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Abstract: As a core component of new energy vehicles, accurate estimation of the State of Health
(SOH) of lithium-ion power batteries is essential. Correctly predicting battery SOH plays a crucial
role in extending the lifespan of new energy vehicles, ensuring their safety, and promoting their
sustainable development. Traditional physical or electrochemical models have low accuracy in
measuring the SOH of lithium batteries and are not suitable for the complex driving conditions of
real-world vehicles. This study utilized the black-box characteristics of deep learning models to
explore the intrinsic correlations in the historical cycling data of lithium batteries, thereby eliminating
the need to consider the internal chemical reactions of lithium batteries. Through Pearson correlation
analysis, this study selects health indicators (HIs) from lithium battery cycling data that significantly
impact SOH as input features. In the field of lithium batteries, this paper applies ABC-BiGRU for the
first time to SOH prediction. Compared with other recursive neural network models, ABC-BiGRU
demonstrates superior predictive performance, with maximum root mean square error and mean
absolute error of only 0.016799317 and 0.012626847, respectively.

Keywords: state of health; artificial bee colony algorithm; lithium-ion cells; selection of health
indicators; bidirectional gated recurrent unit

1. Introduction

The acceleration of global industrialization, coupled with the deterioration of the
atmospheric environment and the high consumption of fossil fuels, has underscored the
critical importance of seeking sustainable energy development [1]. Lithium-ion batteries
are widely used in new energy vehicles and energy repository industries, owing to their
elevated energy density, prolonged life cycle, and minimal pollution [2]. However, practical
applications of lithium-ion batteries still face challenges such as safety concerns, capacity
degradation, energy density limitations, and charging efficiency issues [3]. With a substan-
tial amount of flammable electrolytes and reactive materials contained in the electrodes
of lithium-ion batteries, various factors such as incorrect usage, prolonged exposure to
extreme conditions, or an increasing number of battery cycles may lead to abnormal sit-
uations. Overcharging and over-discharging batteries can result in several detrimental
effects. These include internal electrolyte decomposition, the solid electrolyte interface
(SEI) breakdown, and the possibility of direct contact and reaction between the positive
and negative electrode materials and the electrolytes. Consequently, the heat generated by
internal chemical reactions may be out of the battery pack’s temperature control, triggering
a thermal runaway reaction [4–6].

The problem of thermal runaway and battery failure during the use of lithium-ion
batteries severely constrains the development of the new energy vehicle field. In recent
years, many lithium batteries have been recycled due to explosion and spontaneous com-
bustion accidents, causing immeasurable losses to users’ lives and property, as well as
the brand reputation of manufacturing companies [7]. In March 2024, for instance, in
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a residential apartment in Bankstown, Western Sydney, Australia, a fire broke out due
to the thermal runaway of a lithium battery within an electric bicycle, resulting in the
emergency evacuation of 40 individuals and a male of who sustained burns from the fire.
In August 2023, in Nanjing, Jiangsu Province, China, a fire broke out on an intercity bus
during transit, caused by the spontaneous combustion of a lithium battery carried by a
passenger, resulting in a tragic incident where two people died and five people suffered
partial burns. In July 2023, a cargo ship carrying 2000 new cars caught fire in waters 300 km
from Honshu Island, Japan, due to the spontaneous combustion of electric vehicle batteries,
resulting in the ship sinking to the seabed and causing significant economic losses. In
March 2023, a Florida-bound flight operated by Spirit Airlines was forced to make an
emergency landing in Jacksonville after a malfunctioning lithium-ion battery in the cabin
sparked a fire, resulting in the hospitalization of ten passengers. The widespread reports
of lithium battery safety incidents have raised concerns among various sectors of society
about the safety of new energy batteries [8–10].

To mitigate the risk of safety incidents associated with lithium batteries, it is com-
monplace to establish a battery retirement standard, typically set at 80% of their rated
capacity, while concurrently utilizing SOH metrics to quantify this process [11]. Adhering
to timely replacement protocols for aging lithium batteries by these standards can signif-
icantly reduce safety incidents, thus protecting the lives and assets of users. Therefore,
it is imperative to predict the future trend of SOH in batteries accurately. By accurate
prediction of battery SOH, problems can be detected in time, battery life can be extended,
and safety and performance stability can be improved, thus promoting lithium-ion batteries’
further development and application [12,13]. Presently, there are three primary categories
of methods for forecasting the SOH.

