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Abstract: Microcontroller Units (MCUs) play a vital role in embedded devices due to their energy
efficiency and scalability. The firmware in MCUs contains vulnerabilities that can lead to digital and
physical harm. However, testing MCU firmware faces challenges due to various tool limitations and
unavailable firmware details. To address this problem, research is turning to fuzzing and rehosting.
Due to the inherent imbalance in computational resources of the fuzzing algorithm and the lack of
consideration for the computational resource requirements of rehosting methods, some hardware
behavior-related paths are difficult to discover. In this work, we propose a novel Dynamically Co-
directional Guidance Fuzzing (DCGFuzz) method to improve security analysis efficiency. Our method
dynamically correlates computational resource allocation in both fuzzing and rehosting, computing
a unified power schedule score. Using the power schedule score, we adjust test frequencies for
various paths, boosting testing efficiency and aiding in the detection of hardware-related paths. We
evaluated our approach on nine real-world pieces of firmware. Compared to the previous approach,
we achieved a maximum increase of 47.9% in path coverage and an enhancement of 27.6% in effective
model coverage during the fuzzing process within 24 h.

Keywords: embedded devices; firmware security analysis; fuzzing; seed scheduling

1. Introduction

In recent years, the field of Internet of Things (IoT) has seen rapid development, with
many technologies related to IoT and embedded devices, such as blockchain [1,2] and
edge computing [3], becoming research hotspots. Microcontroller Units (MCUs), as crucial
components of modern embedded devices, have been widely used in various scenarios,
including healthcare, autonomous driving vehicles, and industrial systems. At the same
time, the security of MCUs has also attracted widespread attention from researchers [4].

MCU firmware contains vulnerabilities that may cause various attacks that result in
damages in both digital and physical words. For example, attackers can use the notorious
Mirai botnet [5] to hijack many IoT devices and launch Distributed Denial of Service
(DDOS) attacks, resulting in the disruption of thousands of websites. Additionally, attacks
targeting the system level can pose even greater threats. For instance, after an attack on
Programmable Logic Controllers (PLCs), hackers could manipulate vulnerable components
such as the centrifuge rotor [6], speeding up or slowing down its operation, therefore
causing damage to the entire industrial equipment and even posing a threat to human safety.

However, due to limitations in the performance of tools, hardware constraints, and
the need for prior knowledge, a significant number of MCU firmware lack comprehensive
testing [7]. First, the effectiveness of tools like Snipuzz [8] is constrained by the limitations
of peripherals and I/O performance. Second, the operation of IOTFuzzer [9] relies on
information carried by the application. Finally, due to MCU firmware typically being in
binary format and lacking public disclosure, the investigation of MCU firmware bears a
closer resemblance to a black-box problem for researchers.
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To deal with the above limitations, fuzzing and rehosting emerge as significant di-
rections for research. Rehosting is a firmware emulation technique that simulates real
hardware devices in a virtual environment. The design approach of rehosting methods
involves abstracting hardware devices into models through various means and maximizing
the coverage of these abstract models to simulate hardware devices more comprehensively.
Fuzzing is a security analysis method that triggers vulnerabilities in programs by generat-
ing various types of inputs. One prevalent type of research, based on path coverage [10–13],
focuses on improving path-coverage algorithms to thoroughly test program branches [14].
Therefore, after successfully simulating the device to be analyzed, rehosting methods typi-
cally integrate fuzzing techniques for firmware security analysis [15–17]. These methods
generally directly utilize existing fuzzing frameworks [18,19].

Currently, these rehosting frameworks combined with fuzzing frameworks have
various limitations. On the one hand, commonly used frameworks such as QEMU [20]
and Unicorn [21] cannot be directly utilized without prior knowledge of the relevant
embedded devices, nor can they adequately adapt to the demands of fuzzing. On the
other hand, frameworks like Pretender [22] feature complex designs, demanding environ-
mental requirements, and numerous dependencies where minor version changes could
impede their functionality. This implies that these methods are difficult to integrate with
other frameworks.

In recent years, other advanced methods primarily focus on optimizing framework
designs and simulating more peripherals to enhance performance [15,16,23–27]. This makes
it difficult to improve the performance of these rehosting methods. New outstanding
research often involves re-proposing a framework. This entails a significant amount of
engineering effort, and further work is also challenging.

However, when applying these excellent studies directly to firmware related to in-
dustrial equipment, these methods may not be as effective as expected [28]. On the one
hand, fuzzing testing algorithms themselves also have limitations, such as the problem
of unbalanced computing resources [29]. After a period of testing, some paths may be
tested too frequently while others lack testing. On the other hand, we found that certain
firmware program branches need to trigger specific hardware functions to reach, and when
allocating computing resources, fuzzing testing algorithms did not consider the need for
rehosting methods. This makes it difficult to discover paths related to peripheral device
functions. We refer to these paths as hardware behavior-related paths (or code branches).

Therefore, we are considering improving the efficiency of rehosting methods from the
perspective of computational resource allocation. This includes enhancing the efficiency
of path discovery by the fuzzing algorithm and improving the capability of rehosting
methods to discover peripheral device behaviors, therefore aiding in the detection of
hardware behavior-related paths. To assess the efficiency of both processes, we employ
path coverage and model coverage as metrics [14,30]. Here, model coverage is represented
by the number of paths discovered during fuzzing, while model coverage is similarly
represented by the number of models successfully simulated during the fuzzing process.
In the implementation process, we need to address the following challenges:

• How to establish a suitable firmware emulation environment. The problem includes
the resolution of all peripheral devices and resetting their state to the required con-
figuration for fuzzing. Additionally, a robust operating environment is necessary for
successful fuzzing, and automation should be implemented throughout the execution
process. This paper mainly considers rehosting methods, so the problem transforms
into selecting the type of rehosting method and framework compatible with the overall
algorithmic structure while maintaining high performance.

• How to allocate computing resources, i.e., what fuzzing methods to adopt. In software
fuzzing, there are many different types of methods, such as bitmap-based [31], proto-
col state machine-based [32], DSE (Directed Symbolic Execution) [33], taint analysis,
etc. However, many of these approaches are not particularly effective when applied to
firmware. For example, Dynamic Symbolic Execution (DSE) is not directly suitable



Electronics 2024, 13, 1433 3 of 25

for firmware fuzzing [14], as DSE requires support from the running environment,
necessitating extensive modifications to the firmware emulation framework.

• How to integrate fuzzing and rehosting processes effectively. We need to establish a
unified statistical mechanism for allocating computational resources. This mechanism
should aim to fulfill the requirements of fuzzing to discover as many paths as possible
while also addressing the need for rehosting to uncover as many models as feasible.
Furthermore, we must reduce computational resource wastage because firmware
emulation is generally less efficient compared to desktop platforms like Windows, and
the process of hardware abstraction modeling consumes significant resources. In this
process, we need to design appropriate metrics and associated algorithms.

To deal with the above challenges, we propose a novel MCU firmware security anal-
ysis method named Dynamically Co-directional Guidance Fuzzing (DCGFuzz). The key
technique used in our method is called Dynamically Co-directional Guidance (DCG). Its
core is the new seed schedule, which involves both fuzzing and rehosting. DCG integrates
the characteristics of firmware, improves the overall computational resource allocation
strategy, considers the task requirements of rehosting, and effectively improves the overall
efficiency of the framework. Here, a seed refers to the input text used for fuzzing, and a
seed schedule is a method of resource allocation that influences the input text, which in-
cludes power scheduling and seed selection. These aspects will be detailed in Section 2.1.1.
Specifically, the contribution of this work is as follows:

• We introduced new parameters and designed a new power schedule algorithm to
dynamically and uniformly allocate computational resources for both fuzzing and
rehosting. We calculate a score for each seed, taking into account both the performance
of fuzzing and rehosting. Through this score, we determine the allocation of compu-
tational resources so that both fuzzing and rehosting can influence the direction of
resource allocation. Additionally, we designed corresponding seed selection strategies
to determine the priority of seeds.

• We designed a segmented seed scheduling strategy based on firmware characteristics
to improve the allocation of computational resources. The seed scheduling strategy
effectively tests high-value paths while preventing excessive testing of certain paths.

