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Abstract: This paper proposes a novel two-stage predefined-time system identification algorithm
for uncertain nonlinear systems based on concurrent learning. The main feature of the algorithm is
that the convergence time of estimation error is an exact predefined parameter, which can be known
and adjusted directly by users. Historic identification data are stored in the first stage to guarantee
that a finite-rank condition is satisfied. In the second stage, the estimation error converges to zero
for linearly parameterized uncertain systems, or it is regulated into the neighborhood of zero for
unknown systems modeled by neural networks. The identification algorithm takes effect without
the restrictive requirement of the persistent excitation condition. Simulation examples verify the
effectiveness of the proposed method.
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1. Introduction

System identification and parameter estimation for linear, nonlinear, and other kinds
of systems are significant problems, since their solution always forms the basis of posterior
control synthesis. The system identification issue has remained critical and difficult to solve
in control theory, despite the variety of methods used to tackle and improve it [1].

For parameter estimations to converge to their true values, or close to a neighborhood
of them, the regressors used in traditional online identification algorithms must be persis-
tently exciting (PE) [2]. Nevertheless, it is hard to achieve the restrictive PE condition all
the time [3]. In order to overcome this drawback, the concurrent learning (CL) method,
proposed by [4,5], has drawn attention in the past decade. Historic data with online data
are concurrently utilized in CL-based identification algorithms to achieve the convergence
of estimation errors under relaxed finite-excitation conditions. Afterwards dynamic state-
derivative estimator-based CL [6] and integral concurrent learning methods [7–9] were
developed, removing the knowledge of state derivatives in the CL-based identification
approaches [4,5].

The system identification rate always has an appreciable effect on control efficiency.
Early CL-based system identification methods [4–9] guaranteed exponential convergence
of parameter estimation errors. In recent years, several identification methods with limited
estimation time have been investigated. Refs. [10–14] proposed finite-time parameter
estimators for robotic systems. To remove the PE condition imposed on the algorithms
in [10–14], Refs. [15,16] proposed CL-based finite-time system identification algorithms
for unknown systems modeled by neural networks (NNs). However, the upper bounds of
the settling time provided by finite-time identification methods [15,16] may increase with
increases in the initial estimation error.

In order to guarantee the uniformity of the settling time boundary with the initial
estimation error in an identification algorithm, Refs. [17,18] designed fixed-time system
identification methods by using fixed-time Lyapunov dynamics. However, the settling
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times of estimation errors in [17,18] were formulated as complex expressions, which contain
series of design parameters. Furthermore, the steady estimation error may not be exactly
zero for the parameter estimation case [17], and the provided settling time function in the
CL-based fixed-time identification algorithm in [18] may be uncertain since its formula
contains unknown information about neural network approximation errors (NNAEs).
Moreover, some fixed-time parameter identification algorithms have been studied based
on the dynamic regressor extension and mixing (DREM) method. Ref. [19] added a shifting
and scaling factor in the DREM-based parameter estimation law, and proved that the
solution of the estimation error reaches zero in a fixed time. Then, Ref. [20] proposed
a two-stage fixed-time DREM estimator with an integral time-varying gain. However,
the fixed convergence time boundaries of estimation errors in [19,20] are determined by
unknown times when the initial excitation of dynamic regressors is achieved, thus being
unadjustable a priori by users from the viewpoint of practicality.

Recently, there has been a great deal of attention on the analysis of a class of systems
known as predefined-time stable systems [21–26], since the settling time boundary of such
systems is an exactly known design parameter. In the view of the advantage of predefined-
time stability, predefined-time system identification should be also investigated for the
sake of estimation time presetting. A predefined-time identification algorithm provides an
exact time when the estimation of an unknown system is available for controllers. Several
parameter estimation algorithms with the predefined-time property were studied based
on prescribed performance control [27,28], where the convergence times of estimation
errors are explicit design parameters in performance functions. The estimation errors
in [27,28] can be restricted into arbitrary small regions, but they may not be eliminated
entirely after the provided predefined times without considering modeling errors. Ref. [29]
proposed a predefined-time DREM parameter estimator using predefined-time Lyapunov
dynamics, but the provided convergence time boundary is affected by the unknown
time when the dynamic regressor is excited to some certain value. It is hard to set the
upper bound of convergence time with [29] without the prior excitation information of the
dynamic regressor.

Motivated by the aforementioned, this paper aims to design a new CL-based identifi-
cation algorithm for a class of uncertain systems, providing users with an explicit design
parameter as the desired convergence time boundary without the PE condition. The whole
identification process is divided into two stages. In the first stage, historic identification
data are recorded until a finite-rank condition rather than the strict infinite PE condition is
satisfied. In the second stage, the estimation error can converge to zero accurately without
NNAEs, or it can be steered into the neighborhood of zero if NNAEs exist, within an explicit
predefined time. The main contributions of the paper can be summarized as follows:

(1) The provided settling time boundary of the proposed identification algorithm
is an explicit design parameter that can be known and adjusted directly by users. This
predefined-time parameter is related to neither the unknown information about NNAEs
compared with the traditional CL-based fixed-time algorithm [18], nor the unavailable
information of initial excitation time compared with traditional DREM-based fixed-time or
predefined-time identification algorithms [19,20,29].

(2) The identification accuracy is much improved theoretically. Compared with tradi-
tional fixed-time and predefined-time estimators [17,27,28], it is proven that the estimation
error converges to zero exactly, rather than zero nearby, without NNAEs after the prede-
fined settling time.