The first is based on battery mechanistic models, which summarize the internal ac-
tive behavior of the battery by establishing its mechanistic model and utilizing directly
measured battery parameters to build mathematical models to predict the battery’s SOH
based on the characteristics of internal physical and chemical processes of the battery [14].
Liping Chen et al. [15] combined equivalent circuit models (ECMs) with deep learning
networks to enhance prediction accuracy and generalization by data features. However,
ECM parameters are susceptible to environmental changes, which may result in fluctu-
ating outcomes and accumulating errors. S. Amir et al. [16] used 2-RC ECMs to capture
degradation for estimating battery SOH and, through experimental verification, demon-
strated the superiority of the 2-RC model in estimating SOH but with higher computational
costs. Zhicheng Xu et al. [17] combined ECMs with simplified electrochemical models to
evaluate lithium-ion batteries’ charge state and SOH simultaneously. Model parameters
were determined online using the recursive least squares method, thereby obtaining the
battery’s SOH. Manh-Kien Tran et al. [18] studied the application of ECMs to battery man-
agement systems, proposing a concise empirical framework to describe the influence of
SOH and temperature on the parameters of the ECM, and demonstrated effectiveness in
practical applications. Despite the ability of battery mechanism models to provide in-depth
explanations of battery discharge behavior, their complexity, sensitivity to parameters, and
high computational costs limit their widespread use in practical applications.

The second approach involves adaptive filtering methods. By dynamically adjusting
the parameters of the filter, it optimally combines system models and measurement data
to estimate the SOH of the battery, demonstrating strong adaptability but lacking online
capability [19]. Miao miao Zeng et al. [20] introduced a novel fuzzy unscented Kalman fil-
tering algorithm, combined with improved second-order RC ECMs, to enhance the accuracy
of lithium battery SOH estimation but with higher computational complexity of the model.
Qingxia Yang et al. [21] proposed a joint estimation method based on Kalman filtering,
with results indicating improved accuracy in estimating the SOC and SOH of power batter-
ies. MadhuSudana Rao Ranga et al. [22] proposed a method based on unscented Kalman
filtering, utilizing sigma points to fit non-linearity, thereby improving the prediction accu-
racy of SOH. Feng Zhu et al. [23] improved the speed and accuracy of SOH assessment for
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lithium-ion batteries by integrating unscented Kalman filtering and an enhanced unscented
particle filtering algorithm, achieving a practical estimation of SOH. Claudio Rossi et al. [24]
utilized a genetic algorithm to optimize the covariance matrix of the extended Kalman
filter to aid in SOH prediction. This method demonstrated good accuracy throughout the
entire battery lifecycle. Shulin Liu et al. [25] utilized 2-RC ECMs combined with a recursive
least squares algorithm with attached genetic factors for model parameter selection and
then used an adaptive unscented Kalman filter to predict the SOC and SOH of lithium
batteries jointly. Compared to unscented Kalman filtering, this method exhibited superior
accuracy. Although adaptive filtering models have lower storage and computational costs,
they heavily rely on preset initial conditions, requiring significant expertise and experience
for parameter adjustment and optimization while struggling with non-linear systems and
non-Gaussian noise.

The third is based on data-driven methods. Data-driven methods are black-box models
that operate without necessitating an understanding of the internal physical or chemical
reactions within the battery [26]. By analyzing data generated during the operation of
lithium batteries, such as open-circuit voltage, charge-discharge duration, operating tem-
perature, etc., and utilizing artificial intelligence or statistical models for modeling and
prediction, it is feasible to accurately estimate the SOH. This approach enables real-time
monitoring of battery SOH and better adaptation to changes in battery performance un-
der different operating conditions [27]. Lijun Zhang et al. [28] utilized a long short-term
memory (LSTM) model to predict the SOH of lithium-ion batteries, and the research re-
sults showed that it could effectively improve battery management efficiency and safety.
However, the study only selected battery capacity as the sole input feature, lacking fea-
ture dimensions in the data, which may lead to poor model generalization performance.
Dan Zhang et al. [29] utilized feature engineering to explore the high-temperature variation
rate of lithium-ion batteries, established a TCN model for SOH prediction, and adopted
sampling methods to provide confidence intervals for the prediction results. The verifica-
tion results indicate that it has high accuracy and effectiveness in battery SOH prediction.
Ran Li et al. [30] introduced an online battery health estimation model utilizing a particle
swarm support vector machine, enabling concurrent efficient estimation of SOC and SOH
with notable adaptability and generality capability. Shuxiang Song et al. [31] proposed a
lithium-ion battery SOH estimation method with higher accuracy using the XGBoost algo-
rithm. By extracting key features to describe the battery aging process and combining them
with Markov chains for accuracy correction, this method achieved a 10–20% improvement
in accuracy compared to traditional algorithms. Jianfang Jia et al. [32] proposed a joint
prediction method for lithium-ion battery SOH and RUL based on indirect HI, which uses
Gaussian process regression for short-term prediction and RUL mapping relationship to
predict remaining life. Data-driven approaches are suitable for solving complex non-linear
system problems. However, the modeling process requires a large amount of historical
data as support, leading to high computational and time costs and requiring significant
time and resources for data collection and processing [33].

