavioral matching, the con-
vergence and computational execution time of the model is reasonable and can be used
for embedded code generation executable on embedded systems. Likewise, the sensitivity
analysis shows that the Peltier thermal and electrical properties, as well as the thermal
resistances between the Peltier cells and the copper plate, have a strong impact on the
adjustment of the system’s response, indicating that these parameters should be prioritized
on upcoming and more complex thermal systems with features like redundant thermal
actuators or simultaneous systems’ interaction. Thus, the digital twin for the multivariable
uniformity temperature control system enables a better understanding of the physical
asset’s behavior, properties, and current status, which can be used to develop informed
feedback control strategies based on the components’ health and remaining useful life.
In future works, extending the sensitivity analysis for customized cost functions, including
closed-loop control performance and economic considerations like energy consumption or
environmental awareness, is proposed to provide more insights about the physical system
towards implementing smart and self-optimizing controllers.

Author Contributions: Conceptualization, J.G.A., L.A., J.V. and Y.C.; methodology, J.G.A. and L.A.;
software, J.G.A. and L.A.; validation, J.G.A., L.A. and J.V.; formal analysis, L.A. and Y.C.; investigation,
J.G.A. and L.A.; resources, J.G.A., L.A., J.V. and Y.C.; data curation, J.G.A., L.A. and J.V.; writing—
original draft preparation, J.G.A., L.A. and J.V.; writing—review and editing, J.G.A., L.A., J.V. and
Y.C.; visualization, J.G.A. and L.A.; supervision, L.A. and Y.C.; project administration, L.A.; funding
acquisition, L.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BM Behavioral Machine
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
COP Coefficient of Performance
DT Digital Twin
EMF Electromotive Force
HIL Hardware in the Loop
MIMO Multiple Input Multiple Output
MOSFET Metal Oxide Semiconductor Field Effect Transistor
PID Proportional Integral Derivative
PWM Pulse Width Modulation
SLDO Simulink Design Optimization
TAM Temperature Central Tap Heating Zone A
TBM Temperature Central Tap Heating Zone B
TCM Temperature Central Tap Heating Zone C
TCP-IP Transmission Control Protocol/Internet Protocol
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