(3) The identification algorithm takes effect under an easier finite-rank condition
rather than the restrictive infinite PE condition compared with traditional finite-time
and fixed-time identification studies [11–14,27,28], enhancing the practicality of the
proposed approach.

Notation 1. In this paper, R is the set of real numbers, Rn is the set of n-dimensional real
vectors, Rm1×m2 is the set of m1 × m2 real matrices, 0n ∈ Rn denotes an n-dimensional zero
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vector, In ∈ Rn×n denotes an identity matrix, and tr(·) denotes the trace of a matrix (·). For
any vector α = [α1, · · · , αn]T ∈ Rn, ∥α∥ is its Euclidean norm, αT is its transpose vector,
⌊αT⌉γ = [|α1|γsign(α1), · · · , |αn|γsign(αn)]T , where sign(·) denotes the sign function of (·)
and γ ∈ R denotes a positive constant. For any a1, a2, a3 ∈ R with a3 ̸= 0, a1 ≡ a2 (mod a3)
denotes that (a1 − a2)/a3 is an integer. For any matrix Z1 ∈ Rm1×m2 , ∥Z1∥ denotes its Frobenius
norm, and for any symmetric positive-definite (or semi-definite) matrix Z2 ∈ Rm1×m1 , λmin(Z2)
and λmax(Z2) denote its minimum eigenvalue and maximum eigenvalue, respectively.

2. Problem Formulation and Preliminaries

Consider the following uncertain nonlinear system:

ẋ(t) = f (x(t)) + g(x(t))u(t), x(0) = x0 ∈ R (1)

where x ∈ Dx ⊂ Rn is measurable system state, u ∈ Du ⊂ Rm is the control input, and
Dx and Du denote two known compact sets; f : Dx → Rn and g : Dx → Rn×m represent
unknown system drift dynamics and input dynamics, respectively, and they are locally
Lipschitz in x(t).

The unknown dynamics f (x(t)) and g(x(t)) may be modeled accurately as the linearly
parameterized form [18]

f (x(t)) = θ∗T
f ξ f (x(t)), g(x(t)) = θ∗T

g ξg(x(t)) (2)

without modeling error, otherwise they can be approximated by NNs as

f (x(t)) = θ∗T
f ξ f (x(t)) + ε f (x(t)) (3)

g(x(t)) = θ∗T
g ξg(x(t)) + εg(x(t)) (4)

where θ∗f ∈ Rr×n and θ∗g ∈ Rq×n are unknown constant weights, ξ f ∈ Rr and ξg ∈ Rq×m

are known basis function vectors, and ε f ∈ Rn and εg ∈ Rn×m are unknown NNAEs,
respectively. It is assumed that max{∥ε f (t)∥, ∥εg(t)∥} ≤ ε̄, where ε̄ ∈ R is an unknown
positive constant.

Applying (2)–(4), one can rewrite the system (1) as

ẋ(t) = Θ∗Tξ(x(t), u(t)) + ε∗(x(t), u(t)) (5)

where Θ∗ = [θ∗T
f , θ∗T

g ]T ∈ R(r+q)×n is an unknown constant weight vector, ξ(x(t), u(t))
= [ξT

f (x(t)), u(t)TξT
g (x(t))]T ∈ Rr+q is an available vector, and ε∗(x(t), u(t)) = ε f (x(t))

+εg(x(t))u(t), which is a zero vector without NNAE or is bounded by ∥ε∗(t)∥ ≤ ϵ if NNAE
exists, where ϵ = (1 + um)ε̄ is an unknown positive constant and um ∈ R denotes the
constant upper bound of ∥u(t)∥ for all t ≥ 0.

Some traditional system identification algorithms take effect requiring some signals
satisfying the following restrictive PE condition:

Condition 1 (PE condition [5]). A bounded signal µ(t) ∈ Rs is PE if there exist positive constants
β1, β2, and t1 such that β1 Is ≤

∫ t+t1
t µ(τ)µT(τ)dτ ≤ β2 Is for all t ≥ 0.

Denote the estimation error Θ̃(t) ∈ R(r+q)×n as

Θ̃(t) = Θ̂(t)− Θ∗ (6)

where Θ̂ ∈ R(r+q)×n represents the estimation of weight matrix Θ∗.
The identification objective of the paper is to design an update law ˙̂Θ(t, T) such that

the following two objectives hold:
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Objective 1. For all Θ̃(0) ∈ R(r+q)×n, ∥Θ̃(t)∥ can converge to zero within a predefined time
T without NNAEs, or ∥Θ̃(t)∥ can be steered into a bounded neighborhood of zero within T if
NNAEs exist, where T > 0 denotes the predefined settling time that appears in the identification
algorithm directly.

Objective 2. Objective 1 should be achieved without any signal satisfying PE condition.

To proceed, the following three useful lemmas are presented.

Lemma 1 ([21]). Consider that a dynamics ẏ(t, T) = − π
ηT (⌊y⌉1−η/2 + ⌊y⌉1+η/2) holds for all

y(0) ∈ R, then the trajectory of y(t) is predefined-time stable, i.e., y(t) = 0 for all t ≥ T, where
y ∈ R, η ∈ (0, 1) is a constant, and T > 0 denotes the predefined settling time boundary.

