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Abstract: In this paper, a new automatic modulation recognition (AMR) method named CCLDNN
(complex-valued convolution long short-term memory deep neural network) is proposed. It is
designed to significantly improve the recognition accuracy of modulation modes in low signal-to-
noise ratio (SNR) environments. The model integrates the advantages of existing mainstream neural
networks. The phase and amplitude information of complex signals is effectively captured through
a complex module in the input layer. The Squeeze-and-Excitation (SE) attention mechanism, Bi-
LSTM layer, and deep convolutional layer are introduced in the feature extraction layer to gradually
enhance feature expression. Among these, the introduction of LSTM enables the model to capture the
sequence dependence of signals, and the application of the SE attention mechanism further improves
the model’s ability to focus on key features. Tests using the RadioML2016.10a dataset show that the
model performs well at multiple SNR levels, achieving an average recognition accuracy of more than
80% over an SNR range of 0 dB to 18 dB. However, under the condition of a low SNR from −20 dB to
−2 dB, the model still maintains a high recognition ability. The advanced CCLDNN method shows
great deep learning potential in solving practical communication problems.

Keywords: automatic modulation recognition; complex-valued neural network; bidirectional LSTM;
deep learning

1. Introduction

Radio signal automatic modulation recognition [1–4] (AMR) is a key technology in the
field of signal processing and pattern recognition. It has important application value and
scientific significance in both military and civilian fields, such as radio management [5],
wireless signal monitoring [6], and electronic information warfare [7]. Due to AMR’s
strong robustness and high accuracy, it is often used for wireless source identification and
shielding from surrounding interference to improve spectral efficiency. Many scholars
have conducted a lot of research on this technology. After decades of development, radio
signal modulation technologies are mainly divided into two categories: those that use the
decision theory modulation method based on maximum likelihood (LB) [8–10] and those
that use the pattern recognition method based on feature extraction (FB) [11–13].

In recent years, with the development of deep learning, neural network models have
been applied extensively in intelligent speech recognition, computer image processing,
and other fields. Tim O’Shea et al. [14] applied convolutional neural networks (CNNs)
to signal modulation recognition and generated radio machine learning datasets using
GNU radio. Zhao et al. [15] added a Bi-LSTM model to a CNN to generate a CBLSTM
model, which showed better results than RNN, LSTM, and other models in signal fault
diagnosis. A generative adversarial network (GAN) model has also been combined with
CNNs to effectively reduce the interference of noise on time–frequency image signals [5].
At the same time, some researchers have proposed a CLDNN structure by combining a
CNN with a long short-term memory (LSTM) network and achieved a better recognition
effect than CNNs on the same dataset [16]. Sun et al. [17] introduced the CLDNN model
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into the recognition of radiation source signals and replaced the short-term memory layer
with a bidirectional gated cycle unit layer to achieve a balance between recognition speed
and accuracy.