• We made significant algorithmic adjustments to the fuzzing framework and performed
extensive compatibility work between the fuzzing and rehosting frameworks. Ulti-
mately, we ensured that the overall framework ran smoothly and effectively.

• We validated our proposed method through experiments. Based on the experimental
results, we discussed the effectiveness of our approach and proposed directions for
future work.

The rest of this work is structured as follows: Section 2 explains some basic concepts
and summarizes the current state of related research. Section 3 presents the overall frame-
work of our method, including its design principles, and provides a detailed description of
the specific algorithms. Section 4 presents our experimental design and results. Section 5
discusses the experimental findings and introduces some ideas for future work. Section 6 is
the conclusion of this paper.

2. Background

MCU firmware is typically a monolithic piece of software, encompassing peripheral
device drivers, a small operating system or system libraries, and a set of specialized logic or
applications. Due to hardware constraints and specific product requirements, MCU vendors
extensively utilize custom operating systems to build MCU firmware, such as systems
customized based on Real-Time Operating Systems (RTOs) like VxWorks [34] and QNX [35].
However, these custom operating systems often lack sufficient effective documentation for
various reasons, necessitating that testers rely heavily on expert experience when testing
such firmware.

In response to the current state of firmware security issues, researchers in recent
years have attempted a variety of methods, including runtime attack mitigation [36],
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remote authentication [37,38], firmware analysis [39,40], and concolic execution [41]. These
methods typically have significant limitations, such as the need for hardware modifications,
and some have a high rate of false positives. One of the more effective approaches is
dynamic analysis within firmware analysis [42]. Fuzzing is an effective dynamic analysis
method. In the field of software security analysis, coverage-guided fuzzers have shown
exceptional performance in gray-box and black-box testing. AFL [18] and its more advanced
extensions [43,44] are a good example. They have detected many serious vulnerabilities
in desktop-level applications and operating systems. The following text will refer to
these fuzzing methods for applications and operating systems as application software
fuzzing methods.

However, due to the lack of information about peripherals, fuzzers other than black-
box fuzzers are challenging to apply to embedded devices. Therefore, researchers utilize
rehosting frameworks to run firmware in a virtual environment and then conduct gray-box
fuzzing using existing fuzzing testing tools. This also brings about the research problem
addressed in this paper, which will be elaborated on in Section 3.1.

2.1. Fuzzing

Fuzzing is one of the most successful techniques to detect security flaws in programs [45].
Fuzzing is the process of searching for a finite set of inputs within an infinite input space to
trigger vulnerabilities. During fuzzing, all selected inputs are executed within the programs
under test (PUT), and the program’s behavior is examined to confirm whether a crash has
been triggered. Firmware fuzzing can be considered a branch of fuzzing. This paper refers
to the fuzzer as the program that implements the fuzzing algorithm.

Typically, coverage-guided fuzzers are referred to as CGFs (coverage-based gray-box
fuzzers) [43]. CGFs (Coverage-Guided Fuzzers) have several advantages in many aspects.
For example, Polyfuzz [46] can be used across multiple platforms. Rainfuzz [47] can also
be combined with reinforcement learning to improve efficiency.

Due to the excellent performance, portability, and scalability of CGFs, we have also
chosen the coverage-guided fuzzing method AFL (American Fuzzy Lop) for resource
allocation. Below, we will introduce the resource allocation strategy used by CFGs, known
as seed scheduling, and provide an overview of AFL, the fuzzing testing framework used
in this paper.

2.1.1. Seed Schedule

For coverage-guided fuzzing methods, researchers primarily focus on seed [48]. A
seed is a text randomly generated or crafted by a researcher. The fuzzing program uses this
text to generate multiple inputs, which are then used to test the PUT. A seed represents
an executable path, and researchers express the algorithm’s interest in different paths by
assigning weights to seeds.

The performance of such fuzzers largely depends on seed scheduling, which includes
seed selection and power schedule [49]. Seed selection determines the priority of seed
fuzzing [50], indicating which paths are prioritized for testing. The power schedule deter-
mines the frequency of seed fuzzing [10] in each testing round and how many inputs are
generated from each seed for testing. This also represents the weights of paths correspond-
ing to the seeds.

By adjusting seed scheduling, researchers can modify the allocation of computational re-
sources for different tasks [51], allowing the fuzzing algorithm to adapt to various scenarios.

2.1.2. AFL

AFL [18] is a widely used coverage-guided fuzzing framework. The official version
provides numerous interfaces for researchers to customize their requirements. When AFL
combines with rehosting frameworks (such as QEMU [20]) for firmware fuzzing, it first
generates a seed corpus, followed by arbitrary rounds of fuzzing. The general process for
each round of testing is as follows: Through seed selection, a seed is chosen from the seed
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corpus. Then, using the power schedule, the number of inputs generated by this seed is
calculated. All inputs are saved as files and transmitted to the rehosting framework via API.
The rehosting framework executes the inputs and returns the corresponding bit map via
shared memory, which records the path coverage during the execution of the inputs in the
rehosting framework. By inspecting the bit map, it is determined whether new paths have
been discovered in the rehosting framework. If so, the input is added to the seed corpus.
The next round of fuzzing is then conducted. The following are AFL’s power schedule and
seed selection strategies.

Power schedule: AFL calculates a power score and then divides the power score by
a constant to determine the number of inputs generated for the current seed. The power
score PA(i) of AFL is correlated with the average execution time tm(i), block transition
coverage b(i), and seed depth d(i) of seed i. tm(i) represents the average execution time of
all inputs generated by seed i in the current round. b(i) is derived from the bitmap and
is positively correlated with the number of paths covered by seed i. d(i) represents the
maximum path depth explored by seed i, reflecting its ability to explore path branches. For
example, if i0 is ‘0’ and discovers path A and i1 is ‘01’ and discovers code branch B based
on path A, then d(i0) = 1 and d(i1) = 2. The expression for PA(i) is as follows:

PA(i) = S(tm(i)) · f1(b(i)) · f2(d(i)) (1)

where S() outputs an initial score S0, which is negatively correlated with the input. f1()
and f2() output two factors f1 and f2, which are positively correlated with the input.

Seed selection: AFL’s seed selection is divided into two parts: favorite queue and
seed splicing.

Before selecting a seed, AFL maintains a favorite queue for all explored code branches,
where each branch represents an element in the queue. This element stores an optimal seed
and is iteratively updated during testing. AFL compares the priority of seeds by calculating
a f av_ f actor(i). The expression for f av_ f actor(i) is as follows:

f av_ f actor(i) = tm(i) · len(i); (2)

f av_ f actor(i) is calculated based on tm(i), which is the same as in the power schedule,
and len(i), representing the length of seed i. In simple terms, AFL prioritizes shorter seeds
and executes faster. When the fuzzer randomly selects seeds for testing, it prioritizes
favorite seeds for fuzzing. This is achieved by the fuzzer probabilistically skipping each
seed; seeds with higher priority have an extremely low probability of being skipped.

After selecting a seed i in AFL, a certain number of seed splicing processes are carried
out. Seed splicing refers to the process where the fuzzer randomly replaces a portion of text
from seed i with a portion from another seed. We refer to the text of seed i as bu fi. During
the splicing process, the fuzzer randomly selects another seed j, takes a text fragment bu fi0
from bu fi and a text fragment bu f j0 from bu f j, and splices bu fi0 and bu f j0 to form bu fij.
This is then re-mutated to form a new set of inputs. AFL employs this method to increase
the diversity of mutations applied to seed i.

2.2. Rehosting

Firmware emulation is used to run and analyze the firmware of embedded devices
in a virtual environment without the need for actual hardware devices. Due to non-
standardized development processes and differences between emulation and physical
environments, firmware emulation is challenging. If libraries, device drivers, device
kernels, and peripherals cannot be accurately emulated, it is not possible to execute the
firmware [15].

Unlike hardware emulation systems, which fully replicate hardware functions in a
virtual environment, a rehosted embedded system only reproduces the hardware functions
necessary to enable the firmware (or relevant components thereof) to operate in a virtual
environment [52] fully. This process may involve modifications to the firmware. In addition,
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rehosting is an iterative process where the implementation of hardware functionality is
replicated incrementally across iterations.