Lemma 2. For any matrices A ∈ Rm1×m2 and B ∈ Rm1×m2 , if ∥A∥ ≥ 2∥B∥, then inequalities
∥A − B∥ ≥ 1

2∥A∥ and ∥A − B∥ ≤ 3
2∥A∥ hold.

Proof. One can obtain from triangle inequality that

∥A − B∥ ≥ ∥A∥ − ∥B∥ ≥ ∥A∥ − 1
2
∥A∥ =

1
2
∥A∥ (7)

∥A − B∥ ≤ ∥A∥+ ∥B∥ ≤ ∥A∥+ 1
2
∥A∥ =

3
2
∥A∥. (8)

This is the end of the proof.

Lemma 3 ([30]). For any matrices A ∈ Rm1×m2 and B ∈ Rm1×m2 , the inequality
tr2(AT B) ≤ tr(AT A)tr(BT B) holds.

3. Predefined-Time System Identification via Concurrent Learning

The flowchart of the proposed CL-based predefined-time system identification scheme
is shown in Table 1. Then, the detailed design process and the theoretical analysis are given
in the following three subsections.

Table 1. A flowchart of the proposed CL-based predefined-time system identification scheme.

Step Operation

1 Parameter Setting: T, c, η, Γ, Θ̂(0), t1, tp, ∆t, ω = 0.
2 If t ∈ [t0, t f )
3 Regressor Filtering: (11), (12).
4 System Normalization: (13).
5 If t < (1 − ω)T
6 Current State Estimation Error Calculating: (15).
7 If t ∈ [t1, t2) and t1 ≡ t − t1 (mod ∆t)
8 Data Recording: (17).
9 End
10 State Estimation Error for ith Recorded Sample Calculating: (18).
11 Parameter Estimation Updating: (23).
12 If H is of Full Row Rank for the First Time
13 Select Parameter ω ∈ (0, T−tp

T ].
14 End
15 Else
16 State Estimation Error for ith Recorded Sample Calculating: (18).
17 Parameter Estimation Updating: (23).
18 End
19 End
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3.1. Regressor Filtering and System Normalization

Since the signal ẋ(t) is immeasurable in (1), regressor filtering is applied to generate
available signals for weight estimation updating.

To begin with, one has that system (5) is equivalent to

ẋ(t) = −cx(t) + Θ∗Tξ(x(t), u(t)) + cx(t) + ε∗(t) (9)

where c > 0 is a constant parameter.
Then, system (9) can be solved as

x(t) = Θ∗Th(t) + cl(t) + e−ctx0 + ε(t) (10)

ḣ(t) = − ch(t) + ξ(x(t), u(t)), h(0) = 0r+q (11)

l̇(t) = − cl(t) + x(t), l(0) = 0n (12)

where h(t) =
∫ t

0 e−c(t−τ)ξ(x(τ), u(τ))dτ is the filtered regressor of ξ(x(t), u(t)),
l(t) =

∫ t
0 e−c(t−τ)x(τ)dτ is the filtered regressor of x(t), and ε(t) =

∫ t
0 e−c(t−τ)ε∗(τ)dτ.

To develop the identification algorithm without requiring system (1) to be stable,
system (10) is normalized as

x̄(t) = Θ∗T h̄(t) + cl̄(t) + e−ct x̄0 + ε̄(t) (13)

with x̄(t) = x(t)/ns(t), h̄(t) = h(t)/ns(t), l̄(t) = l(t)/ns(t), x̄0 = x0/ns(t) and
ε̄(t) = ε(t)/ns(t), where ns(t) = 1 + hT(t)h(t) + lT(t)l(t) is a normalizing signal. Then,
one has ∥ε̄(t)∥ ≤ ϵ̄, where ϵ̄ ≤ ϵ is an unknown positive constant.

Let ˆ̄x(t) be the current state estimation that satisfies

ˆ̄x(t) = Θ̂T(t)h̄(t) + cl̄(t) + e−ct x̄0. (14)

Then, one can define the current state estimation error e(t) as

e(t) = ˆ̄x(t)− x̄(t) (15)

and one can obtain

e(t) = Θ̃T(t)h̄(t)− ε̄(t) (16)

from (13) and (14).

3.2. Historic Data Storage

To remove the PE condition from the proposed identification algorithm, CL approach
is applied, using not only current data but also historic data to update the current weight
estimation Θ̂(t).

The recorded data stored in the historic stacks are given by

H = [h̄(t1), · · · , h̄(tp)] ∈ R(r+q)×p

L = [l̄(t1), · · · , l̄(tp)] ∈ Rn×p

X = [x̄(t1), · · · , x̄(tp)] ∈ Rn×p (17)

where t1, · · · , tp are the recording times before the time (1 − ω)T, and ω ∈ (0, 1) is a
positive design parameter, t1 ≥ 0. The sampling interval ∆t = tj+1 − tj can be variant or
invariant (j = 1, · · · , p − 1). In addition, p ≫ r + q is the number of recorded data in the
historic stacks.

Define the state estimation error for the ith recorded sample e(t, ti) as

e(t, ti) = ˆ̄x(t, ti)− x̄(ti), i = 1, · · · , p (18)
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where ˆ̄x(t, ti) = Θ̂T(t)h̄(ti) + cl̄(ti) + e−cti x̄0 is the state estimation at time ti under current
weight estimation Θ̂(t), and x̄(ti) = Θ∗T h̄(ti) + cl̄(ti) + e−cti x̄0 + ε̄(ti) is the stored historic
state at time ti according to (13), respectively. Then, (18) satisfies

e(t, ti) = Θ̃T(t)h̄(ti)− ε̄(ti), i = 1, · · · , p. (19)

The proposed predefined-time identification algorithm does not require any signal to
satisfy the strict PE condition if the following finite-rank condition is fulfilled.