Compared with a traditional CNN, although the signal recognition accuracy of the
one-dimensional convolutional long-term deep neural network (1CLDNN) is better, the
effect is still limited in an environment with a low signal-to-noise ratio [16]. Based on
this, Zou et al. used a short-link layer that could recognize modulated signals more
efficiently, and they established an attention mechanism short-link convolution long short-
term memory deep neural network (ASCLDNN) model to improve the recognition effect.
Qi et al. [18] proposed several AMC methods based on a prototype and variants of the
convolutional neural network (CNN). A waveform spectrum multimode fusion (WSMF)
method based on a deep residual network (Resnet) was used to implement AMC, and the
feature fusion strategy was used to fuse the multimodal features of the signal to obtain more
distinguishing features. Simulation results showed that, compared with the traditional
CNN-based single-mode information AMC method, the proposed method performed
better, and it could distinguish 16 types of modulation signals and work well in higher-
order digital modulation types. Wang et al. [19] proposed an AMC based on federated
learning and introduced balanced cross-entropy to solve the class imbalance problem. Tests
showed that the average accuracy difference between FedeAMC and CentAMC was less
than 2%. Additionally, the risk of data breaches was low, and it did not result in significant
performance losses. Zhang et al. [20] proposed an AMC feature fusion scheme based on
a convolutional neural network (CNN). The scheme aims to extract more distinguishing
features by combining various images and hand-made signal features. Firstly, it extracts
eight manual features and different image features, and then it combines the image features
and manual features to produce joint features. The multimodal fusion model is used to
fuse the joint features. The results showed that the scheme had excellent performance,
and a classification accuracy of 92.5% could still be achieved when the SNR was −4 dB. In
2023, Xu et al. [21] proposed an automatic signal modulation classification and recognition
algorithm based on a neural network autoencoder to solve the problem of traditional
noise reduction algorithms damaging signals with high SNR. The results showed that the
accuracy of automatic modulation classification and recognition improved and became
stable with the increase in modulation signals. In the same year, Zheng et al. [22] first tried
to regularize deep learning models based on sample SNR distribution to improve AMC
accuracy, and they proposed a prior regularization method in deep learning (DL-PR) to
guide loss optimization during model training. This method retains the original information
of the received signal as much as possible, and it makes full use of prior knowledge in
the signal transmission process, finally helping the deep learning model to obtain good
generalization on various signal to noise ratio (SNR) signals. In 2024, Jang et al. [23]
proposed a scalable AMC scheme called Meta-Transformer, a meta-learning framework
based on small sample learning (FSL) to acquire general knowledge and learning methods
for AMC tasks. This approach enables the model to identify new unseen modulations using
only a very small number of samples, eliminating the need to completely retrain the model.

In order to further improve the signal recognition rate and recognition effect, based on
the CLDNN model, this study adds a complex number module, introduces a bidirectional
and multilayer long short-term memory network, and integrates an attention mechanism,
thus establishing the CCLDNN model. The signal recognition effect of the new model is
compared with that of several typical models, and the results show better performance.

The inclusion of a complex number module in the CCLDNN framework is a strategic
enhancement aimed at capturing the intricate properties of signals, especially those inherent
in electromagnetic waves and signals that are naturally represented in a complex number
format. Complex numbers enable the model to handle phase information and amplitude in
a unified framework, providing a more comprehensive analysis of signals than traditional
real-valued models. This capability is particularly advantageous in environments where
phase information is critical for accurate signal recognition.
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By integrating bidirectional and multilayer LSTM networks, the CCLDNN model
gains a profound ability to capture temporal dependencies in both forward and backward
directions across multiple layers. This structure enhances the capacity of the model to learn
from the temporal context of signals, significantly improving the recognition of patterns that
span across various time intervals. The multilayer aspect allows for a hierarchical process-
ing of features, where higher-level abstractions of the input data can be learned at deeper
layers, thus contributing to a more nuanced understanding of complex signal dynamics.

The incorporation of an attention mechanism into the CCLDNN model aims to meet
the evolving need for models to discern and prioritize relevant features within a vast
array of signal data. This mechanism enables the model to focus on the parts of the signal
that are the most informative for the task at hand, thereby enhancing the efficiency and
accuracy of signal recognition. The attention mechanism is especially beneficial in scenarios
where signals are corrupted by noise or when dealing with signals of varying lengths and
intensities, which are very important in practical use.

2. Materials and Methods
2.1. The Data

The RadioML2016.10a dataset is used to evaluate the performance of the proposed
model after processing. The dataset contains 11 modulated signals, of which 8 are digitally
modulated and 3 are analog-modulated. The eight digital signals are composed of BPSK,
QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK, and PAM4, and the three analog signals are
composed of WB-FM, AM-SS, and AM-DSB.