2.2.1. Category

Currently, rehosting methods mainly fall into the following two categories:
Hardware-in-the-loop: Due to the complexity of peripheral devices, some studies

have chosen to circumvent the abstract modeling of peripherals. Instead, they use a partial
emulation approach, redirecting content related to peripherals to actual devices during
the fuzzing process [53–55]. This approach can partially bypass the black-box problem
and simplify the dynamic analysis of firmware. However, it is important to note that
hardware-in-the-loop also has drawbacks. Bandwidth limitations restrict fuzzing speed,
and state resetting remains challenging for actual hardware.

Pure Rehosting: Using full emulation can free the firmware security analysis pro-
cess from most hardware limitations. Some approaches have limitations on the system
or the MCU [15,16,23–27,56], but within the limited operational scope, these approaches
perform well. The primary objective of such approaches is to create abstract models. Some
approaches use heuristics to model the physical devices involved in the firmware [24–27],
while others directly utilize existing abstract models of operating systems [15,16,23,56].
Unfortunately, the performance and efficiency of these methods are limited by the require-
ment for specific target prior knowledge and some manual operations. Fuzzing requires a
high degree of automation and an environment that supports parallel execution. Manual
operations and environmental limitations result in additional efficiency losses for security
analysts when using these methods in practice [28]. Other approaches have developed more
complex frameworks to reduce manual intervention, such as uEMU [57], Fuzzware [17],
and DevFuzz [58]. While these methods are generally excellent, for our research, the envi-
ronmental requirements of these frameworks are higher, and the workload for modification
and adaptation is greater.

In our research, we require a rehosting method to serve as an emulator. The emulator
is responsible for executing binary firmware and establishing virtual models for all pe-
ripheral functionalities involved in the firmware. Therefore, we hope the emulator will be:
(1) lightweight and scalable; (2) stable; and (3) automated. These features would enhance
compatibility with fuzzing testing algorithms, facilitating the debugging and research of
our algorithms. A category of research known as pattern-based MMIO modeling provides
an excellent solution [22,30,59]. Therefore, we have chosen P2IM [30] from this category as
the emulator for our framework.

2.2.2. P2IM

P2IM [30] framework is based on a characteristic of peripherals: their types and
protocols are diverse, making it difficult to create abstract models directly, but the interfaces
for firmware interaction with peripherals are relatively fixed. Firmware interacts with
peripherals via three interfaces: DMA (Direct Memory Access), MMIO (Memory Mapped
I/O), and interrupts. Typically, firmware and peripherals exchange a small amount of
data and interact primarily through MMIO and interrupts. By creating abstract models of
MMIO and interrupt behavior, it is possible to emulate the behavior of peripheral devices.

Below is a detailed introduction to the P2IM framework. For P2IM, the process
of peripheral abstraction modeling mainly consists of abstract model definition, model
instantiation, and specific model execution.

Abstract Model Definition: This process defines a set of abstract memory models
based on expert experience. These memory models enable the emulator to handle firmware
memory access behavior accurately. The definition of the memory models includes the
following components:

(1) Access Patterns: The emulator classifies the firmware’s access to memory into accesses
to different registers based on the behavior patterns of the registers during operation.
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(2) Handling Strategies: The emulator sets different response methods according to the
types of registers classified by the access patterns.

(3) Interrupt Firing: The emulator stores interrupts as time-series-based inputs and
triggers them at specified intervals.

Model Instantiation: During this process, the emulator categorizes and processes each
instruction in the firmware emulation. Instructions not related to peripherals are emulated
directly by QEMU. If an instruction is peripheral-related, its address falls within the MMIO
address space, which is a reserved memory read/write area for firmware/peripheral
interaction. Based on the definitions of the abstract models, the emulator classifies the
instruction’s address as different registers and records the corresponding response methods.
Each instruction represents a firmware behavior towards a peripheral, and the recorded
response is the emulator’s simulated peripheral’s response to the firmware behavior. This
information forms an instantiated model. All instantiated models are stored as files in a
model pool.

Model Execution: During this process, the emulator attempts to execute the firmware
using external input files provided by the fuzzer. If the emulator detects that an instruction
accesses the MMIO address space or triggers an interruption, it calls the corresponding
instantiated model to generate the appropriate response. The emulator then feeds these
responses back to the firmware. If the execution proceeds without errors, the emulator
successfully simulates an interaction between the firmware and a peripheral. If a suitable
peripheral model is not found in the model pool, the emulator runs a model re-instantiation
process, which continues until a successful model is built or the number of re-instantiations
exceeds a predefined limit. Model re-instantiation refers to re-executing the model instanti-
ation for currently unknown instructions.

Overall, the flow of running the P2IM framework is as follows: Initialize the running
firmware with a random input. A Model Instantiation step is performed for common
hardware behaviors based on the abstract model definition. After that, it accepts the
input generated by the fuzzer and runs the firmware. If hardware-related instructions are
encountered, the model execution step (including the re-instantiation process) is performed.
Until the fuzzer no longer generates input.

In addition, our work validates the method using the open-source firmware dataset
presented in P2IM [30].

2.3. Coverage

Coverage refers to the extent to which the source code is covered, and research has
shown that greater code coverage increases the probability of defect detection [60]. When
conducting firmware security analysis, researchers lack access to the source code, neces-
sitating a change in how coverage is represented. Given that the total number of codes
in firmware is fixed, measuring code coverage for CGFs is relatively straightforward: the
number of paths reached by seed exploration represents the degree of code coverage. For
emulators, model coverage serves a similar concept. In P2IM, the number of successfully
emulated models represents the degree of firmware emulation, where each model repre-
sents a peripheral device’s functional behavior. For firmware fuzzing, these functional
behaviors hold greater testing value [30], and larger model coverage signifies more com-
prehensive testing. If higher coverage rates are achieved within a unit of time, indicating
that more areas have been explored within that time frame, we consider the method to be
more efficient.

3. Methodology
3.1. Problem Definition

The paper addresses two problems that require improvement:
Problem 1 (P1): For basic coverage-based gray-box fuzzers (CGFs), there is a notable

feature in path exploration: since each seed involved in fuzzing does not carry information
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from its predecessors, later generated seeds continue to test paths already tested by previous
seeds, leading to an uneven distribution of computational resources.

Taking AFL as an example, as shown in Figure 1, let us assume that our first seed S1 is
‘110’, which triggers the path in line 2 of the figure. We assume that each mutation process
is as follows: (1) randomly select a position in S1, (2) replace the original digit at the selected
position with a random number between 0–9. Under these conditions, the probability of
the fuzzer moving from line 2 to line 3 is 1

27 = 1
3 · 1

9 . Assume that when the mutation of
S1 generates 27 inputs, the fuzzer manages to detect line 3. At this point, the fuzzer saves
seed S2 as ‘100’. Among the other 26 inputs, 17 cover the ineffective path ‘1X*’ (where X
represents the number corresponding to the invalid path, here 1–9, and * represents any
digit, indicating no effect on the execution path), and 9 covers the ineffective path ‘X**’.
In the second round of testing, with two seeds, ‘110’ and ‘100’, the fuzzer mutates them
to generate 27 inputs each. Out of 54 inputs, we found 26 inputs (17 from S1, 9 from S2)
testing path ‘1X*’, which is unnecessary. Only the 9 inputs from S2 are testing the path ‘10*’
(attempting to transition from line 3 to line 4), which could cause a crash. In other words,
under the current assumption, the mutation of seed S1 in the second round of fuzzing
is worthless.

Figure 1. Example function of CGFs fuzzing process.