Condition 2. (Rank condition) There exists some time (1 − ω)T such that rank(H) = r + q.

Remark 1. Condition 2 requires the historic stack H to be of full-row rank. Notice that this rank
condition with finite excitation is easier to satisfy than imposing the infinite PE condition on h̄(t)
according to Condition 1, since the number of elements h̄(ti) contained in H is p, which is much
greater than r + q. One may find enough (much more than r + q) linearly independent elements
h̄(ti) in H (i = 1, · · · , tp). But one can hardly check if h̄(t) satisfies the PE condition for all time
in t ≥ 0.

Remark 2. A comparison example of the PE condition and rank condition is analyzed here. Suppose
the continuous vector h̄(t) = [h̄1(t), h̄2(t)]T ∈ R2 with initial value h̄(0) = 02 to be

h̄1(t) =


0, 0 ≤ t < 0.5 s
sin
(
πt − π

2
)
, 0.5 ≤ t < 1.5 s

0, t ≥ 1.5 s

h̄2(t) =


0, 0 ≤ t < 1 s
sin
( 2π

3 t − 2π
3
)
, 1 ≤ t < 2.5 s

0, t ≥ 2.5 s.

(20)

The signals h̄1(t) and h̄2(t) are depicted in Figure 1. Then, the matrix H can be recorded once
for every 0.3 s, given by

H = [· · · , h̄(0.6 s), h̄(0.9 s), h̄(1.2 s), h̄(1.5 s), · · · ]

=

[
· · · 0.3090 0.9511 0.8090 0.0000 · · ·
· · · −0.7431 −0.2079 0.4067 0.8660 · · ·

]
. (21)

Thus, one has that rank(H) = 2, and that this property also holds for a shorter sampling
time. However, one can check that the PE condition does not hold during the span t ∈ [0, 1 s] and
t ∈ [1.5 s,+∞].

Figure 1. Trajectories of signals h̄1(t) and h̄2(t) in (20).
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Remark 3. It only makes sense that Condition 2 is fulfilled before the predefined time T, after
which the knowledge of the unknown system should be obtained according to the predefined-time
identification objective. A similar rank condition can also be seen in CL-based finite-time and
fixed-time identification studies [15,16,18].

Now, we define a matrix H1 as

H1 =
p

∑
i=1

h̄(ti)h̄T(ti). (22)

One knows that if Condition 2 is satisfied, then H1 ∈ R(r+q)×(r+q) is a constant and
known positive-definite matrix for all t ≥ (1 − ω)T.

3.3. Predefined-Time Update Law Design and Analysis

The two-stage update law containing the predefined settling time T is designed as

˙̂Θ(t, T) =

{
−Γh̄(t)eT(t), t < (1 − ω)T

− π
ηωT

(
r1 H0
∥H0∥η + r2∥H0∥η H0

)
, t ≥ (1 − ω)T

(23)

where Γ = diag{γi} ∈ R(r+q)×(r+q), η ∈ (0, 1) and γi > 0 are design parameters (i =
1, · · · , r + q), r1 and r2 are two available constants given by

r1 =
3ηλ

η
max(H1)

2
η
2 λmin(H1)

, r2 =
2

η
2

λ
η+1
min (H1)

(24)

and H0(t) is an available variable expressed as

H0(t) =
p

∑
i=1

h̄(ti)eT(t, ti) (25)

The following theorem indicates that the norm of the weight estimation error ∥Θ̃(t)∥
can converge to zero accurately within the predefined time T without NNAE.

Theorem 1. Consider system (5) and update law (23). If ∥ε∗(t)∥ = 0 for all t ≥ 0 and Condition 2
is satisfied, then for any Θ̃(0) ∈ R(r+q)×n, ∥Θ̃(t)∥ = 0 for all t ≥ T.

Proof. Consider a Lyapunov function candidate as

V =
1
2

tr(Θ̃T Ir+qΘ̃). (26)

In the first stage t < (1 − ω)T, one knows from (15) and (23) that

V̇ = −tr(Θ̃TΓh̄(t)h̄T(t)Θ̃) ≤ −λmin(Γ)λmin(H2(t))∥Θ̃∥2 (27)

where H2(t) = h̄(t)h̄T(t). Thus, one can obtain that V̇ is negative semi-definite with respect
to ∥Θ̃∥, so V(t) ≤ V(0) and ∥Θ̃(t)∥ is bounded for all t < (1 − ω)T.
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In the second stage t ≥ (1 − ω)T, the time derivative of V can be obtained from (19),
(23), (25), and Condition 2 as

V̇ = − π

ηωT
tr
(

Θ̃T
(

r1H0

∥H0∥η + r2∥H0∥η H0

))
= − π

ηωT
tr

(
r1Θ̃T H1Θ̃
∥H1Θ̃∥η + r2∥H1Θ̃∥ηΘ̃T H1Θ̃

)

≤ − π

ηωT

(
r1λmin(H1)

λ
η
max(H1)

∥Θ̃∥2−η
+ r2λ

η+1
min (H1)∥Θ̃∥2+η

)
= − π

ηωT

(
3η

2
η
2
∥Θ̃∥2−η

+ 2
η
2 ∥Θ̃∥2+η

)
. (28)

Since 3η/2η/2 > 1/21−η/2 and 2η/2 > 1/21+η/2, inequality (28) further satisfies

V̇ ≤ − π

ηωT

((
1
2
∥Θ̃∥2

)1− η
2
+

(
1
2
∥Θ̃∥2

)1+ η
2
)

= − π

ηωT

(
V1− η

2 + V1+ η
2

)
. (29)

Thus, according to Lemma 1 and (29), one has that V(t) = 0 for all t ≥ (1 − ω)T +
ωT = T, and ∥Θ̃(t)∥ = 0 for all t ≥ T.