In summary, traditional methods face various challenges when forecasting the SOH.
With the ongoing improvement of battery management systems (BMSs), the importance
of data collection in new energy vehicles is increasingly prominent. These data support
constructing digital twin models of new energy vehicles and help vehicle manufacturers
and users understand vehicle status in real time. Therefore, adopting a data-driven ap-
proach to mine cycle data of power batteries for obtaining battery status is essential and
feasible. In contrast, data-driven methods do not require prior knowledge but achieve
accurate estimation of health status through analyzing battery operation data, offering
advantages such as real-time performance and adaptability. By analyzing the intrinsic
correlations in battery cyclic data, HIs highly related to SOH can be extracted for model
training, enabling the removal of redundant data and alleviating the high prediction cost
issue caused by a large amount of data. Currently, some scholars model using a single data
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dimension, such as capacity. However, relying solely on inadequate data dimensions may
lead to insufficient prediction accuracy and lower adaptability.

This paper extracts multiple HIs as input features, applies the bidirectional information
processing capability of BiGRU to avoid the impact of redundant data on results, utilizes
the artificial bee colony optimization algorithm to fine-tune the model, and enhances the
prediction accuracy of SOH. An improved ABC-BiGRU model is constructed and validated
through cross-validation and comparative evaluation of the National Aeronautics and
Space Administration (NASA) battery cycle dataset. Experimental results demonstrate that
the model can further improve the accuracy of estimating lithium battery health status. The
primary contributions of this paper include:

(1) The BiGRU model with bidirectional feature learning capabilities was introduced.
Combining the gated recurrent unit (GRU) structure and bidirectional transmission
mechanism, the model can better capture the time series features in the data. Par-
ticularly, when dealing with capacity rebound caused by capacity recovery during
battery cycling processes, the BiGRU model can make more accurate predictions, thus
enhancing the accuracy and performance of the predictive model;

(2) The artificial bee colony intelligent algorithm was introduced as a means of model
optimization, conducting hyperparameter tuning for the BiGRU model, enabling
effective search for the optimal hyperparameter combination of the BiGRU model;

(3) The advantages of the proposed model are extensively discussed through comparisons
of prediction results from different models and test sets. Experimental results indicate
that predictions based on the BiGRU model exhibit higher accuracy and robustness
than GRU and LSTM models. Furthermore, even when compared to a BiGRU model
based on grid search, the ABC-BiGRU model proposed in this study demonstrates
significant performance enhancement.

The remainder of this paper is presented in the following order: Section 2 introduces
the data and the selection of HIs. Section 3 delineates the BiGRU model and elucidates the
optimization process utilizing intelligent algorithms. Section 4 expounds upon the experi-
mental settings and methodologies for data processing. Section 5 showcases the SOH predic-
tion results alongside corresponding comparative analyses. Finally, Section 6 encapsulates
the findings of this paper and discusses future improvements and research directions.

2. Data Introduction and Processing
2.1. Battery Data

This paper utilizes the publicly available lithium battery accelerated aging experiment
cycle dataset from NASA [34]. The dataset has undergone rigorous testing and encompasses
a wide range of physical indicators of batteries. It is open, practical, and can provide reliable
support for in-depth analysis of the impact of parameter changes during charging and
discharging on battery performance. Three sets of batteries, B0005, B0006, and B0007, were
selected as experimental subjects for cross-validation. All three sets of batteries were under
the same operating conditions. Charging is conducted at a constant current (CC) of 1.5 A
until the battery voltage reaches 4.2 V, then it continues in constant voltage (CV) mode
until the charging current drops to 20 mA. Discharge is performed at a constant current
(CC) level of 2 A until the battery voltages of cells 5, 6, and 7 drop to 2.7 V, 2.5 V, and
2.2 V, respectively. Cycle data parameters encompass battery temperature, charging and
discharging currents and voltages, and corresponding times. Table 1 delineates the battery’s
characteristics. Figure 1 illustrates the process of battery capacity decay with increasing
number of cycles for three batteries in an environment at room temperature of 24 ◦C.
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Table 1. Battery cycle data parameters.

Battery Charge
Current/A

Charge
Voltage/V

Charge Cutoff
Current/mA

Discharge
Current/A

Discharge Cutoff
Voltage/V

Rated
Capacity/Ah

B0005 1.5 4.2 20 2 2.7 2
B0006 1.5 4.2 20 2 2.5 2
B0007 1.5 4.2 20 2 2.2 2

Figure 1. Battery capacity changes with cycle times.