2.2. Methods
2.2.1. Data Preprocessing and Dataset

To evaluate the performance of the proposed automatic modulation recognition (AMR)
model, we use the RadioML2016.10a dataset, which is widely used in modulation recogni-
tion studies. It contains 11 modulation types of signals with different signal-to-noise ratios
(SNRs), covering both analog and digital modulation. Each sample is a time series with
128 complex sampling points, which can be represented as a two-dimensional array (2,
128). The sample group can be represented as (X, 2, 128), where X is the number of samples,
2 represents the real and imaginary parts of the complex number, and 128 is the length of
each sample. We preprocess these complex signals, including normalization, to prepare the
data for input to the model.

2.2.2. CCLDNN Model Architecture

A complex-valued convolutional neural network (CV-CNN) is a type of neural net-
work specifically designed to handle data with complex forms. It is particularly suitable
for processing data such as radio signals that naturally exist in the complex domain. Com-
pared with traditional real-valued networks, a CV-CNN can effectively capture the phase
information of data by maintaining the complex-valued form of the data, which is crucial
for many applications. For example, in wireless communication, the phase of a signal
carries important timing and modulation information. By processing the signal directly
in the complex domain, a CV-CNN can model the physical properties of the signal more
accurately, improving processing efficiency and performance. In addition, complex-valued
networks also show superior performance in processing image phase information, which
indicates that they have a wide range of applications in image processing and computer
vision tasks. In radio modulation, I/Q data have a complex structure consisting of real
and imaginary parts, and standard CLDNNs cannot use this structural property to achieve
outputs that preserve I and Q structures. Complex-valued convolutional network linear
transformations, by zero-filling the input and performing standard convolution without
activation functions, can change tensors of size three via linear combinations, resulting in
outputs that preserve I and Q structures. Therefore, compared to CNN and CNN2 models,
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complex-valued convolutional networks can take full advantage of the complex structure
of data and learn features that associate real channels with complex channels.

Consequently, the complex processing unit is the core module of the CCLDNN model,
and it allows the model to directly process signals in the complex form without converting
the complex signals into the real form. This ability to directly process complex signals
preserves all the information of the signal; avoids information loss; and allows the model
to more accurately capture the phase and amplitude information of the signal, which is
particularly important for the identification of modulation types. In addition, the model
can independently learn the features of the real and imaginary parts of the signal by
performing a convolution operation on them, thus improving the efficiency and accuracy
of feature extraction. The deep convolutional network used in the model can abstract and
extract the features of the signal layer by layer, and the convolution operation of each layer
further refines and strengthens the signal features based on the features of the previous
layer. Combined with the SE attention mechanism, the model can adaptively adjust the
feature responses of each channel, strengthen the features beneficial for classification,
and suppress irrelevant interference. This mechanism enables the model to accurately
identify modulation types under low SNR conditions, because the model can focus on key,
identifiable features, even when the signal is heavily disturbed by noise. At the same time,
the bidirectional LSTM that we introduce here can simultaneously include the forward and
backward information of the signal and capture the dependence of the signal on the time
series. This is especially important for modulation recognition because different modulation
types show different characteristics over time series. Through two-way LSTM, the model
can not only learn the current state information of the signal but can also comprehensively
consider the history and future information of the signal, which greatly enhances the ability
of the model to understand and capture the characteristics of time series.

The attention mechanism is inspired by the human visual attention system, and it
allows models to mimic human focus shifts when processing information. In deep learning,
this mechanism is used to dynamically adjust the focus of a neural network, prioritizing
the parts of information that are more important to the task at hand. In the field of natural
language processing (NLP), the Transformer model has revolutionized sequence modeling
with its self-attention mechanism, significantly improving the performance of tasks such
as machine translation, text summarization, and language understanding. In the field of
image recognition, the attention mechanism enables the network to focus on the key areas
of the image, thus improving the accuracy and efficiency of recognition.

