
Citation: Kang, H.; Do, S. ML-Based

Software Defect Prediction in

Embedded Software for

Telecommunication Systems

(Focusing on the Case of SAMSUNG

ELECTRONICS). Electronics 2024, 13,

1690. https://doi.org/10.3390/

electronics13091690

Academic Editor: Claus Pahl

Received: 10 March 2024

Revised: 15 April 2024

Accepted: 22 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

ML-Based Software Defect Prediction in Embedded Software for
Telecommunication Systems (Focusing on the Case of
SAMSUNG ELECTRONICS)
Hongkoo Kang 1 and Sungryong Do 2,*

1 Software Engineering Team, Samsung Electronics Co. Ltd., Suwon 16677, Republic of Korea;
hkkang04@naver.com

2 Division of Computer Engineering, The Cyber University of Korea, Seoul 02708, Republic of Korea
* Correspondence: imdosungryong@gmail.com

Abstract: Software stands out as one of the most rapidly evolving technologies in the present era,
characterized by its swift expansion in both scale and complexity, which leads to challenges in quality
assurance. Software defect prediction (SDP) has emerged as a methodology crafted to anticipate
undiscovered defects, leveraging known defect data from existing codes. This methodology serves to
facilitate software quality management, thereby ensuring overall product quality. The methodologies
of machine learning (ML) and one of its branches, deep learning (DL), exhibit superior accuracy
and adaptability compared to traditional statistical approaches, catalyzing active research in this
domain. However, it makes it hard to generalize, not only because of the disparity between open-
source projects and commercial projects but also due to the differences in each industrial sector.
Consequently, further research utilizing datasets sourced from diverse real-world sectors has become
imperative to bolster the applicability of these findings. For this study, we utilized embedded
software for use with the telecommunication systems of Samsung Electronics, supplemented by the
introduction of nine novel features to train the model, and a subsequent analysis of the results ensued.
The experimental outcomes revealed that the F-measurement metric has been enhanced from 0.58 to
0.63 upon integration of the new features, thereby signifying a performance augmentation of 8.62%.
This case study is anticipated to contribute to bolstering the application of SDP methodologies within
analogous industrial sectors.

Keywords: software defect prediction; machine learning; software quality metrics; software quality
management; embedded software for telecommunication systems

1. Introduction

In the present era, software represents one of the most rapidly evolving domains.
Companies are leveraging software as a core component for enhancing productivity, reduc-
ing costs, and exploring new markets. Today’s software is providing more functionality,
processing bigger datasets, and executing more complex algorithms compared to those
in the past. Furthermore, the software must interact with increasingly intricate external
environments and must satisfy diverse constraints. Consequently, the scale and complexity
of software exhibit swift escalation. Measurement data at Volvo showed that a Volvo vehicle
in 2020 had about 100 million LOC. This means that the vehicle had software equivalent to
6000 average books, which can be equivalent to a decent town library [1].

As the scope and intricacy of software expand, ensuring its reliability becomes an
increasingly formidable task [2]. It is practically unachievable to detect and remediate all
defects within a given finite time and with limited resources. Software defects refer to
“errors or failures in software”, which could result in inaccurate or unintended behavior
and the triggering of unforeseen behavior [3,4]. Quality management and testing expendi-
tures aimed at guaranteeing reliability constitute a substantial portion of overall software

Electronics 2024, 13, 1690. https://doi.org/10.3390/electronics13091690 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091690
https://doi.org/10.3390/electronics13091690
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3394-8220
https://doi.org/10.3390/electronics13091690
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091690?type=check_update&version=2

Electronics 2024, 13, 1690 2 of 23

development costs. This expense escalates exponentially to rectify software defects in the
later stages of development [5]. Hence, utilizing the available resources and minimizing
defects in the initial phase of software development are crucial to obtaining high-quality
outcomes [6]. Such measures can curtail the expenses associated with defect rectification
and mitigate the adverse ramifications of defects.