The situation arises because the fuzzer fails to record information about previous
seeds. Over time, newly generated seeds will also test paths that were tested by previous
seeds. We refer to paths tested more than the median number of times as high-frequency
paths, such as the ‘1X*’ path in the example above. Similar to application software fuzzing,
firmware fuzzing with AFL gradually tends to mutate the test cases to repeatedly test
high-frequency paths. With AFL and similar fuzzers, this is inevitable. After several rounds
of iteration, for a new seed S2, the previous state (‘1X*’) is forgotten, and the previous
paths have the same probability of being generated as new paths (‘10*’). This leads to a
higher total number of tests for the previous paths. In the example above, this can be seen
by the fact that ‘1X*’ is tested several times. We define the seeds corresponding to these
high-frequency paths as over seeds. For example, in the case above, the seed corresponding
to the path ‘1X*’ (i.e., one of [‘11*’, ‘12*’, ‘13*’, . . ., ‘19*’], as the fuzzer only stores one seed
per path). In contrast, seeds corresponding to less frequently tested paths are defined
as under seeds, such as ‘10*’. We define the average number of executions required to
discover each path as the average cost. After a certain number of fuzzing rounds, the fuzzer
repeatedly tests high-frequency paths, making it difficult to discover new paths. The inputs
generated by the over seeds corresponding to these paths have a higher average cost to the
fuzzer and yield a lower average benefit. Therefore, for the fuzzer, prioritizing under seeds
corresponding to less frequently tested paths can effectively test these low-frequency paths,
reducing computational waste and increasing efficiency.

Problem 2 (P2): As described in Section 2.1.2, during firmware fuzzing, the fuzzing
algorithm generates inputs through seed scheduling, which are then iterated through
the rehosting framework to generate peripheral models. It is important to note that the
process of rehosting model generation occurs within the fuzzing process. Here, we refer
to the requirement of increasing coverage in fuzzing as the path-coverage task and the
requirement of enhancing peripheral emulation in rehosting as the model-coverage task.
Thus, for a seed i, both paths and models must be discovered. CGFs such as AFL allocate
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computational resources for i based solely on path-related parameters (b(i) and d(i), refer to
Section 2.1.2). This would not be an issue originally, but for some firmware with numerous
hardware-related behaviors, many paths are closely related to hardware behaviors, making
it difficult to discover some crucial paths. As mentioned in Section 1, we refer to these
paths as hardware behavior-related paths. Let us illustrate this with an example.

As shown in Figure 2, functions starting with “handle” represent those related to
peripherals. For example, when testing the program depicted in the diagram, we have
input seeds iB : (op = B, f lag = True) and iC : (op = C, f lag = True). Here, iB can
reach lines 4 and 5, and after several mutations, it can easily discover the path to line 6.
However, iC can reach line 8, but due to hardware-related opcodes, it is difficult to reach
line 10. According to AFL’s method of calculating power score (detailed in Section 2.1.2,
power schedule), iB has a larger b(i) because it currently reaches more code branches,
thus resulting in a higher power score and being allocated more computational resources.
Conversely, iC spends more time executing handle_B_Start(), and although it reaches
fewer code branches, only line 8, its tm(i) is larger and b(i) is smaller, resulting in a smaller
power score. Consequently, iC receives fewer computational resources, and the specific
value “SPECIAL” needed in handle_B_Start() to trigger specific functionality leads to a
vicious cycle, making it harder for the testing process to discover the path from line 10
to line 12. These paths require testing similar seeds to iC, while the fuzzing algorithm
focuses more on seeds like iB, even though the repeated testing of iB is redundant and not
very important. This issue has minimal impact on firmware with fewer peripheral device
behaviors. However, for firmware with many peripheral device behaviors, many critical
program branches require specific hardware behaviors to be triggered. In summary, solely
focusing on the allocation of computational resources based on path coverage can overlook
many important hardware behavior-related paths.

Figure 2. Example functions for problem definition.

3.2. Framework Overview

Based on the above-mentioned issue, we designed the DCGFuzz algorithm framework,
primarily focusing on a new seed schedule and adjusting the computational resource
allocation scheme. By employing this approach, we can simultaneously focus on both seed
path coverage and model coverage, dynamically allocate computing resources in a unified
manner, meet the needs of both the fuzzer and emulator, and enhance overall efficiency.

The framework of our method, as shown in Figure 3, consists primarily of the fuzzer
and the emulator. The fuzzer is based on AFL, while the emulator is based on P2IM.

When fuzzing firmware, the emulator attempts to establish a simulated runtime
environment. Once the runtime environment is successfully established, the emulator
notifies the fuzzer to begin fuzzing. In each round of the fuzzing process, the fuzzer
reads an initial seed file to serve as the seed corpus. Using the seed selection strategy, the
fuzzer selects an interesting seed i from the queue. The fuzzer extracts text from seed i for
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mutation and uses the power schedule to determine the number of inputs generated from
mutation, resulting in the input set Ti. The size of Ti represents the amount of computing
resources allocated to seed i. For each input t ∈ Ti, the fuzzer generates a corresponding
input file as an input for the emulator. The emulator inputs the file into the firmware and
returns the execution results and relevant parameters to the fuzzer. The fuzzer records
this information, and a portion of it serves as a parameter for the seed schedule. These
parameters are involved in the calculation of the power schedule during subsequent fuzzing
and influence the seed selection process.

Figure 3. The framework diagram of our method.

In summary, by controlling the size of Ti generated by seed i and the priority of seed
selection, we can reallocate computing resources in firmware fuzzing. We will detail the
power schedule algorithm in Section 3.5 and the seed selection algorithm in Section 3.6.

3.3. Method Design Principles

This section elucidates the design philosophy behind the overall DCGFuzz algorithm.
The DCGFuzz design is based on a fundamental principle: to improve the efficiency

of fuzzing, including path coverage and model coverage. Thus, we translate solutions
to problems P1 and P2 into two specific tasks. P1 corresponds to the path-coverage
task, which focuses on improving the allocation strategy of computational resources to
enhance the efficiency of path-coverage. P2 corresponds to the model-coverage task,
focusing on enhancing the efficiency of model coverage to swiftly identify hardware
behavior-related paths.

Computational resources are not created out of thin air. Thus, the DCGFuzz method
effectively divides into two components. The path-coverage task necessitates reallocating
computational power from seeds with higher testing frequency to those with lower; for
the model-coverage task, it entails transferring 1

k of computational resources from the
path-coverage task to the model-coverage task. The extent of this transfer depends on
the actual scenario of models within the task, with designs featuring more peripherals
potentially justifying a larger resource transfer. The subsequent section elaborates on the
design principles and relevant parameters for both tasks.

3.3.1. Path-Coverage Task

In P1, it has been highlighted that Conventional Genetic Fuzzers (CGFs) often suffer
from the issue of over-allocating computational resources to certain paths. Therefore, an
ideal improvement strategy to enhance efficiency and reduce overhead is to refrain from
testing high-frequency paths and primarily focus on low-frequency paths [29]. For instance,
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calculating the average number of test executions for all paths and using it as a threshold
beyond which paths are no longer tested may seem like a viable solution. However, this
approach is not suitable for firmware fuzzing. In layman’s terms, low-frequency paths
refer to those whose cumulative test case count is significantly lower than the mathematical
expectation of path discoveries, indicating a high probability of uncovering new paths. In
firmware fuzzing, there are two key points to consider: (1) First, due to the time overhead
of the rehosting framework, the average speed of firmware fuzzing is generally slower
than that of software fuzzing. This implies that a longer testing duration is required to
achieve the expected number of test cases for path discovery. (2) Firmware fuzzing tasks
involve some special values, such as line 9 in Figure 2. To randomly mutate these values, a
relatively large number of test cases is needed from a mathematical expectation perspective.
Considering points (1) and (2), it becomes evident that solely focusing on low-frequency
paths for testing is not appropriate. Conversely, even if certain paths exceed the mean
number of test executions, we still believe they retain a certain testing value.

The strategy might seem contradictory at first glance, so we specifically adopted a
segmented fuzzing approach.

Initially, we enter the rapid depth exploration phase. We refer to the average number
of times all paths are tested as the average test frequency. At this stage, we only assess seed
quality without concerning ourselves whether the seed’s testing frequency exceeds the
average test frequency. We select seeds with less overlap between their paths through an
algorithm, which are referred to as high-quality seeds. We use a subset of high-quality seeds
as probe seeds and trust that they are low-frequency. These probe seeds are prioritized for
deep testing to expedite their exploration of deeper code paths.