Then, another theorem shows that the norm of the weight estimation error ∥Θ̃(t)∥ can
converge to a bounded neighborhood of zero within the predefined time T with NNAE.

Theorem 2. Consider system (5) and update law (23). If ∥ε∗(t)∥ ̸= 0 and Condition 2 are satisfied,
then for any Θ̃(0) ∈ R(r+q)×n, ∥Θ̃(t)∥ ∈ S holds for all t ≥ T, where

S =

{
∥Θ̃∥

∣∣∣∣ ∥Θ̃∥ <
pϵ̄

λmin(H1)

(
2 +

2λmax(H1)

λmin(H1)

)}
. (30)

Proof. The proof can be conducted by utilizing the same Lyapunov function candidate (26).
In the first stage t < (1 − ω)T, one has from (23) and Lemma 3 that

V̇ = − tr(Θ̃TΓh̄(t)h̄T(t)Θ̃) + tr(Θ̃TΓh̄(t)ε̄T(t))

≤ λmax(Γ)∥Θ̃∥∥h̄(t)ε̄∥ ≤ 1
2

λ2
max(Γ)∥Θ̃∥2 +

1
2

ϵ̄2 (31)

which yields

V(t) ≤
(

V(0) +
ϵ̄2

2λ2
max(Γ)

)
eλ2

max(Γ)t − ϵ̄2

2λ2
max(Γ)

(32)

so V(t) and ∥Θ̃(t)∥ are bounded in a finite time span t < (1 − ω)T.
In the second stage t ≥ (1 − ω)T, the time derivative of V can be obtained from (19),

(23), (25), and Condition 2 as

V̇ = − π

ηωT
tr
(

Θ̃T
(

r1H0

∥H0∥η + r2H0∥H0∥η
))

= − π

ηωT
tr

(
Θ̃T

(
r1(H1Θ̃ − H3)

∥H1Θ̃ − H3∥
η

))
− π

ηωT
tr
(

r2Θ̃T(H1Θ̃ − H3)∥H1Θ̃ − H3∥
η
)

(33)

where H3 = ∑
p
i=1 h̄(ti)ε̄

T(ti).



Electronics 2024, 13, 1460 9 of 17

To proceed, one can consider a case

∥H1Θ̃∥ ≥
(

2 +
2λmax(H1)

λmin(H1)

)
∥H3∥ (34)

and obtain that

2λmax(H1)∥H3∥
λmin(H1)

≤ ∥H1Θ̃∥ ≤ λmax(H1)∥Θ̃∥ (35)

which leads to

∥H3∥ ≤ λmin(H1)

2
∥Θ̃∥. (36)

Then, one has from Lemma 3 and (36) that

−tr
(

Θ̃T H1Θ̃ − Θ̃T H3

)
≤ − λmin(H1)∥Θ̃∥2

+ ∥Θ̃∥∥H3∥

≤ − 1
2

λmin(H1)∥Θ̃∥2. (37)

Moreover, it can be obtained from (34) and Lemma 2 that

1
2η ∥H1Θ̃∥η ≤ ∥H1Θ̃ − H3∥

η ≤ 3η

2η ∥H1Θ̃∥η . (38)

Substituting inequalities (24), (37), and (38) into (33) yields

V̇ ≤ − π

ηωT

(
2η−1r1λmin(H1)∥Θ̃∥2

3η∥H1Θ̃∥η

)
− π

ηωT

( r2

2η+1 λmin(H1)∥Θ̃∥2∥H1Θ̃∥η
)

≤ − π

ηωT

(
2η−1r1λmin(H1)

3ηλ
η
max(H1)

∥Θ̃∥2−η
)
− π

ηωT

( r2

2η+1 λ
η+1
min (H1)∥Θ̃∥2+η

)
= − π

ηωT

(
1

21− η
2
∥Θ̃∥2−η

+
1

21+ η
2
∥Θ̃∥2+η

)
= − π

ηωT

(
V1− η

2 + V1+ η
2

)
. (39)

Thus, one obtains from (39) and Lemma 1 that the trajectory of V(t) and ∥Θ̃(t)∥
converges to zero within the predefined time (1 − ω)T + ωT = T in the case (34).

For ∥H1Θ̃∥ < (2 + 2λmax(H1)/λmin(H1))∥H3∥, one has

∥Θ̃∥ ≤ ∥H1Θ̃∥
λmin(H1)

<
pϵ̄

λmin(H1)

(
2 +

2λmax(H1)

λmin(H1)

)
(40)

where ∥h̄(t)∥ ≤ 1 is applied, then ∥Θ̃∥ ∈ S is guaranteed.
Therefore, it can be concluded from (39) and (40) that ∥Θ̃(t)∥ ∈ S holds for all

t ≥ T.