The overall architecture of the model is shown in Figure 1. Since the input data are
in a complex form, we first design a ComplexConvUnit, which consists of two parallel
one-dimensional convolution layers that process the real and imaginary parts of the input
signal. The unit can effectively capture the characteristics of complex signals and provide
more abundant information for the subsequent feature extraction and recognition. Next, we
use a multilayer convolutional neural network (CNN) structure, with each layer consisting
of a convolutional layer, batch normalization, a ReLU activation function, and an optional
Squeeze-and-Excitation (SE) attention module. The SE module can enhance the response
of the network to important features and improve recognition performance. In addition,
we introduce residual connections to increase network depth while avoiding gradient
disappearance or explosion problems.

At the same time, we introduce bidirectional and multilayer long short-term memory
(LSTM) networks after the CNN to capture signal dependence on sequence. By increasing
the hidden layer size of the LSTM, we strengthen the memory of the model and make it
better able to handle long-term dependencies.

Finally, after a series of fully connected layers, the model outputs the probability that
each input sample belongs to 1 of 11 modulation classes. In the fully connected layer,
we use the GELU activation function and dropout regularization strategy to improve the
generalization of the model ability and prevent overfitting.
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Figure 1. Model structure.

In the overall architecture, the ComplexConvUnit is the key factor in the processing
of complex inputs of the model. By feeding the real and imaginary parts separately into
two parallel convolution layers and maintaining this separation in subsequent processing,
the model is able to capture the properties of complex signals in more detail. The strategy
of introducing multilayer CNNs and LSTM networks not only enhances the ability of the
model to learn spatial features but also improves the understanding of time series data
dependencies, which is crucial for dynamic signal processing. The use of residual connec-
tions greatly deepens the network structure without introducing additional difficulties in
training, ensuring the training stability and efficiency of deep networks. The introduction
of the Squeeze-and-Excitation (SE) module further enhances the emphasis of the model
on important features and improves recognition accuracy. Finally, through a series of
fully connected layers and a well-designed activation function and regularization strategy,
the model can effectively output the probability that each sample belongs to a specific
modulation class while ensuring good generalization and robustness.

Ablation experiments were conducted on the three primary modules depicted in
Figure 1: the Complex Convolution Module, the Attention Mechanism Convolution ReLU
Module, and the LSTM Module. To ensure unchanged input and output characteristics, we
utilized fundamental operations such as convolution or pooling to bridge the dimensional
disparities in arrays resulting from the ablation. The outcomes of these ablation studies, as
illustrated in Figure 2, reveal that the removal of the LSTM Module has the least impact on
the neural network, while the elimination of the Complex Convolution Module exerts the
most significant effect. The performance of individual modules was found to be suboptimal,
with accuracy rates ranging between 0.6 and 0.7 when SNR > 0.
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2.3. Training and Optimization Strategy

We use a complex Adam [24] as the optimizer, which combines the adaptive learning
rate adjustment and weight decay strategy of the Adam optimizer, and we adjust for the
complex input to help improve the training efficiency and final performance of the model.
The calculation in a traditional Adam assumes that the parameters being optimized are
real-valued; thus, we need to modify it before actual use when using a complex input. The
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crucial improvement lies in the handling of gradients during the update step, particularly in
the calculation of the second moment v, where the conjugate of the gradient is multiplied by
the gradient itself. This aspect is especially significant for dealing with complex parameters,
as it takes into account the nature of complex numbers, which comprise both real and
imaginary parts. The performance of the main three deep learning networks with Adam
and the complex Adam optimizer is shown in Figure 3. It is clear that, with the complex
Adam, the CCLDNN’s accuracy increases significantly at roughly all SNRs. However, the
improvement from the complex Adam seems insignificant in the other two networks.
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During training, we independently trained the model at multiple SNR levels and
record the accuracy at each SNR level to evaluate the generalization ability under different
noise conditions of the model.