SOH is one of the indicators describing the current health status and degree of perfor-
mance degradation of lithium batteries, which can help users understand the battery usage
situation, formulate more reasonable battery usage and maintenance plans, prolong battery
life, and ensure safe battery use. Due to the multiple characterization parameters of battery
chemical properties, multiple methodologies exist for assessing SOH. Currently, mainstream
evaluation methods typically rely on changes in capacity or internal resistance. In this paper,
the SOH of a battery is defined as the percentage of the current capacity (Ccurrrent) of the
battery in relation to its rated capacity (Crated) [13]; it is calculated as follows:

SOH =
Ccurrrent

Crated
× 100% (1)

2.2. Selection of HIs

Lithium-ion battery cyclic data could reflect the process of battery life decay. By ana-
lyzing the correlation of physical parameters in the cycle data, relevant parameters that
depict the health status of lithium batteries, namely HIs, are extracted. HIs contain the
trends and characteristics of battery health status changes. This paper extracts parameters
related to indirect HIs from the lithium battery cyclic dataset as characteristic indicators
of lithium battery health status [35]. Before conducting correlation analysis, this paper
first analyzed the physical data collected from the cyclic data to ensure the rationality
of health indicator selection. Figure 2 shows the voltage curves of three sets of batteries
with discharge time, and it also shows that the voltage curves exhibit clear trends, grad-
ually shifting towards the negative direction of the x-axis with increasing cycle numbers.
Therefore, it should be considered to extract HIs from the changes in load voltage during
the discharge process. Additionally, the HIs were simultaneously extracted during the
charging process for correlation analysis to ensure sufficient feature extraction. Specifically,
this paper selected discharge peak voltage (DPT), average discharge voltage (ADV), as well
as charging peak voltage (CPT) and average charging voltage (ACV) as alternative HIs.
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Figure 3 illustrates the temperature versus time curves of the three cells at different
cycling ratios. The graph indicates that alterations in the cycling ratio lead to changes
in the occurrence time of the maximum temperature, causing the curve to shift in the
negative direction of the x-axis. Consequently, both the peak temperature and average
temperature during charging and discharging processes may significantly affect SOH.
That is the reason why this paper considers selecting discharge peak temperature (DPT),
average discharge temperature (ADT), charge peak temperature (CPT), and average charge
temperature (ACT) as alternative HIs. The variation of time and data during the cycling
process is closely related. Thus, charge duration (CD) and discharge duration (DD) can be
selected as alternative HIs and included in correlation analysis. The fluctuation of current in
Li-ion batteries during the cycling phase is influenced by various external factors, including
charging and discharging patterns and rates. These factors lead to unstable and irregular
changes in current. Consequently, this paper excludes parameters dependent on current
from consideration as HIs.

(a) B0005 (b) B0006 (c) B0007

Figure 2. Changes in the discharge voltage of batteries with different cycle numbers over time.

(a) B0005 (b) B0006 (c) B0007

Figure 3. Changes in the discharge temperature of batteries with different cycle numbers over time.

After analysis, the following indicators generated during the charging and discharg-
ing processes are selected as the alternative HIs for correlation analysis. Charging-related
factors include charge duration (CD), average charge temperature (ACT), charge peak tem-
perature (CPT), average charge voltage (ACV), and charge peak voltage (CPV), while the
discharge-related factors include discharge duration (DD), average discharge temperature
(ADT), discharge peak temperature (DPT), average discharge voltage (ADV), and discharge
peak voltage (DPV).

Correlation analysis serves to determine the relationships between different variables,
facilitating a deeper understanding of the patterns and regularities within the data. As
a vital variable selection tool, Pearson correlation analysis plays a crucial role in data
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analysis and model construction. It helps determine the significance of relationships
between variables and identifies features with higher correlations to the target variable,
simplifying the model and improving predictive performance. The Pearson correlation
coefficient measures the linear relationship between HIs and capacity, with its absolute
value closer to 1, indicating a more significant correlation. This data-driven, simple,
intuitive, and accurate method reliably supports lithium battery health prediction. The
Pearson correlation coefficient can be computed using the formula below:

rxy =
∑n

i=1(xi − x̄) · (yi − ȳ)√
∑n

i=1(xi − x̄)2 ·
√

∑n
i=1(yi − ȳ)2

(2)

where rxy represents the Pearson correlation coefficient between HIs x and capacity y.
xi and yi, respectively, denote the i-th observation in the sample, and x̄ and ȳ repre-
sent the means of HIs and capacity. Perform Pearson correlation analysis on alternative
HIs and battery capacity, calculating correlation coefficients. The correlation coefficient
heatmap between HIs and capacity is shown in Figure 4, with specific correlation co-
efficient values listed in Table 2. According to the definition of Pearson correlation co-
efficient, HIs with larger absolute values of coefficients have stronger correlations with
capacity, better explaining the variation in SOH. Therefore, this paper selects HIs with
correlation coefficients greater than 0.7 as input features for the model. Average discharge
voltage (ADV), discharge peak temperature (DPT), average discharge temperature (ADT),
discharge duration (DD), and average charge voltage (ACV) are used as HIs for model
training [36].

Figure 4. Pearson correlation coefficient heatmap.

Table 2. HIs and their correlation coefficients.