Remark 4. According to Theorem 1, system (1) can be identified exactly before T without NNAE
compared with previous studies [17,27,28], where estimation error exists after the desired conver-
gence times. In addition, system (1) can be identified with some error under NNAE according
to Theorem 2, but the steady estimation error region S can be adjusted to be arbitrarily small by
decreasing ϵ̄, i.e., by establishing enough neural basis functions for system modeling.

Remark 5. The predefined-time settling time boundary T is an explicit constant parameter in this
paper. In traditional finite-time CL-based identification methods [15,16], the settling time boundary
may increase with increases in the initial estimation error ∥Θ̃(0)∥, but the settling time boundary T
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in this paper is uniform to ∥Θ̃(0)∥. In the traditional fixed-time CL-based identification method [18],
the settling time boundary may be unknown since it is related with the unknown NNAE ε̄. However,
it can be seen that the settling time boundary T in this paper is independent of the unknown ε̄. Users
can know and set the desired upper bound of the settling time of the identification algorithm directly
with the parameter T using the proposed method.

Remark 6. Theoretically, Condition 2 is the only condition under which the predefined-time
system identification is guaranteed, i.e., the rank condition should be fulfilled before T. In practical
applications, it is not recommended to set T as an arbitrarily small constant. An arbitrarily small T
may yield an infinite update rate in (23), leading to computation overflow or system oscillations.
It is necessary to leave a time period for parameter convergence. It is recommended to select an
appropriately small but not arbitrarily small T to improve the identification efficiency.

Remark 7. A main feature of the CL-based identification algorithm is that the memory should be
utilized for the storage of historic data in H, L, and X in (17). It will be seen in simulation examples
that the number of sample moments is not more than 200, and the scalar data at each sample moment
is not more than 12. Though better storage performance of the controller is required compared with
other identification algorithms, storing such data is not a difficult issue for current controllers.

Remark 8. The proposed system identification algorithm has the potential to be extended for dis-
tributed systems. Consider a nonlinear interconnected system composed of N uncertain subsystems
described by [16]

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(t) + ∆i(xi(t), xj(t − τd)|j∈Ni ), i = 1, · · · , N (41)

where xi ∈ Rn is the system state, ui ∈ Rm is the control input, fi : Rn → Rn,
g : Rn → Rn×m and ∆ : Rn(Ni+1) → Rn represent unknown system drift dynamics, input
dynamics, and interconnection dynamics, respectively, τh > 0 denotes the time delay due to infor-
mation transmission, Ni is the set of neighbors of node i, and |Ni| is the cardinality measure of the
set Ni. System (41) can be approximated by an NN as (see Equation (15) in [16])

ẋi(t) = Θ∗T
i ξi(xi(t), ui(t), xj(t − τd)|j∈Ni )) + ε∗i (xi(t), ui(t), xj(t − τd)|j∈Ni )) (42)

where Θ∗ ∈ R(r+q)×n is an unknown constant weight matrix, ξ ∈ Rr+q is an available neural
basis function vector, and ε∗ ∈ Rn denotes the identification error. Notice that (42) is similar to (5)
in this paper, and it is a key equation for further system identification design. The filtered signal of
ξi(xi(t), ui(t), xj(t − τd)|j∈Ni ) can be recorded in a matrix H. The recorded time ti, · · · , tp should
contain the time after τh to obtain enough linearly independent ξi(xi(t), ui(t), xj(t − τd)|j∈Ni ) and
its filtered signal, guaranteeing H is of full-row rank for concurrent learning. Thus, the predefined
settling time T should be greater than τh to fulfill the finite-rank condition.

Remark 9. The proposed identification algorithm can be combined with some predefined-time
control methods for the predefined-time control issue of uncertain nonlinear systems. Note that
the predefined-time control algorithm in [31] is only available for systems with known dynamics.
One can use the proposed identification algorithm to obtain the exact system model within a first
predefined time. Then, one can utilize the predefined-time control algorithm [31] to relate the system
tracking error to zero exactly within another predefined time.

4. Numerical Simulation
4.1. Simulation of Identification Algorithm without NNAE

Consider the following second-order uncertain system with linearly parametric form:

ẋ1(t) = θ1 sin(x1(t)x2(t)) + θ2u1(t)

ẋ2(t) = θ3x2(t) + θ4u2(t) (43)
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where θ1 = −40, θ2 = 50, θ3 = −20, and θ4 = 30 are unknown parameters. Then, system (1)
can be rewritten in the form of (5) without ε∗(x(t), u(t)):

ẋ(t) = Θ∗Tξ(x(t), u(t)) (44)

where

x(t) =
[

x1(t)
x2(t)

]
, Θ∗ =


θ1 0
0 θ3
θ2 0
0 θ4

, ξ(x(t), u(t)) =


sin(x1(t)x2(t))

x2(t)
u1(t)
u2(t)

. (45)

Update law (23) is applied to generate the precise value of the unknown parameter
matrix Θ∗ within the predefined time T. Let the input be u1 = −0.2x1(t) + 0.2 sin(300t) +
0.8 sin(x1(t)x2(t)), u2 = 0.3x2(t) + 0.3 cos(300t), x1(0) = 2, and x2(0) = −2. The prede-
fined settling times T are selected as 0.4 s, 0.7 s, and 1 s for three simulation cases. The
other parameters are given by Γ = 10I4, c = 100, and η = 0.5. Historic data h̄(t), l̄(t), and
x̄(t) are recorded at every interval 10−3 s in t ∈ [0.1 s, 0.3 s). Thus, the numbers of column
vectors, p, in the stacks H, L, and X in (17) are all 200, and one can select ω as 1/4, 4/7,
and 7/10, corresponding to the three simulation cases. Denote θ̂i as the estimation of θi
(i = 1, 2, 3, 4).