We used the Microsoft Neural Network Intelligence [25] (NNI) tool for hyperparam-
eter tuning. NNI is an open-source toolkit that supports automatic feature engineering,
hyperparameter tuning, neural architecture search, and model compression. We utilized
several mainstream tuning algorithms provided by NNI, including but not limited to grid
search, random search, Bayesian optimization, and evolutionary algorithms. When tuning
the hyperparameters with NNI, we mainly used the following techniques in parentheses
to determine the optimal values of the parameters: the learning rate (grid search), batch
size (random search), and dropout rate (Bayesian optimization). Overall, our approach to
hyperparameter tuning was systematic and tailored to the specific characteristics of each
method, which allowed us to find the optimal set of hyperparameters, thereby maximizing
the performance of our models.

3. Results and Analysis

The purpose of this study is to improve the performance of neural networks under dif-
ferent signal-to-noise ratio (SNR) conditions by introducing complex processing units, deep
feature extraction, sequence feature processing, advanced classification, and regularization
strategies. This study adopts the RadioML2016.10a modulation dataset [14] published by
O’Shea in 2016, which contains 220,000 samples. It covers eight digital modulation types
(BPSK, QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK, and PAM4) and three analog mod-
ulation types (WBFM, AM-SSB, and TheDSB). The SNRs of the samples range from −20
dB to 18 dB, with a total of 20 levels, 1 level for every 2 dB. The dataset simulates various
influencing factors of electromagnetic environments to truly reflect the signal transmission
process, so it has high research and application value.

3.1. Model Performance Evaluation

After rigorous training and verification, it was found that our model showed excellent
performance on the RadioML2016.10a and HisarMod2019.1 datasets (Figure 4). On the
RadioML2016.10a dataset, the model showed high recognition accuracy at medium-to-high
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SNR levels (0 dB to 18 dB), with an average accuracy of more than 80%. Under low SNR
conditions (−20 dB to −2 dB), the accuracy of the model remained relatively high despite
performance degradation, and it was higher than that of traditional methods and unopti-
mized deep learning models. By comparing the performance at different SNR levels, we
found that the complex processing unit and SE attention mechanism significantly improved
the recognition ability of the model under low SNR conditions. On the HisarMod2019.1
dataset, the CCLDNN also performed better than Resnet at all SNRs. This shows that the
model can effectively extract key features from complex signals and enhance the learning
of important features through the attention mechanism.
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3.2. Performance Comparison

To further examine network performance, we compare the performance of the CCLDNN
with that of several existing representative modulation recognition methods. Figure 5
quantifies the improvement level of classification accuracy at each SNR level. On the
RadioML2016.10a dataset, the model has the greatest performance improvement at a high
SNR, compared with the CNN2 and CNN2-260 models, of nearly 20%. Compared with
the CLDNN, the improvement is not obvious when the SNR < 0, and the improvement is
about 10% when the SNR > 0. Compared with Resnet, the overall improvement is between
10% and 20% when the SNR < 0. The results show that the CCLDNN model proposed in
this study is superior to the comparison methods under most SNR conditions, especially
under SNR conditions above 0 dB. On the HisarMod2019.1 dataset, the distribution of
improvements is different, characterized by less improvement than Resnet and more
improvement than the CLDNN. This demonstrates the adaptability and robustness of
our model to complex electromagnetic environments and its excellent performance in
conventional electromagnetic environments.
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3.3. Confusion Matrix Analysis