Charge HIs Correlation Coefficient Discharge HIs Correlation Coefficient

CD −0.286117 DD 0.948277
ACT 0.111535 ADT −0.781264
CPT 0.149684 DPT −0.771028
ACV −0.827478 ADV 0.887130
CPV 0.334212 DPV 0.127640
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3. Method for Estimating SOH Based on ABC-BiGRU
3.1. BiGRU Model

Lithium battery cyclic data are made up of a temporal dataset with long-term de-
pendencies between data, implying that changes in data may exhibit periodicity or be
influenced by time. Initially, the selection of RNNs, capable of capturing the features
of time-series data, is contemplated for model construction. Unlike feedforward neural
networks, RNNs possess recurrent connections, allowing them to retain historical state
information when processing sequential data. This implies that RNNs can take into account
contextual information while processing sequence data, rendering them highly suitable for
SOH prediction of lithium batteries. However, due to the extensive time span of lithium
battery datasets, RNNs face challenges in capturing the long-term dependencies present in
the data. During deep training, gradients may grow or diminish exponentially, leading to
gradient vanishing or exploding. This phenomenon results in the loss of crucial contextual
information, leading to poor model prediction performance.

In 2014, introduced by Kyunghyun Cho et al., the gated recurrent unit (GRU) was
devised to tackle the issue of gradient vanishing or explosion encountered by conventional
RNNs when handling lengthy sequence tasks, thereby addressing the difficulty in capturing
long-distance dependencies within sequences [37]. In contrast to LSTM, GRU boasts a
more straightforward structure and fewer parameters, rendering it advantageous in tasks
involving smaller datasets and aiding in overfitting prevention [38]. The unit structure of
GRU is depicted in Figure 5.

Figure 5. Single GRU structure.

The primary framework of the GRU incorporates two pivotal gate units: the update
gate and the reset gate. They help handle the data flow and determine which information
should be passed and retained at each time step, enhancing the model’s memory and
generalization capabilities.

The update gate, denoted as zt, is tasked with updating the hidden state and determin-
ing how much previous memory the model should retain at each step. The reset gate rt is
responsible for deciding whether the model should ignore previous memory and compute
the output based on the current input. The calculation formulas are as follows.

zt = σ(Wz · [ht−1, xt] + bz) (3)

rt = σ(Wr · [ht−1, xt] + br) (4)

where Wr and Wz denote weight matrices, br and bz represent bias vectors, σ signifies the
sigmoid function, and [ht−1, xt] indicates the concatenation of the hidden state ht−1 from
the preceding time step and the input xt.

h̃t denotes the candidate hidden state, which is computed from the current input and
past hidden states. The specific formula is shown below:

h̃t = tanh(Wh · [rt ⊙ ht−1, xt] + bh) (5)
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where Wh stands for the weight matrix utilized in computing the candidate hidden state,
rt denotes the reset gate, and bh represents the bias vector for candidate values. The
symbol ⊙ signifies element-wise multiplication.

The current hidden state ht is computed based on the update gate and the candidate
hidden state, and it functions to retain information from all preceding time steps. The
specific formula is shown below:

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t (6)

where zt represents the update gate and ht represents the current hidden state.
To verify the feasibility of the GRU model, this paper processed the data and employed

the GRU model for training and prediction. Figure 6 compares the predicted and actual
values through cross-validation after training with the GRU model. The results indicate
that the prediction performance of the GRU model is poor at the beginning and end of
the sequence when predicting the SOH of lithium batteries, suggesting that it fails to fully
capture the characteristics of the data.

(a) B0005 (b) B0006 (c) B0007

Figure 6. Comparison between GRU model prediction results and actual values.

The capacity degradation curve of lithium-ion batteries does not decrease linearly
with the number of cycles but exhibits complex non-linear characteristics. Considering that
the estimation accuracy of lithium battery SOH is affected by multidimensional features,
the change curve at the beginning and end of its life differs, and a capacity recovery phe-
nomenon affects the prediction effect. To overcome the limitations of GRU, we introduce
the BiGRU model with bidirectional feature learning capability. The BiGRU model has the
ability to process both forward and backward information, enabling it to more comprehen-
sively capture the key features and trends of the SOH degradation curve, thus better fitting
the SOH degradation curve and more effectively describing the complex characteristics of
the SOH degradation process.

BiGRU combines multiple independent GRU models. The forward GRU propagates
information along the sequence in the forward direction, while the backward GRU along
the reverse direction. These independent models derive hidden states separately then
merge and calculate to obtain a comprehensive hidden state at each time step. The network
structure of BiGRU, which could simultaneously explore past and future information in
time-series data, thereby overcoming performance errors caused by the phenomenon of
capacity recovery in lithium batteries, could more accurately extract the SOH degradation
features of lithium batteries. The structure of the BiGRU network is shown in Figure 7.
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Figure 7. BiGRU structure.