The simulation result is presented in Figures 2–4. It can be seen that the estimation
of unknown parameters, i.e., θ̂i(t) (i = 1, 2, 3, 4), reaches the corresponding true values θi
within the desired predefined times T in the three simulation cases. The four estimation
errors |θ̂i(t)− θi| are all less than 10−2 in the three cases after the predefined settling times
T (i = 1, 2, 3, 4).

Figure 2. Trajectories of estimation of unknown parameters for system (43) under T = 0.4 s.

Figure 3. Trajectories of estimation of unknown parameters for system (43) under T = 0.7 s.
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Figure 4. Trajectories of estimation of unknown parameters for system (43) under T = 1 s.

In order to test the robustness of the proposed algorithm, system (44) with external
disturbances and noises is considered as

ẋ(t) = Θ∗Tξ(x(t), u(t)) + d1(t) (46)

with d1(t) = [0.5 sin(50t) + wgn(0.01), 0.5 cos(50t) + wgn(0.01)]T , where wgn(0.01) de-
notes the white Gaussian noise, with power being 0.01 dB W. Select the predefined settling
time as T = 0.5 s. The simulation result is shown in Figures 5 and 6. Figure 5 indicates
that the estimation of the four unknown parameters can converge to the neighborhood
of their true values within T under the proposed identification algorithm. In Figure 6,
the steady estimation errors, |θ̂i(t) − θi|, are 1.5235, 1.0367, 0.2373, and 0.1052, respec-
tively, for i = 1, 2, 3, 4. The simulation results show the robustness of the proposed system
identification algorithm to external disturbances and noise.

Figure 5. Trajectories of estimation of unknown parameters for system (43) with disturbances and
noises under T = 0.5 s.

Figure 6. Trajectories of parameter estimation errors for system (43) with disturbances and noises
under T = 0.5 s.
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4.2. Simulation of Identification Algorithm with NNAE

Consider the following uncertain system:

ẋ(t) = f (x(t)) + g(x(t))u(t) (47)

where f (x(t)) = x(t) sin(0.5x(t)) and g(x(t)) = 3 + cos(x(t)) are unknown nonlinear
functions. Update law (23) with an NN is utilized to approximate the unknown func-
tions f (x) and g(x) with small error within the predefined settling time T. Let x(0) = 1,
and u = (−100x(t) + 200 sin(5t)− x(t) sin(0.5x(t)))/(3 + cos(x(t))). The unknown func-
tions can be approximated by an NN as f (x) = θ∗T

f ξ f (x) + ε f and g(x) = θ∗T
g ξg(x) + εg,

with θ∗f = [θ1, · · · , θ5]
T and θ∗g = [θ6, · · · , θ10]

T being unknown weight vectors, where

ξ f = ξg = [ξ1, · · · , ξ5]
T is a neural basis function vector, with ξ j(x) = e−|x−µj |2/(2σ)

(j = 1, ..., 5). Select σ = 0.5 and [µ1, · · · , µ5]
T = [−2,−1, 0, 1, 2]T . The other parame-

ters are given by Γ = I10, c = 10, η = 0.5. The predefined settling time is set as T = 4 s.
Historic data h̄(t), l̄(t), and x̄(t) are recorded at every interval 10−2 s in t ∈ [0.5 s, 2 s). Thus,
the numbers of column vectors, p, in the stacks H, L, and X in (17) are all 150, and one
can select ω = 0.5. Denote θ̂i as the estimation of θi (i = 1, · · · , 10). In the simulation, we
set θ̂i(0) = 0 (i = 1, · · · , 10). Denote the proposed predefined-time system identification
algorithm (23) as PTSIA. Then, the traditional CL-based fixed-time system identification
algorithm (FTSIA) in [18] is simulated here for comparison, and it is given by

˙̂Θ = − Γ1h̄(t)
(
⌊eT(t)⌉ν1 + ⌊eT(t)⌉ν2

)
− Γ2

p

∑
i=1

h̄(ti)
(
⌊eT(t, ti)⌉ν1 + ⌊eT(t, ti)⌉ν2

)
(48)

where Γ1 = 1, Γ2 = 1, ν1 = 0.9, ν2 = 1.1, and the other parameters are the same as those
in PTSIA.

The simulation results are shown in Figures 7–10. The trajectories of the unknown NN
weights are stable within the predefined time T = 4 s under PTSIA in Figure 7. But it can
be seen that they are not stable until about 100 s under FTSIA in Figure 8. Thus, it takes
more time for FTSIA to approximate the unknown system dynamics compared with PTSIA.
Moreover, it is difficult to know and adjust the desired settling time of estimation error
with the update law of FTSIA, since the desired settling time boundary does not appear
in (48) as an explicit parameter.

Figure 7. Trajectories of estimation of unknown NN weights under PTSIA for system (47).
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Figure 8. Trajectories of estimation of unknown NN weights under FTSIA for system (47).