Software defect prediction (SDP) is a technique geared toward identifying flawed
modules within source code, playing a crucial role in ensuring software quality [7,8]. SDP
not only bolsters software quality but also economizes on time and cost by efficiently allo-
cation resources to areas with a high probability of defects under limited time and resource
situation. Additionally, SDP augments testing efficiency by facilitating the identification
of critical test cases and optimizing the test sets effectively [9]. Machine learning-based
software defect prediction (ML-SDP or SDP) represents a technological framework that
leverages attributes gleaned from historical software defect data, software update records,
and software metrics to train machine learning models for defect prediction [8]. M. K.
Thota et al. [8] envision that ML-SDP will engender more sophisticated and automated
defect detection mechanisms, which are emerging as focal points of research within the
realm of software engineering. Figure 1 elucidates the foundational process of SDP. The
process includes collecting data (1⃝), extracting the features and labeling them (2⃝), train-
ing and testing the models (3⃝), and operationalizing the defect predictor for real-world
application (4⃝).

Electronics 2024, 13, 1690 2 of 24

and the triggering of unforeseen behavior [3,4]. Quality management and testing expend-
itures aimed at guaranteeing reliability constitute a substantial portion of overall software
development costs. This expense escalates exponentially to rectify software defects in the
later stages of development [5]. Hence, utilizing the available resources and minimizing
defects in the initial phase of software development are crucial to obtaining high-quality
outcomes [6]. Such measures can curtail the expenses associated with defect rectification
and mitigate the adverse ramifications of defects.

Software defect prediction (SDP) is a technique geared toward identifying flawed
modules within source code, playing a crucial role in ensuring software quality [7,8]. SDP
not only bolsters software quality but also economizes on time and cost by efficiently al-
location resources to areas with a high probability of defects under limited time and re-
source situation. Additionally, SDP augments testing efficiency by facilitating the identi-
fication of critical test cases and optimizing the test sets effectively [9]. Machine learning-
based software defect prediction (ML-SDP or SDP) represents a technological framework
that leverages attributes gleaned from historical software defect data, software update rec-
ords, and software metrics to train machine learning models for defect prediction [8]. M.
K. Thota et al. [8] envision that ML-SDP will engender more sophisticated and automated
defect detection mechanisms, which are emerging as focal points of research within the
realm of software engineering. Figure 1 elucidates the foundational process of SDP. The
process includes collecting data (①), extracting the features and labeling them (②), train-
ing and testing the models (③), and operationalizing the defect predictor for real-world
application (④).

Figure 1. Machine learning-based software defect prediction.

Nonetheless, the applicability of SDP models derived from previous research may
encounter limitations when we directly transpose them to industrial sectors. Disparities
in software attributes and the root causes of defects are apparent across various industry
sectors, and even within a single industrial sector. Discrepancies in software development
methodologies and practices among projects can engender variations in software attrib-
utes and the causes of defects. However, accessing real industrial sector data is often chal-
lenging as the data are either not publicly available or are difficult to obtain, making re-
search challenging regarding such data [10]. Stradowski et al. [11] underscore that al-
though machine learning research aimed at predicting software defects is increasingly va-
lid in industrial settings, there is still a lack of sufficient practical focus on bridging the
gap between industrial requirements and academic research, which could help narrow
the gap between them. Practical impediments, including disparities in software attributes,
constraints in metric measurement, data scarcity, and inadequate cost-effectiveness may
impede the application of SDP methodologies from academic research to industrial sec-
tors. Hence, we can facilitate the harnessing of SDP methodologies and foster future re-
search initiatives by suggesting the practical applicability, implementation, and deploy-
ment of SDP through empirical case studies within industrial sectors.

Figure 1. Machine learning-based software defect prediction.