3.2. Artificial Bee Colony Optimization Algorithm

By optimizing the hyperparameters of the model through optimization algorithms,
the performance of the model can be enhanced. The grid search optimization algorithm
is a commonly used method for hyperparameter optimization. However, it requires
manual setting of hyperparameter combinations during algorithm initialization. Since
the optimization process for hyperparameters often has infinite solutions, it is difficult
to find the optimal solution from a limited set of hyperparameters. Therefore, the grid
search algorithm is unsuitable for optimizing parameters with continuous values [39]. In
order to achieve the best performance of the model with limited computing resources and
avoid hyperparameters falling into local optimal solutions, this paper utilizes the ABC
intelligent algorithm for hyperparameter optimization. The ABC algorithm requires fewer
initial parameters and exhibits stronger global search capabilities, making it suitable for
continuous optimization problems. Unlike the particle swarm optimization algorithm,
the ABC algorithm does not require the maintenance of particles’ position and velocity
information, and its parameter setting is simple, thus saving computational resources. This
enables it to perform efficient optimization with limited resources [40].

ABC is a heuristic optimization algorithm proposed by Karaboga et al. in 2005,
which abstracts specific algorithms from the nectar harvesting behavior of bee colonies by
observing their biological behavior [41]. By simulating the behavior of bees searching for
nectar sources, the algorithm utilizes an information-sharing mechanism among individual
bees to explore the solution space globally. During foraging, bees choose the optimal food
source or the best solution based on the nectar concentration and distance of flowers. In
the algorithm, “bees” are divided into employed bees, onlooker bees, and scout bees [42].
Employed bees are responsible for exploring food sources and evaluating their quality
within a local area. Onlooker bees are responsible for exploring more satisfactory nectar
sources on a global scale and exchanging information with other bees. Finally, scout bees
are responsible for evaluating the quality of known nectar sources and updating them.

During the employed bee phase, after determining the number and range of hyper-
parameters to be optimized, generate N initial feasible solutions randomly within the
specified range as follows:

xij = xmin
j + rand(0, 1)

(
xmax

j − xmin
j

)
(7)

which assigns feasible solutions to employed bees, where xij represents the jth parameter of
the ith feasible solution. xmax

j and xmin
j are the upper and lower bounds of the jth parameter,

respectively, and are randomly sampled by multiplying a random number between [0, 1].
Employed bees begin foraging in the vicinity of the allocated feasible solutions and

calculate their corresponding fitness f it(xi). The fitness calculation formula is as follows:

f it(xi) =

{
1

1+ f (xi)
, f (xi) > 0

1 + abs( f (xi)), f (xi) < 0
(8)
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where f (xi) represents the objective function, and in the context of this paper’s State
of Health (SOH) prediction task, the objective function outputs the evaluation criterion
of the model.

During the onlooker bee phase, selecting and updating the solutions based on the nec-
tar sources discovered by the employed bees is necessary. If the solution xij has a more op-
timal xnew

ij within its domain, the update is performed according to the following formula.

xnew
ij = xij + ϕij ·

(
xij − xkj

)
(9)

where xij is the current solution, xnew
ij is the updated solution, xkj is the solution of a

randomly selected employed bee, and ϕij is a random number within [0, 1].
In the scout bee phase, it is necessary to check all solutions from employed bees

and onlooker bees. If some solutions have yet to be updated within a certain number of
iterations, they are considered local optima and need to be replaced. When replacing these
local optima, new solutions are randomly generated, and the iteration algorithm is repeated
until the maximum preset number of iterations is reached.

The ABC algorithm optimizes the solution to the problem by simulating these be-
haviors of bees, iteratively searching and continuously updating the positions of nectar
sources until the stopping criteria are met [43]. It is simple and easy to understand, with
low computational costs, making it particularly suitable to solve complex optimization
problems. The initial parameter configuration of the ABC algorithm is shown in Table 3.

Table 3. Initial parameters of ABC optimization algorithm.

Params Value

Population Size 20
Learning Rate Range [0.01, 0.0001]
Hidden Size Range [16, 128]

Maximum Iterations 30
Objective Function RMSE

3.3. ABC-BiGRU

In summary, this paper proposes a hybrid model based on the artificial bee colony
algorithm and bidirectional gated recurrent unit, namely the ABC-BiGRU model, for
accurately estimating the SOH of lithium batteries that overcomes the limitation of the
traditional GRU model’s unidirectional information propagation mechanism, which fails to
capture the bidirectional dependencies in sequences fully. The BiGRU model trains gated
recurrent units in different information propagation directions, simultaneously considering
past and future information, better capturing bidirectional dependencies in time series data,
and enhancing the model’s fitting capability and prediction accuracy. However, introducing
BiGRU also causes some problems. For example, it increases the model’s training cost
and time, especially when dealing with large datasets, requiring more computational
resources and time for training. Therefore, introducing the ABC intelligent algorithm can
compensate for the shortcomings of the BiGRU model, with its outstanding ability to search
for hyperparameters and efficient optimization capability that can help the model reach a
better state during training, enabling the model to quickly find the optimal combination
of hyperparameters, reducing the model’s training time and resource consumption, and
avoiding falling into local optimal solutions, thereby improving the model’s generalization
ability and stability. Figure 8 shows the architecture of the ABC-BiGRU model.
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Figure 8. Architecture of the ABC-BiGRU model.