In order to better understand the performance of the model, we analyze the confusion
matrix at different SNR levels. By comparing the performance of the CCLDNN and
CLDNN in Figure 6, we can see that the CCLDNN has less non-diagonal noise, indicating
better performance, especially in the case of a high SNR, and thus improved classification.
However, both networks have more errors in distinguishing between QAM16 and QAM64
modulations because the two have very similar structures. The results show that the model
can accurately distinguish most modulation types under the condition of a high SNR, with
a low error identification rate. Under low SNR conditions, although the overall accuracy
is decreased, the model still maintains a high accuracy for some modulation types (such
as CPFSK, GFSK, and PAM4), which indicates that the model has a strong discrimination
ability for these modulation types.
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(left) and CLDNN (right) architectures. The respective classification accuracies are 79.27%, 82.14%,
and 84.09% for the CCLDNN and 74.18%, 73.68%, and 69.14% for the CLDNN. The 11 labels cor-
respond to 8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK, and
WBFM, respectively.
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In a comparative analysis of Table 1, we carefully examined the performance of the
CCLDNN model and the other network architectures (Resnet, CNN2, and CNN2-260) in
terms of accuracy, the number of parameters, and training efficiency. Notably, the CCLDNN
model, while reducing the number of parameters, not only reduced the time required
for each training cycle but also achieved an average accuracy improvement of 57.3%,
compared to the lower accuracy of Resnet, CNN2, and CNN2-260. This result confirms
that the improvement of model performance does not simply depend on an increase in
parameters but on the efficient use of data complexity and the enhancement of the feature
extraction capability of the model structure. By introducing complex processing units and
attention mechanisms, the CCLDNN captures the intrinsic structure and features of the
data more precisely, especially when processing complex signals, and it can understand the
information of the signal more comprehensively, thus improving its recognition accuracy.

Table 1. Training performance.

Model ACC (%) Params Epochs Avg Epoch Duration (s)

CCLDNN 59.9 754,459 30 4
CLDNN 52.7 926,363 30 2.3

CNN2-260 50.0 2,707,547 28 6.3
CNN2 48.2 2,749,195 20 6.2
Resnet 54.7 3,849,483 30 3.1

Also, the validation and test time for the proposed model is given in Table 2.

Table 2. Validation and testing of running time.

Model Validation Times Avg Duration (s) Testing Times Avg Duration (s)

CCLDNN 30 0.4 1 0.5
CLDNN 30 0.3 1 0.3

CNN2-260 28 0.5 1 0.5
CNN2 20 0.6 1 0.6
Resnet 30 0.4 1 0.4

However, it is undeniable that the convergence of the CCLDNN model requires
more training cycles (nearly 60) than networks such as the CLDNN, which requires only
30 training cycles. This is because the increase in the upper learning limit of the model
is accompanied by an increase in the training period required for convergence. In the
training process of the CLDNN, Resnet, CNN2, and other networks, we found that when
the network converged in about 30 rounds, the recognition accuracy rate of the continuous
training model did not continue to improve, and the training loss did not continue to
decrease. However, the performance of the CCLDNN model still improved steadily after
30 rounds of training.

The loss curve in Figure 7 further compares the performance of the CCLDNN and
CLDNN architectures under different SNR conditions. The CCLDNN showed a lower
loss value at all SNR levels, which means that the model has a better fit under a variety
of conditions, especially under high SNR conditions, where CCLDNN’s loss value (<0.5)
was significantly lower than that of the CLDNN architecture (always greater than 0.5). This
result once again highlights the CCLDNN’s advantages in high-quality signal processing
and its efficient use of data features.
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4. The Discussion

The CCLDNN model is an advanced automatic modulation recognition technology for
radio signals, and it is a significant innovation and improvement on the existing CLDNN
framework. The key innovations in the CCLDNN model include the following:

1. Complex modules: A complex module was added to the CCLDNN model, and it
allows the model to process complex signals directly instead of splitting them into
real and imaginary parts. This method allows the phase information of the signal to
be retained more accurately, which is a key factor for modulation recognition.

2. Bidirectional long short-term memory (Bi-LSTM) network: By introducing bidirec-
tional LSTM, the CCLDNN model can more effectively capture forward and backward
dependencies in time series data. This structure enables the model to consider both
past and future information when processing signals, thus improving signal recogni-
tion accuracy in complex dynamic environments.

3. Multilayer LSTM structure: By stacking multiple layers of LSTM, the model is able
to learn more complex feature representations, which is particularly important for
distinguishing highly similar modulated signals. The multilayer structure helps to
extract deeper features, thus improving the discrimination ability of the model.