Nonetheless, the applicability of SDP models derived from previous research may
encounter limitations when we directly transpose them to industrial sectors. Disparities
in software attributes and the root causes of defects are apparent across various industry
sectors, and even within a single industrial sector. Discrepancies in software development
methodologies and practices among projects can engender variations in software attributes
and the causes of defects. However, accessing real industrial sector data is often challenging
as the data are either not publicly available or are difficult to obtain, making research
challenging regarding such data [10]. Stradowski et al. [11] underscore that although
machine learning research aimed at predicting software defects is increasingly valid in
industrial settings, there is still a lack of sufficient practical focus on bridging the gap
between industrial requirements and academic research, which could help narrow the
gap between them. Practical impediments, including disparities in software attributes,
constraints in metric measurement, data scarcity, and inadequate cost-effectiveness may
impede the application of SDP methodologies from academic research to industrial sectors.
Hence, we can facilitate the harnessing of SDP methodologies and foster future research
initiatives by suggesting the practical applicability, implementation, and deployment of
SDP through empirical case studies within industrial sectors.

In this research, we have endeavored to devise an SDP model by leveraging data
sourced from embedded software utilized in Samsung’s telecommunication systems. To
tailor the SDP model to the specific nuances of embedded software for telecommunication
systems, we have introduced nine novel features. These features encompass six software
quality metrics and three source code type indicators. Harnessing these features, we have

Electronics 2024, 13, 1690 3 of 23

trained a machine learning model to formulate the SDP model and scrutinized the impact
of the new features on predictive efficacy to validate their effectiveness. The experimental
outcomes revealed that the SDP model incorporating the nine new features exhibited a
notable enhancement of 0.05 in both Recall and F-measurement metrics. Moreover, the
overall predictive performance of the SDP model was characterized by an accuracy of
0.8, precision of 0.55, recall of 0.74, and an F-measurement of 0.63. This performance
level is comparable to the average accuracy achieved across 11 projects, as discussed
by Kamei et al. [12]. The results of this study confirm the contribution of the nine new
features to predictive performance. Moreover, by examining the predictive contributions of
each software quality metric, we can identify meaningful indicators for software quality
management. Additionally, providing source codes to the machine learning model resulted
in enhanced predictive capability. These findings suggest that SDP can be utilized for the
early detection of software defects, efficient utilization of testing resources, and evaluation
of the usefulness of software quality metrics in similar domains.

This paper adheres to the following structure: Section 2 explores the theoretical
foundations of software defect prediction (SDP), reviews the prior research in the field, and
elucidates the limitations of previous studies. Section 3 encompasses an in-depth analysis
of the characteristics of embedded software data pertinent to telecommunication systems,
outlines the research questions, and delineates the experimental methodology employed.
Section 4 scrutinizes the experimental findings and extrapolates conclusions pertaining
to the research questions posited. Lastly, Section 5 expounds upon the implications and
constraints of this study, alongside outlining avenues for future research endeavors.

2. Related Work
2.1. Software Defect Prediction Applied in Open-Source Projects

The methodologies of machine learning (ML) and one of its branches, deep learning
(DL), exhibit heightened accuracy and versatility in comparison to traditional statistical
approaches, thus catalyzing active research endeavors [13–16].

Khan et al. [17] employed Bayesian belief networks, neural networks, fuzzy logic,
support vector machines, expectation maximum likelihood algorithms, and case-based
reasoning for software defect prediction, offering insights into the strengths, weaknesses,
and prediction accuracy of each model. Their research outcomes furnish valuable guidance
in selecting appropriate methodologies tailored to available resources and desired quality
standards. The spectrum of research on SDP encompasses diverse techniques such as
preprocessing, mitigating class imbalance, optimal feature selection [18,19], the adoption of
novel machine learning algorithms [20–22], and hyperparameter optimization to augment
prediction performance.

Predictive performance exhibits wide-ranging variability, with F-measurement criteria
spanning from 0.50 to 0.99. Given the pronounced divergence in performance observed
across studies in the literature, generalizing the findings of individual investigations proves
challenging. Table 1 encapsulates a summary of previous research endeavors pertaining to
SDP applied in open-source projects.

Table 1. Overview of studies applied in open-source projects.

Studies Data Buggy Rate (%) Granularity Feature Model Evaluation

[5] PC1 Unknown Unknown Complexity,
LOC ACO-SVM

Precision 0.99,
Recall 0.98,

F-Measure 0.99

[23] Apache POI 63.57 Class
OO-Metric [24],

Complexity,
LOC

Bagging, . . .
Recall 0.83,

Precision 0.82,
AUC 0.876

Electronics 2024, 13, 1690 4 of 23

Table 1. Cont.