4. Experimental Process
4.1. Experimental Settings

In this study, we constructed a new SOH prediction model using deep learning tech-
niques, and it was tuned using an artificial bee colony algorithm. To verify the model stabil-
ity, B0005, B0006, and B0007 from NASA’s publicly available lithium battery cycling dataset
were divided into three experimental groups and cross-validated, as detailed in Table 4.

Table 4. Experimental group.

Train Data Test Data

B0006, B0007 B0005
B0007, B0005 B0006
B0005, B0006 B0007

Meanwhile, in order to verify the validity and reliability of the ABC-BiGRU predic-
tion model, we conducted model comparison experiments using M1 (GRU), M2 (LSTM),
M3 (BiGRU), M4 (BiGRU based on grid search), and M5 (ABC-BiGRU), as detailed in
Table 5. The performance advantages of ABC-BiGRU in the SOH prediction task are com-
pared by analyzing the performance of different types of recurrent neural network models
in the SOH prediction task.

Table 5. Experimental results comparison model.

Model Details

M1 GRU
M2 LSTM
M3 BiGRU
M4 GS-BiGRU
M5 ABC-BiGRU
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To comprehensively capture the time-dependent characteristics in lithium battery
cycling data, this paper adopts the sliding window technique to partition the data, aiming
to preserve the original structure and temporal continuity of the data. The sliding window
has a step size of 1, sliding on the data sequence, and each sliding takes s columns of data
as input, where s represents the size of the sliding window. Xi represents the ith column
of input data, containing 5 highly correlated health indicators selected and the current
SOH status, serving as the input for training the model. The structure of the input and
output data is shown in Figure 9. Due to the close correlation between the health status
of lithium batteries and their historical data, using a sliding window can ensure that the
model captures the evolution of battery health status over time. Sliding a fixed-size window
along the time axis allows for the generation of continuous and overlapping subsequences
from historical data, aiding the model in better understanding the operation process of the
battery and changes in its health status.

Figure 9. Sliding window.

4.2. Experimental Steps

To better fit the SOH prediction curve, the experimental process of the ABC-BiGRU
model is illustrated in Figure 10, primarily comprising the following four steps.

Step 1: Extract HIs. Conduct correlation analysis on the data and calculate the Pearson
coefficient to determine which HIs selected have a significant impact on the degradation
of SOH. Then, select the HIs that have a more significant impact on SOH for subsequent
model training input features.

Step 2: Data preprocessing. Extract the dataset containing HIs and remove the irrel-
evant and redundant data. In addition, the data were divided into training and test sets
using a sliding window to prepare for subsequent analysis and modeling. Normalize the
data to eliminate the dimensional impact among features and accelerate model convergence.
This ensures consistency of scales among different features, enhances the training speed of
the model, and avoids instability in model training caused by different numerical ranges.

Step 3: Hyperparameter optimization. Employ the artificial bee colony algorithm to
optimize the unoptimized BiGRU model to minimize the RMSE model evaluation metric.
Conduct a random search in the hyperparameter space to discover the optimal combination
of hyperparameters, aiding the model in avoiding local optimal solutions and enhancing
model performance.



Electronics 2024, 13, 1675 14 of 19

Step 4: Training and evaluation. Set the optimal hyperparameter combination as
the initial hyperparameters of the model and continuously adjust the internal parameters
of the BiGRU model through the backpropagation algorithm to minimize the loss func-
tion. After training, assess the performance of the model through cross-validation and
comparative experiments.

Figure 10. Process of SOH prediction using ABC-BiGRU.

4.3. Evaluation Criteria

In order to comprehensively evaluate the prediction performance of the ABC-BiGRU
model, we choose the root mean square error (RMSE), the mean absolute error (MAE), and
the coefficient of determination (R2) as the assessment metrics to validate the effectiveness
of the model [44].

(1) RMSE is the square root of the average of the squares of the differences between the
predicted values and the actual values. A smaller RMSE indicates a minor devia-
tion between the model’s predicted results and the actual values, indicating better
predictive performance. The calculation formula is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

(2) MAE is the average of the absolute differences between predicted and actual values.
A more petite MAE indicates a more minor average prediction deviation of the model,
indicating better predictive performance. The calculation formula is as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (11)

(3) R2 measures the degree to which the model describes the total variance, used to express
the proportion of change in the dependent variable that changes in the independent
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variable can elucidate. A value closer to 1 indicates a better fit of the model, meaning
that the independent variables have a more substantial explanatory power for the
dependent variable.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (12)

where n is the number of samples, yi is the actual value of the ith sample, ŷi is
the predicted value of the ith sample by the model, and ȳ is the mean value of the
actual values. By calculating and comparing these three indicators, the predictive
performance and fitting degree of the model can be comprehensively evaluated,
thereby verifying the effectiveness and reliability of the ABC-BiGRU model.