Figure 9. Trajectories of unknown drift dynamics and their approximation for system (47).

Figure 10. Trajectories of unknown input dynamics and their approximation for system (47).

Figures 9 and 10 show that the unknown system dynamics f (x) and g(x) can be
well-approximated by two approaches with acceptable approximation errors. Define two
identification errors as e f = ∥E f ∥ and eg = ∥Eg∥, where

E f = [E f (−2), E f (−1.99), E f (−1.98) · · · , E f (2)]
T ∈ R400

Eg = [Eg(−2), Eg(−1.99), Eg(−1.98) · · · , Eg(2)]
T ∈ R400

E f (i) = ( f (x)− θ̂T
f (T)ξ f (x))|x=i, i = −2,−1.99,−1.98, · · · , 2

Eg(i) = (g(x)− θ̂T
g (T)ξg(x))|x=i, i = −2,−1.99,−1.98, · · · , 2. (49)

The parameters e f and eg reflect the steady average identification errors for f (x) and
g(x). Suppose the settling time for FTSIA is T = 100 s. Then, the simulation result shows
that e f = 0.8186 and eg = 0.9368 for PTSIA, as well as e f = 1.5495 and eg = 1.2787 for
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FTSIA. In order to compare the robustness of the two algorithms, system (47) with external
disturbances and noise is considered as

ẋ(t) = f (x(t)) + g(x(t))u(t) + d2(t). (50)

If d2(t) is selected as 0.1 sin(20t) + wgn(0.01), we obtain that e f = 1.0063 and
eg = 1.2105 for PTSIA, as well as e f = 1.4816 and eg = 1.2523 for FTSIA. If d2(t) is se-
lected as 0.2 sin(10t) + wgn(0.02), we obtain that e f = 1.0326 and eg = 1.7435 for PTSIA,
as well as e f = 3.2225 and eg = 1.7614 for FTSIA. Therefore, one can conclude that the
proposed PTSIA is superior to the traditional FTSIA in terms of approximation speed,
identification accuracy, and settling time adjustment.

Further, a sensitivity test is provided to analyze the performance of the proposed
algorithm to parameter variations. The robustness and the identification accuracy can be
reflected by the steady average identification errors e f and eg. Then, an identification effi-
ciency parameter Ts is defined as the time after which the inequalities |θ̂i(t)− θ̂i(T)| ≤ 10−4

always hold (i = 1, · · · , 10), indicating the time when the identification algorithm enters
the steady state. The identification efficiency is higher if Ts is shown to be smaller.

The simulation results of the performance of system (47) under variations in pa-
rameters η, c, ω, and Γ are summarized in Tables 2–5, respectively. It can be seen from
Tables 2 and 5 that the variations in η and Γ have little impact on the identification accuracy
and efficiency. Table 3 shows that the identification accuracy is improved with increases in
the parameter c. But the improvement is limited if c > 10. The identification error increases
significantly if c < 5. Table 4 shows that the real settling time of the algorithm is shortened
with increases in the parameter ω. But the real settling times under different ω are all less
than the predefined one, T = 10 s.

Table 2. Performance of system (47) under T = 10 s, ω = 0.8, c = 10, Γ = I10, and different η.

Parameters η = 0.1 η = 0.3 η = 0.5 η = 0.7 η = 0.9

e f 0.8182 0.8182 0.8182 0.8186 0.8183
eg 0.9357 0.9357 0.9358 0.9366 0.9360

Ts(s) 2.59 2.39 2.16 2.08 2.03

Table 3. Performance of system (47) under T = 10 s, η = 0.4, ω = 0.8, Γ = I10, and different c.

Parameters c = 1 c = 5 c = 10 c = 50 c = 300

e f 18.9727 1.7258 0.8182 0.7804 0.7616
eg 5.5829 1.2126 0.9358 0.9314 0.9312

Ts(s) 8.49 2.19 2.25 2.43 2.47

Table 4. Performance of system (47) under T = 10 s, η = 0.5, c = 20, Γ = I10, and different ω.

Parameters ω = 0.1 ω = 0.2 ω = 0.4 ω = 0.6 η = 0.8

e f 0.8157 0.8157 0.8157 0.8157 0.8157
eg 0.9304 0.9302 0.9302 0.9302 0.9302

Ts(s) 9.03 8.06 6.12 4.17 2.22

Table 5. Performance of system (47) under T = 10 s, η = 0.6, c = 8, ω = 0.5, and different Γ.

Parameters Γ = 0.01I10 Γ = 0.1I10 Γ = I10 Γ = 10I10 Γ = 100I10

e f 0.8233 0.8233 0.8226 0.8233 0.8233
eg 0.9550 0.9550 0.9538 0.9550 0.9550

Ts(s) 5.10 5.10 5.10 5.10 5.10
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5. Conclusions and Future Work

This paper proposes a CL-based two-stage predefined-time system identification algo-
rithm. The algorithm takes effect under a finite-rank condition rather than the infinite PE
condition. It is proven that the estimation error converges to zero for linearly parameterized
uncertain systems, or it converges into the neighborhood of zero for unknown systems
modeled by an NN, within a predefined settling time. The desired settling time boundary
is uniform to initial estimation errors, known a priori by users compared with traditional
related studies. Simulations verify the effectiveness and superiority of the proposed algo-
rithm. In future work, CL-based predefined-time identification for distributed uncertain
systems will be studied.
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