After a certain period, when the overall testing process hits a bottleneck (a short
period without discovering new paths), we believe it is necessary to execute the phase-
switching function to transition the algorithm into the flexible breadth testing phase. This
is because the probe seeds have been thoroughly tested and are unable to uncover further
paths, necessitating the reallocation of computational resources to other seeds. During
this phase, the average testing frequency is computed and used as a threshold. This is
the essence of elasticity, where reducing the testing frequency of high-frequency paths
replaces the complete absence of testing for such paths. This can also be understood as
the presence of certain special values in the firmware code that are required to trigger
certain branches. Therefore, we trust that the testing frequency of some paths has not yet
reached the expectation of discovering new paths. Seeds exceeding this threshold have
their resource allocation reduced, while seeds below the threshold have their resource
allocation increased. Finally, when the flexible breadth exploration phase also reaches
a bottleneck, we will switch back to the rapid depth exploration phase, continuing to
concentrate computational resources on a subset of high-quality seeds.

The benefit of the segmented fuzzing approach is that the algorithm can efficiently
grasp the main paths of the entire program during the rapid depth exploration phase, and
then the threshold calculated in the flexible breadth exploration phase better aligns with
the mathematical expectation of discovering new paths.

Furthermore, we have modified the comparison method for the best seed in the favorite
queue to make it easier for high-quality seeds to enter. This ensures that program branches
are prioritized for testing by more effective seeds, avoiding the testing of certain low-
quality seeds multiple times on certain paths. As a result, these paths are not erroneously
considered high-frequency and thus lack computational efficiency.

3.3.2. Model-Coverage Task

Currently, there is no clear literature indicating what types of inputs can effectively
increase model coverage or help find hardware behavior-related code branches. We draw
inspiration from some black-box fuzzing methods [8]. Inputs that can trigger hardware
behavior are often based on communication protocols or special commands, and these
inputs have many similar segments in text [8], such as machine code for behavior triggering
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and command fields in protocols. We refer to these text segments as interesting text.
Additionally, some different hardware behaviors are triggered by the same function or
similar instructions, or they are in close proximity to one another in the code (e.g., lines 8
and 11 in Figure 2). Therefore, we believe that seeds that have already discovered hardware
behaviors or contain more interesting text are more likely to trigger other similar hardware
behaviors and reach related branches. Therefore, in the model-coverage task, we allocate
computing resources based on the number of hardware behaviors discovered by seeds and
attempt to include more interesting text in the seeds.

First, we utilize various new models to represent different peripheral device behaviors.
In this paper, models generated by model re-instantiation during emulator operation and
stored in the model pool are referred to as new models. It is important to note that these
new models are discovered after emulator initialization. Models established during the ini-
tialization process, which are independent of seeds, are not taken into account. The number
of model re-instantiation attempts is denoted as sumre. The maximum number of instantia-
tion attempts is MAX_ME_INSTA. There are three scenarios for new models: (1) QEMU
crashes, stalls, skips, etc., (2) QEMU does not crash and sumre < MAX_ME_INSTA,
(3) QEMU does not crash and sumre = MAX_ME_INSTA. There are many reasons for
scenarios (1) and (3). For example, P2IM does not take into account DMA interactions, and
these instructions are skipped, potentially causing exceptions. In addition, some inputs
may be inherently infeasible for the firmware, as certain firmware functionalities may only
accept particular peripheral instructions. This could lead to exceeding the re-instantiation
limit or causing errors. Therefore, we define the models generated in scenarios (1) and (3)
as invalid or error models, while those generated in scenario (2) are valid models.

Specifically, if a seed discovers a valid model, we consider it more likely to discover
similar models and detect related code paths, so we increase the computing resources for
these seeds. However, suppose a seed discovers an erroneous model. In that case, we
decrease the computing resources for these seeds for the following three reasons: (1) the
model corresponds to invalid hardware behavior and does not help the fuzzer discover
more paths or improve model coverage, (2) the model may cause crashes unrelated to
the firmware, leading the fuzzer to produce false positives, mistaking them for genuine
firmware crashes, and (3) the model involves multiple re-instantiations, leading to time
wastage due to repeated invocations. If a seed discovers both a new model and new
paths, then the seed is similar to the case C we presented in P2, indicating that these seeds
have even greater value for further testing. We allocate additional computing resources to
these models.

Second, we modified AFL’s seed splicing algorithm to increase the presence of in-
terested text fragments in seeds. As mentioned earlier, seeds that have discovered valid
models are believed to contain interesting text. We make these seeds more likely to be se-
lected by the splicing algorithm, therefore increasing the overall mathematical expectation
of interested text occurrences.

3.4. Seed Schedule

The improved seed schedule in this paper consists of two components: the power
schedule and the seed selection. The power schedule determines how many test cases
each seed generates, while the seed selection determines their priority. As discussed in
Section 3.3, this paper transforms Problems P1 and P2 into path-coverage tasks and model-
coverage tasks, respectively. Following the design principles outlined in Section 3.3, we
combine these two tasks to design the seed schedule algorithm. Specifically, the power
schedule simultaneously addresses both path-coverage tasks and model-coverage tasks,
while seed selection is divided into two parts: the favorite queue for the path-coverage task
and seed splicing for the model-coverage task.

Algorithm 1 illustrates the overall process of the seed scheduling algorithm we de-
signed. Q is a queue consisting of all effective seeds. Lines 8–24 represent a complete
round of fuzzing, where PHASESWITCH() is the phase-switching function corresponding



Electronics 2024, 13, 1433 13 of 25

to the segmented fuzzing approach in the path-coverage task. Before each round of testing,
PHASESWITCH() determines whether to switch phases. The function GETASEED() is a
probabilistic function that randomly selects a seed, with a bias towards selecting seeds from
the FAVORITEQUEUE. The function CALSCORE() is the main component of the power
schedule algorithm. It calculates the performance score Pt for each seed, which determines
the number of inputs generated by the seed. As shown in line 11, each seed i will generate
k inputs. We denote the set of inputs generated by each seed i ∈ Q as Ti, where each input
generated by i is denoted as t ∈ Ti. The complete set of inputs generated by all seeds
is represented as T = (T1, T2,. . . , T|Q|). The generation process of input t is manifested
through multiple rounds of loops. Specifically, as shown in lines 12–25, each seed iterates
k times, and in each iteration, seed i undergoes one mutation to generate an input t. In
total, k mutations are performed, and the emulator executes them. CRASH represents the
discovery of an error, which is then recorded in the set X. INTERESTING indicates that
the framework finds the input t interesting, and it will be recorded as a new seed. Finally,
SPLICING() represents the seed splicing algorithm. SPLICING() splices the text from other
seeds onto seed i for ϵ − 1 times to increase the quantity of interesting text.

Algorithm 1 Seed Schedule

Require: Initial Seed S
1: X = ∅
2: Q = S
3: if Q = ∅ then
4: Add random file to Q
5: end if
6: repeat
7: PHASESWITCH() //Part of the power schedule
8: repeat
9: i = GETASEED(Q, FAVORITEQUEUE)

10: PT = CALSCORE(i) //Part of the power schedule
11: k = PT

C
12: for m = 0 to ϵ do
13: for n = 0 to k

ϵ do
14: t = MUTATE(i)
15: res = emulator(t)
16: if res = CRASH then
17: Add t to X
18: else if res = INTERSETING then
19: Add t to Q
20: end if
21: end for
22: i = SPLICING(i)
23: end for
24: until Fuzzer completed a round of seed selection
25: until Timeout or exit signal
Ensure: Crash set X

3.5. Power Schedule

This section discusses the details of the power schedule.
As described in Section 3.4, the overall fuzzing process is iterative. For the power

schedule, the number of test cases generated in each fuzzing iteration is based on the
seed’s previous performance. We refer to the impact metric as the metric measuring the
performance of seeds during the fuzzing process. These different impact metrics do not
have explicit quantifiable relationships, so AFL’s approach is to convert the relevant impact
metrics into factors multiplied by the original scores. We followed AFL’s approach to the
power schedule, converting the subsequent performances of the two tasks into factors
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multiplied by the original scores. Consequently, we calculated a factor for each of the path-
coverage tasks and the model-coverage task. Additionally, if a seed has not discovered
any models, we convert the model-coverage task of these seeds into a fixed factor of less
than 1. This factor of less than 1 represents the reduction of computing power from the
path-coverage task to the model-coverage task. Thus, we obtain the final expression for PT :

PT(i) = PA(i) · f actor0 · f actor1 (3)

f actor0 represents the factor obtained from the conversion of the impact metric related
to the path-coverage task, while f actor1 represents the factor obtained from the conversion
of the impact metric related to the model-coverage task. Below, we present the calculation
process for the factors related to the path coverage and model-coverage tasks.