5. Experimental Results and Analysis
5.1. ABC-BiGRU Model Performance

Table 6 displays the performance of the ABC-BiGRU model through cross-validation,
while Figure 11 illustrates the prediction results. Moreover, all models in this paper utilized
a fixed random seed to ensure the result reproducibility.

Table 6. ABC-BiGRU model performance.

Model Train Data Test Data RMSE MAE R2

ABC-BiGRU
B0006, B0007 B0005 0.016468 0.013015 0.997391
B0007, B0005 B0006 0.040698 0.033586 0.975761
B0005, B0006 B0007 0.016856 0.013511 0.997109

(a) B0005 (b) B0006 (c) B0007

Figure 11. Comparison between BiGRU model prediction results and actual values.

It can be observed that models trained with B0005 and B0006 as the input set, B0007 as
the validation set, as well as models trained with B0006 and B0007 as the input set,
B0005 as the validation set, all demonstrated excellent performance, with three evalu-
ation metrics reaching their minimum values compared to other models. Due to significant
differences in the overall trends of B0006 cyclic data compared to B0005 and B0007, models
trained with B0007 and B0005 and tested with B0006 yielded relatively poorer performance.
However, compared to other baseline models trained with B0007 and B0005, there was still
significant performance improvement.

5.2. Comparative Analysis

This study thoroughly validates the experimental results through ablation and com-
parative experiments. All model results are presented in Table 7, while the comparison of
predictive performance among various models is illustrated in Figure 12. The comparison
reveals that the bidirectional gated unit based on the artificial bee colony algorithm exhibits
the best performance across all sample sets regarding the three evaluation metrics. For ex-
ample, using the ABC-BiGRU model to predict the B0005 battery, the RMSE is 0.016468789.
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Compared to using LSTM for prediction, it reduces by 0.029394544, resulting in a 64.1%
decrease in error. Compared to GRU for prediction, it reduces by 0.051050016, leading
to a 75.6% decrease in error. Compared to the BiGRU optimized using grid search, it
still reduces the RMSE by 0.007027448, resulting in a 30.1% decrease in error. Therefore,
the ABC-BiGRU model exhibits significant performance advantages in lithium battery
SOH prediction tasks.

Table 7. Comparative experimental results.

Model Train Data Test Data RMSE MAE R2

M1
B0006, B0007 B0005 0.067518 0.041553 0.956152
B0007, B0005 B0006 0.084081 0.062595 0.896789
B0005, B0006 B0007 0.071553 0.044247 0.947920

M2
B0006, B0007 B0005 0.045863 0.036546 0.979768
B0007, B0005 B0006 0.067998 0.056578 0.932496
B0005, B0006 B0007 0.050060 0.040486 0.974508

M3
B0006, B0007 B0005 0.026747 0.019499 0.993118
B0007, B0005 B0006 0.055819 0.048749 0.954512
B0005, B0006 B0007 0.022451 0.016103 0.994872

M4
B0006, B0007 B0005 0.023826 0.018451 0.994539
B0007, B0005 B0006 0.044727 0.037742 0.970794
B0005, B0006 B0007 0.021127 0.015861 0.995459

M5
B0006, B0007 B0005 0.016468 0.013015 0.997391
B0007, B0005 B0006 0.040698 0.033586 0.975761
B0005, B0006 B0007 0.016856 0.013511 0.997109

(a) B0005 (b) B0006 (c) B0007

Figure 12. Comparison of errors among different models.

6. Conclusions

This paper developed a lithium battery SOH prediction model that combines BiGRU
and the ABC intelligent optimization algorithm. By studying the NASA lithium battery
cycling dataset, we extracted capacity-related HIs from the battery’s electrochemical data
and utilized the PCC analysis method to select highly correlated data as input features
for the model. Furthermore, time dependence in battery cycle data can be efficiently cap-
tured using BiGRU models, enhancing the understanding and predictive capability of
battery state changes. Compared to traditional recurrent neural network structures such
as RNN and unidirectional GRU, BiGRU can more fully utilize past and future informa-
tion, thereby improving the model’s predictive performance. Additionally, by combining
the global search capability and efficiency of the ABC algorithm, we found the optimal
parameter combination in the parameter space, further improving the performance and
generalization ability of the model. Experimental results indicate that the proposed model
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exhibits stable and reliable predictive performance. The ABC-BiGRU model demonstrates
significant performance advantages and robustness compared to other recurrent neural
network structures.

In future research, we would consider employing different selection methods to choose
more suitable HIs. Additionally, we will investigate a more expansive range of battery
types and examine additional external environmental factors that impact battery capacity,
such as varying temperatures and storage durations on capacity changes.
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