4. Attention mechanism: The CCLDNN model incorporates an attention mechanism,
which enables the model to automatically identify and focus on the most informative
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part of the signal. The introduction of the attention mechanism helps improve the
performance of the model in a low SNR environment because it helps the model
distinguish between noise and useful signals.

Compared with other typical modulation recognition models, the CCLDNN model
shows better performance. For example, compared with the traditional CNN model, the
CCLDNN model, by combining LSTM and the attention mechanism, can process time
series data more efficiently and achieve a higher recognition accuracy. Compared with
the CBLSTM model proposed by Zhao et al. [14], the CCLDNN model achieves a stronger
temporal feature learning ability by introducing bidirectional and multilayer structures.
Compared with the WSMF method based on a deep residual network [17], the CCLDNN
model can better handle signals with complexity and diversity through the complex number
module and attention mechanism. In addition, the CCLDNN model is more robust than
1CLDNN and other traditional methods when processing signals in low SNR environments.
This is because the CCLDNN model is better able to distinguish between signal and noise,
thus maintaining a high recognition rate under low SNR conditions.

For future research, comparing the accuracy of the CCLDNN with the optimal theoret-
ical limits of SNRs, such as the Chernoff bound [26] or tighter complex bounds, represents
an intriguing and valuable direction. Such comparisons can provide profound insights
into the performance of the CCLDNN when processing data under various SNR condi-
tions, particularly in the fields of communications, signal processing, and related areas.
In a comparison with theoretical limits, the performance of the CCLDNN model in noisy
environments can be more accurately assessed, especially its robustness and accuracy.
This comparison can highlight potential areas for improvement in model performance,
thereby guiding future research efforts towards optimizing the model structure or training
process and, thus, deepening the understanding of the gap between the model’s theoretical
potential and its performance in practical applications.

5. Conclusions

The automatic modulation recognition model proposed in this study demonstrated ex-
cellent performance under different SNR conditions, both theoretically and experimentally,
especially in terms of complex signal processing, depth feature extraction, and sequence
feature processing. Under medium and high SNR conditions (0 dB to 18 dB), the model
achieved an average recognition accuracy of more than 80%. Under low SNR conditions
(−20 dB to −2 dB), the model still maintained a high discrimination ability, with a percent-
age improvement over the traditional neural network of up to more than 60%. Through
a comparison with existing methods, it was found that the performance of the proposed
model exceeded that of other advanced modulation recognition methods at most SNR
levels; in particular, under low SNR conditions, the performance improvement was more
significant, and the average accuracy improved by 10% to 20%. With the rapid development
of wireless communication technology, automatic modulation identification technology will
play an important role in more fields. The results of this study provide a solid foundation
and a new perspective for further research and application.

From a theoretical point of view, the high performance of the CCLDNN model is
attributed to the following key factors: Firstly, the complex number processing unit of the
model can directly manipulate the complex number signal and effectively retain all the
information of the signal, including amplitude and phase information, making compar-
isons with traditional real number processing methods difficult. Secondly, the introduction
of an attention mechanism enables the model to automatically recognize and strengthen
important features while suppressing irrelevant information, thus improving the recog-
nition accuracy and generalization ability of the model. Finally, the CCLDNN efficiently
learns complex data structures by optimizing the network structure and parameter config-
uration. Therefore, the reason why the CCLDNN model can achieve excellent results in
modulation recognition tasks is not only because of its low parameter number and efficient
calculation performance but also, more importantly, because of its advanced ability in
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understanding and utilizing complex signals and time series data. This research provides a
new perspective and method for future signal processing and pattern recognition tasks.

To sum up, the CCLDNN model, combining a complex number module, bidirectional
LSTM, and an attention mechanism, is not only an innovative step in theory, but also shows
superior performance in practical applications, especially in processing signal recognition
tasks in complex dynamic environments and low SNR conditions.
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