3.5.1. Path-Coverage Task

In the power schedule, the path-coverage task follows a segmented fuzzing approach,
which consists of two phases: the rapid depth exploration phase and the flexible breadth
exploration phase. The algorithm framework utilizes PHASESWITCH() function to transi-
tion between these two phases. As described in Section 3.3.1, the rapid depth exploration
phase focuses primarily on seeds with less overlap in corresponding paths, enabling rapid
coverage of more paths. On the other hand, the flexible breadth exploration phase aims to
balance computational resources by emphasizing testing on paths that were less covered
during the rapid depth exploration phase, serving as a complement to the rapid depth
exploration phase.

Next, we explain how we measure the quality of seeds. For a seed i, we refer to the
number of times a seed i has already been tested as the fuzz level, denoted by l(i), and
the number of times the path corresponding to seed i has been executed by other inputs t
as the testing frequency, denoted by f (i). f (i) denotes the degree of repetition within the
testing path. To facilitate understanding of f (i), we define a function trace(i, t). If the path
corresponding to i has been executed by t, trace(i, t) outputs 1; otherwise, it outputs 0. For
example, in Figure 1, where i = ‘110’ and t = ‘111’, we have trace(i, t) = 1, as they both only
executed line 2 and did not execute lines 3–5. Hence:

f (i) = ∑
tinT

trace(i, t) (4)

We consider l(i) and f (i) as impact metrics for the path-coverage task. Therefore,
f actor0 is a function of l(i) and f (i), with different expressions in the two phases. We will
now explain them separately.

Rapid Depth Exploration Phase: In this stage, we allocate computational resources to
some high-quality seeds as much as possible. Specifically, we use l(i) and f (i) to measure
seed quality. A higher l(i) suggests that the fuzzer deems the seed’s performance in
previous fuzzing iterations superior, thus warranting continued attention. Conversely, a
higher value of f (i) indicates that the seed has repeatedly tested more code branches with
other inputs, suggesting that such seeds lack the necessity for further testing at the current
stage. Therefore, specifically, in this stage, the expression for f actor0 is as follows:

f actor0(i) = λ0
2l(i)

f (i)
(5)

where λ0 ∈ (0, 1] is a constant representing the initial score assigned to newly discovered
seeds. This value can be adjusted according to the task requirements; for example, in certain
fuzzing tasks, there may be a focus on testing specific paths (e.g., using a predetermined
seed corpus instead of a random one). If a seed has a high l(i) and a low f (i), it will
result in a larger f actor0, leading to the allocation of more computational resources. For
instance, in the scenario described in Problem P1, after obtaining the seed “100” in the
second round of testing, the seed “110” corresponds to the path “1X*” being tested multiple
times, resulting in f (“110”) = 17. In this case, the f actor0 for seed “110” in the second
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round is calculated as 21

17 , meaning its fuzzy test cases for this round will be 27 · 2
17 , rounded

to 3. Conversely, the f actor0 for more valuable seed “100” is 20

1 , resulting in its fuzzy test
cases for this round being 27 · 1

1 , equal to 27. It is evident that this strategy significantly
reduces computational resource wastage. These seeds with larger l(i) and smaller f (i) are
like probes, continuously selected by the fuzzer, and less likely to repeatedly test paths that
have been tested by other inputs. This helps rapidly increase testing depth and efficiently
explore program branches. However, since the average value of f (i) is not computed in
this stage, we are unaware of which seeds are actually being overly tested. Therefore, it is
necessary to switch stages after a certain period.

Flexible Breadth Exploration Phase: In this stage, the focus is on seeds that have been
skipped or tested less during the rapid depth exploration phase. After a certain number
of rounds of testing, the probe seeds have generated an excessive number of test cases,
diminishing the value of further testing. However, many other seeds, either due to a high
f (i) or the pruning process (described in Section 3.5.3), have a small l(i) and consequently
a low f actor0 and thus no testing opportunities. Therefore, in this phase, the fuzzer reduces
the computational resource allocation for some probe seeds and increases it for other seeds,
attempting to explore paths skipped in the rapid depth exploration phase. To determine
which seeds should have their testing frequency reduced, we set a threshold µ representing
the average testing frequency. µ is computed as:

µ =
∑i∈Q f (i)

|Q| (6)

We believe that seeds exceeding the threshold should have their allocation of com-
puting resources reduced, while other seeds should have their allocation of computing
resources increased rapidly. Therefore, the f actor0 for this phase is computed as:

f actor0(i) =

{
µ

2· f (i) f (i) > µ

λ0 · 2l(i) f (i) ≤ µ
(7)

where λ0 ∈ (0, 1] aligns with the rapid depth exploration phase and represents the initial
allocation of computational resources for certain seeds. For seeds whose testing frequency
exceeds the threshold µ, their f actor0 will be rapidly reduced, with a greater proportion
exceeding, resulting in less computational resource allocation. Conversely, for seeds with
a testing frequency below the threshold, their f actor0 will exponentially increase, aiding
these under-tested seeds in quickly reaching the average value.

Phase Switch Strategy: The phase switch strategy is executed at the position of line 7
in Algorithm 1. The fuzzer decides whether or not to perform a phase switch before the start
of each round of fuzzing. Approximately, we assume that if the fuzzer has not discovered
any new paths within a certain period, it is considered to be in a state of stagnation. If
the stagnation occurs in the rapid depth exploration phase, it indicates that the probe
seeds have been thoroughly tested, and it is unlikely to discover new paths in the short
term. If the stagnation occurs in the flexible breadth exploration phase, it suggests that
most seeds have reached the average testing frequency, necessitating a re-concentration of
computational resources on specific seeds. Therefore, we believe that a fuzzer in stagnation
needs to change phases.

Algorithm 2 shows the detailed process of the phase switch strategy. We define the
time interval from the start of the fuzzer’s operation to the current moment as the execution
time, denoted by T, and the time interval from the last detection of a new path by the fuzzer
to the current moment is defined as the stagnation time, denoted by S. The minimum
time threshold is denoted as Tmin, ensuring that PHASESWITCH() does not begin at the
start of testing but only after a certain period has elapsed. We use DEPTH to denote the
rapid depth exploration phase and BREADTH to denote the flexible breadth exploration
phase, collectively referred to as phase mode. We set proportion thresholds r0 and r1 to
measure the ratio of stagnation time, with 1 > r0 > r1. When r0 · T ≤ S, indicating that the
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stagnation time exceeds a certain proportion of the total time, it suggests that the fuzzer
has completed sufficient testing in the rapid depth exploration phase, and then the fuzzer
will switch to the flexible breadth exploration phase. When the fuzzer enters the new
phase and discovers new paths, S will quickly decrease. r1 ensures that the fuzzer will
not immediately switch phases again but will test for a period in the new phase before
being able to switch back to the rapid depth exploration phase. Because the flexible breadth
exploration phase supplements the rapid depth exploration phase, our design ensures that
the overall duration of the flexible breadth exploration phase is slightly shorter.

Algorithm 2 PHASESWITCH()

Require: T ≥ 2 · Tmin, S ≥ Tmin
1: if S ≥ r0 · T then
2: PHASE_MODE = BREADTH
3: else if S ≥ r1 · T then
4: PHASE_MODE = DEPTH
5: end if

Ensure: PHASE_MODE

3.5.2. Model-Coverage Task

As described in Section 3.3.2, in the power schedule, the model-coverage task calculates
f actor1 based on the following two principles: (1) increasing the allocation of computational
resources to seeds that have discovered valid models, and (2) decreasing the allocation of
computational resources to seeds that have discovered flawed models.

For a seed i, each input t ∈ Ti generated by mutation is executed in the emulator. If
a hardware behavior pattern is detected during the execution of t, we refer to the model
stored in the model pool that t discovered as mt. The set of all valid models generated by
the input t is denoted vmt, where vmt ⊆ mt, and the set of all error models is denoted emt,
where emt ⊆ mt. For each input t, the number of valid models it generates is denoted as vt,
where vt = |vmt|, and the number of error models is denoted as et, where et = |emt|. Since
our focus is on the seed i that generates t, the total number of corresponding valid models
and error models for seed i, denoted vi and ei, are computed as:

vi =
|Ti |

∑
t=1

vt (8)

ei =
|Ti |

∑
t=1

et (9)

We consider vi and ei as the impact metrics for the model-coverage task, so f actor1 is
a function of vi and ei. The expression for f actor1 is as follows:

f actor1 = λ1
2vi

2χei
+ δ (10)

λ1 < 1 is a constant representing the initial score for all seed model-coverage tasks.
For seeds i that do not involve hardware behavior models, their f actor1 = λ1, resulting in
Pt(i) < PA(i). This reflects the transfer of computational resources from these seeds. χ ≤ 1
is the model correction parameter we define. In the process of model re-instantiation, most
error models occur in groups, so their quantity is usually greater than the actual effect. χ is
related to the size of the MAX_ME_INSTA parameter in the re-instantiation process. In
our task, χ is set to 1

3 . δ is an additional constant of interest, typically set δ = 0 in our task.
However, if a seed discovers both new paths and effective models, we pay extra attention to
these seeds and set δ = 1. When these types of seeds are just discovered, λ1

2vi
2χei is relatively

small, and the additional constant δ helps them quickly gain the attention of the fuzzer.
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3.5.3. Edge Trimming

Edge trimming refers to a normalization process in the calculation of the power
schedule. Edge trimming is divided into two parts: factor trimming and final score
PT trimming.

Factor Trimming: Since the calculation of f actor0 and f actor1 both involve exponential
variables, to prevent an exponential explosion that would cause certain seeds to generate
too many test cases, we set a maximum value, fmax, for the factors and trim them before
they contribute to the final score calculation. The expressions for trimming f actor0 and
f actor1 are as follows:

f actor0,1(i) = MIN( f actor0,1(i), fmax) (11)

Pt Trimming: The trimming of PT is designed to filter out excessively low PT values.
We set a minimum value for PT , denoted as fmin. During the execution of the fuzzer, we
aim to have the fuzzer skip input t with too low PT to improve efficiency.

The reason for this is primarily that these seeds have a short effective testing time: A
very low PT means that the number of test cases k = |Ti| generated by seed i is too small.
We denote the sum of the time taken by the fuzzer to mutate i to generate input files and the
initialization time of the emulator as tinit(i). We observed that the initialization time could
be longer than the total execution time of all t generated by i, i.e., tinit(i) > k · tm(i) (where
tm(i) is detailed in Section 2.1.2, Formula (1)), which is a waste of resources. Therefore,
we choose to temporarily refrain from testing these seeds until switching to a new phase.
For example, seeds that are temporarily not tested in the rapid depth exploration phase
will inevitably have a low testing frequency, and these seeds will obtain a higher PT in the
flexible breadth exploration phase for testing. The formula for trimming PT is as follows:

PT(i) =

{
PT PT(i) ≥ fmin

0 PT(i) < fmin
(12)

3.6. Seed Selection

This section explores the details of seed selection, which controls the priority of fuzzing.
In this paper, the seed selection strategy consists of two main parts: the favorite queue for
the path-coverage task and seed splicing for the model-coverage task.

3.6.1. Favorite Queue

The favorite queue is related to the GETASEED (Q, FAVORITEQUEUE) function in
Algorithm 1 line 9. Similar to the AFL algorithm, the GETASEED() function prioritizes the
selection of seeds from the favorite queue for testing. We have improved the way AFL
selects seeds to enter the favorite queue, giving priority to high-quality seeds.

Specifically, the fuzzer will follow three steps to select a favorite seed: (1) compare
the l(i) of seed i and select the one with the smaller l(i) as the favorite seed, (2) if the l(i)
values are equal, compare the f (i) of seed i and select the one with the smaller f (i) as the
favorite seed, (3) if both l(i) and f (i) are equal, then calculate f av_ f actor(i) as AFL does.

The significance of steps (1) and (2) is as follows: If two seeds cover the same path
branch, priority is given to the seed with fewer test times and lower test repetition. This
helps to quickly select probe seeds. As l(i) increases, if seed i continues to be repeatedly
chosen for fuzzing, it indicates that the seed possesses irreplaceable testing path branches,
which evidently align with our requirement for high-quality seeds.

3.6.2. Seed Splicing

Seed splicing corresponds to the SPLICING function in line 22 of Algorithm 1.
As discussed in Section 3.3.2, we believe that seed j that has discovered more valid

models is likely to contain more interesting texts and can help the fuzzer discover more
valid models. Therefore, we prefer the fuzzer to prioritize seed j with larger vj and smaller
ej. To quickly select such seeds j during splicing, we have defined a skip probability p(j).
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p(j) represents the probability that seed j is skipped and another seed j′ is selected as the
splicing target for seed i. The expression for p(j) is as follows:

p(j) = γ
2χej

2vj
(13)

where γ < 1 is a constant. γ represents the base probability, which is the probability that
a seed that has not discovered any models will be skipped. The larger γ is, the more
the fuzzer focuses on model discovery. In this paper, we set γ = 0.5. χ is the same as
in Section 3.5.2 (Formula (10)). For the splicing target seed j of seed i, the more valid
models seed j has discovered, the smaller p(j) is, and the less likely seed j is to be skipped.
Conversely, seeds j with too many error models are more likely to be ignored. Seed i tends
to splice with seeds j, which have discovered more valid models.

The overall process of seed splicing is illustrated in Algorithm 3. The splicing function
takes a seed i as input. The CONTENT(i) function retrieves all the text from seed i and
stores it as bu fi. The fuzzer randomly selects a splice target seed j and calculates p(j)
(line 3). It then uses random number generation to determine if seed j is skipped. If j is
skipped, the fuzzer will reselect a new seed j′ and repeat the process until a new seed is not
skipped (line 4). Subsequently, the MERGE() function selects text segments from both bu fi
and bu f j, respectively, and concatenates them to form a new segment of text bu fij (line 6).
The SEED() function then converts bu fij into a new seed i1 (line 7).

Algorithm 3 SPLICING()

Require: i
1: bu fi = CONTENT(i)
2: repeat
3: j = RANDSELECT(Q)
4: until p(j) ≤ random(0, 1)
5: bu f j = CONTENT(j)
6: bu fij = MERGE(bu fi, bu f j)
7: i1 = SEED(bu fij)

Ensure: i1

4. Evaluation
4.1. Experimental Design

Firmware Selection: The firmware we used is from the P2IM [30] research (the P2IM
method proposes both a rehosting method and provides an open-source dataset). We
selected nine firmware from the P2IM open-source firmware library for our experiments.
These pieces of firmware include Robot, Steering Control (self-driving vehicle), Gateway,
PLC (Programmable Logic Controller), Heat Press, Drone, CNC (Grbl milling controller),
Console, and Reflow Oven (commercial reflow oven controller). They cover four MCUs
and four operating systems.

Experimental Environment: The code base for our system operates on Ubuntu
16.04. We have modified our experimental code based on AFL version 2.06b and QEMU
version 2.3.50. Our system runs on a computer with moderate computing power: Quad-
Core Intel® Core™i9-10980XE CPU @ 3.00 GHz with 8 GB of RAM, used to evaluate the
efficiency improvements of our method.

Experimental Methodology: To validate the effectiveness of our approach, we de-
signed the following two experiments regarding the issues outlined in Section 3.1:

Experiment 1: Addressing Problem P1, we aim to verify whether our method effec-
tively enhances the overall efficiency of fuzzing. We compare our approach (DCG algorithm
+ P2IM rehosting framework) with the original P2IM method (AFL + P2IM rehosting frame-
work). Fuzzing is conducted on the same firmware using both methods simultaneously on
the same computer. Each firmware undergoes fuzzing for at least 12 h until the number of
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detected paths stabilizes for both methods. As described in Section 2.3, we measure the
overall efficiency based on the number of discovered paths.

Experiment 2: Addressing Problem P2, we aim to validate the existence of Problem 2
and verify the effectiveness of our designed model-coverage task algorithm. We conducted
fuzzing using three different methods on two firmware instances with a significant number
of hardware behaviors: our method, the P2IM method, and our method without the
model-coverage task and related strategies. We conducted five tests on each of the two
firmware instances, with each test running for at least 12 h until the number of detected
paths stabilized. In this experiment, we simultaneously measured model coverage and
path coverage to evaluate the experimental results.

4.2. Results

The results of Experiment 1 are shown in Figures 4 and 5.

(a) Robot (b) Steering Control (c) Gateway

(d) PLC (e) Heat Press (f) Drone

(g) CNC (h) Console (i) Reflow Oven

Figure 4. The changes in the number of paths discovered during fuzzing processes across
different firmware.

Figure 4 compares our method and P2IM in terms of the number of paths discovered
over time on nine different firmware. The horizontal axis represents time (in seconds),
and the vertical axis represents the number of paths. Except for the initial short period,
our method consistently achieved higher path coverage faster on each firmware instance.
As shown in Figure 4c, our approach has achieved a maximum increase of 47.9% in path
coverage. In Section 5, we will elaborate on why our method did not show an advantage
during the initial period.

Figure 5 illustrates the maximum path depth reached by the seeds. The horizontal
axis represents time (in seconds), and the vertical axis represents the maximum path depth
among all seeds at each moment. Similar to Figure 4, except for the initial short period, our
method exhibited better performance on all nine firmware instances.
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(a) Robot (b) Steering Control (c) Gateway

(d) PLC (e) Heat Press (f) Drone

(g) CNC (h) Console (i) Reflow Oven

Figure 5. The variation in path depth during fuzzing processes across different firmware.

The results of Experiment 2 are shown in Figures 6 and 7.
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Figure 6. The impact of the model-coverage task and related strategies on the number of
discovered paths.

Figure 6 displays the results of fuzzing on the Gateway firmware using our method,
the P2IM method, and our method without the model-coverage task and related strategies.
Compared to the P2IM method, the method without the model-coverage task and related
strategies only improved path coverage by a mere 5.4%. However, once the model-coverage
task and related strategies were incorporated, the improvement in final path coverage
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became significantly evident. We will also explain in Section 5 why our method did not
show an advantage and even slightly underperformed during the initial short period.

Figure 7. Statistics on the number of models discovered during fuzzing processes in gateway and
PLC firmware.

Figure 7 depicts the statistics of the average number of models obtained from five
times of fuzzing on the PLC and Gateway firmware instances using our method and the
P2IM method. On the left are the average numbers of effective models, while on the right
are the average numbers of erroneous models. In the two pieces of firmware shown in
the figure, our approach resulted in a 27.6% increase in the number of valid models and a
21.2% reduction in the number of error models.

5. Discussion
5.1. Result Analysis

The results of Experiment 1 indicate that our designed DCGFuzz effectively enhances
the overall efficiency of fuzzing. The results of Experiment 2 demonstrate that our method
effectively improves model coverage and, by discovering hardware behavior-related paths,
also enhances path coverage.

Here, we discuss the reasons why our method exhibited slightly inferior performance
during the initial period:

In Figures 4 and 5, on some firmware instances, such as shown in Figure 4g, it was
only after some time that our method started to be better. We think that at the beginning
of fuzzing, seed selection tends to be essentially random due to the small values of f (i)
and l(i). As a result, our method does not differ significantly from the original AFL
method, except for some additional time consumption caused by our algorithm. Only
when the values of f (i) and l(i) become relatively large over time does our method show
its advantages.

In Figure 6, compared to the method without the model-coverage task, our method
initially exhibits inferior performance. We think this is because the model-coverage task
and related algorithms shift some computing resources to hardware behavior-related paths.
As described in Section 3.3.2, these paths typically require more test cases to discover
critical branches (e.g., Case C in Figure 2). Therefore, compared to other conventional paths
(e.g., Case B in Figure 2), these critical branches require more computing resources. This is
reflected in the initially lower number of discovered paths in the figure. However, as the
fuzzer learns about these hardware behavior patterns and critical branches, many other
paths are rapidly discovered (e.g., Line 10 and Line 11 in Figure 2). This is reflected in the
rapid increase in the number of discovered paths later in the figure.
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5.2. Method Effectiveness

We discuss the effectiveness of our method from the perspectives of the path-coverage
task and model-coverage task, respectively.

Path-Coverage Task: The results in Figure 4 demonstrate that our method reaches a
larger maximum path depth (i.e., d(i) in Formula (1) in Section 2.1.2) faster, which proves
that our strategy of the rapid depth exploration phase does work. The larger maximum
path depth reflects the seeds’ greater ability to explore branches, which suggests a higher
quality of the seeds selected by our method. Furthermore, the phase-switching strategy
also plays an important role. Taking the console firmware as an example (as shown in
Figures 4h and 5h), at approximately 50,000 s, the depth of paths detected by the fuzzer
remained essentially unchanged. At this point, some probe seeds had reached a sufficient
number of test iterations. Then, around 70,000 s, the fuzzer encountered a bottleneck in
the number of discovered paths, indicating that all probe seeds had essentially reached the
desired testing objectives. Subsequently, the fuzzer executed the phase-switching strategy,
after which the number of paths began to increase again rapidly. We think that for most
firmware, the rapid depth exploration phase is sufficient to explore most paths. However,
in the case of firmware such as Console, which has more detail and complex paths, the
Flexible Breadth Exploration and Phase Switch strategies effectively complement the Rapid
Depth Exploration to achieve better results.

In addition, our method demonstrates more significant effectiveness on firmware
with a greater number of code branches. We believe this is because our power schedule
primarily focuses on seed exploration frequency, f (i). When fuzzing firmware with more
paths, the fuzzer is more likely to select probe seeds with fewer repeated branches among
them, resulting in higher testing efficiency.

Model-coverage task: As shown in Figure 6, our method indeed discovers more paths
on firmware which has more hardware behaviors. However, solely relying on improve-
ments in the path-coverage task did not yield the anticipated efficiency enhancement (as
indicated by the blue line in Figure 6). This also indirectly reflects the issue we proposed
in Problem P2, namely that certain hardware behavior-related paths are prone to being
ignored, which exists in some firmware instances.

On the other hand, as illustrated in Figure 7, our designed model-coverage task
effectively increases the number of valid models while reducing the number of error
models. As described in Section 3.3.2, valid models help us discover hardware behavior-
related paths, while error models represent wasted computing resources. Therefore, the
results in Figure 7 indicate that the fuzzer successfully reallocates computing resources to
more valuable paths.

In general, we consider that our designed model-coverage task and related algorithms
have met our expectations.

5.3. Future Work

In this paper, we proposed the DCGFuzz framework, which we believe theoretically
can be applicable to different types of rehosting frameworks. Currently, we have only
experimented with the pattern-based MMIO modeling approach, which we deemed most
suitable. Our next objective is to explore the feasibility of our design approach on other
different types of rehosting frameworks.

6. Conclusions

We design DCGFuzz, a new approach to improve the efficiency of fuzzing by changing
the way computational resources are allocated. Our method improves the overall efficiency
of fuzzing and finds some hardware behavior-related paths more easily by considering both
the path-coverage task and the model-coverage task, as well as allocating the computational
resources dynamically and uniformly through the seed schedule. Finally, we experimentally
demonstrated the effectiveness of our approach and achieved a maximum increase of 47.9%
in path coverage and an improvement of 27.6% in effective model coverage.



Electronics 2024, 13, 1433 23 of 25

Author Contributions: Conceptualization, Y.L.; methodology, Y.W.; software, Y.W.; validation, Y.W.;
formal analysis, Y.W.; investigation, Y.L.; resources, Y.L.; data curation, Y.W.; writing—original draft
preparation, Y.W.; writing—review and editing, Y.W.; visualization, Y.W.; supervision, Y.L.; project
administration, Y.L.; funding acquisition, Y.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partially supported by the National Key Research and Development
Program (No. 2023YFB2504800), Henan Science and Technology Major Project (No. 221100240100),
SongShan Laboratory Pre-Research Project (No. YYJC042022016), Shanghai Sailing Program (No.
21YF1413800).

Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhu, P.; Hu, J.; Li, X.; Zhu, Q. Using blockchain technology to enhance the traceability of original achievements. IEEE Trans. Eng.

Manag. 2021, 70, 1693–1707. [CrossRef]
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