Studies Data Buggy Rate (%) Granularity Feature Model Evaluation

[25]

jEdit
Lucene

log4j
Xalan

Poi

19.2~49.7 File Image of Source
Code DTL-DP

F-Measure
0.58~0.82,
Accuracy
0.70~0.86

[26] AEEEM
Relink 9.26~50.52 Class Complexity,

LOC Ft-Transformer Recall 0.77

[27]
AEEEM
AUDI
JIRA

4~40 Unknown Complexity
LOC Unknown F-Measure

0.50~0.86

[28] AEEEM
AUDI 2.11~39.81 Class,

File - TabNet Recall 0.85

[29]

Camel
Lucene
Synapse
Xerces
Jedit

Xalan
Poi

15.7~64.2 File AST (Abstract
Syntax Tree) Transformer F-Measure

Average 0.626

Shafiq et al. [5] introduced the ACO-SVM model, which amalgamates the ant colony
optimization (ACO) technique with the support vector machine (SVM) model. ACO serves
as an optimization technique for feature selection. In their investigation, conducted utilizing
the PC1 dataset, the ACO-SVM model showcased a specificity of 98%. This performance
surpassed SVM by 5%, KNN by 4%, and the naive Bayes (NB) classifier by 8%.

Malhotra and Jain [23] undertook defect prediction by focusing on the open-source
software Apache POI. They leveraged object-oriented CK metrics [30] and the QMOOD
(quality model for object-oriented design) as features and juxtaposed various classifica-
tion models, including linear regression, random forest, Adaboost, bagging, multilayer
perceptron, and a support vector machine. Performance assessments based on metrics
such as the area under the ROC curve (AUC-ROC), sensitivity, specificity, precision, and
accuracy indicated that the random forest and bagging results surpassed other models in
predictive efficacy.

Lee et al. [25] proposed a method for SDP that utilizes source code converted into
images instead of software metrics. In their study, conducted using publicly available
data from the PROMISE repository, they found that classifying keywords, spaces, and
newline characters within the source code and converting them into images contributed to
performance improvement.

Kim et al. [26] introduced a defect prediction model based on the state-of-the-art
deep learning technique Ft-Transformer (feature tokenizer + Transformer). This model
conducted experiments using LOC (line of code) and software complexity metrics as
features for targeting open-source projects. It was observed that this model exhibited
superior performance compared to XGBoost and CatBoost.

Choi et al. [27] applied a generative adversarial network (GAN), an adversarial neural
network model, to tackle the class imbalance issue in SDP. Their experimentation, focusing
on open-source projects and employing line of code (LOC) and software complexity metrics
as features, demonstrated an enhancement in performance through the utilization of the
GAN model to address the class imbalance.

Lee et al. [28] employed TabNet, a tabular network, for SDP, comparing its efficacy
against XGBoost (XGB), random forest (RF), and a convolutional neural network (CNN).
The study utilized LOC and software complexity metrics as features, targeting publicly
available data from the PROMISE repository and employing SMOTE as a preprocess-

Electronics 2024, 13, 1690 5 of 23

ing technique. The findings revealed TabNet’s superior performance, achieving a recall
performance of 0.85 in contrast to 0.60 for XGBoost.

Qihang Zhang et al. [29] conducted SDP research employing the Transformer archi-
tecture. By leveraging Transformer, the predictive performance based on F-measurement
demonstrated an improvement of 8% compared to CNN. This investigation encompassed
nine open-source projects, achieving an average F-measurement prediction performance
of 0.626.

Indeed, the studies mentioned primarily concentrated on open-source projects, poten-
tially overlooking the diverse software characteristics prevalent in real industrial domains,
which can significantly impact defect occurrence [11]. Projects within real industrial do-
mains are managed according to considerations such as budgetary constraints, project
schedules, and resource allocation while adhering to national policies and standard spec-
ifications. Consequently, disparities in software attributes and defect patterns between
open-source and industrial domain projects may arise. Hence, further research endeav-
ors leveraging datasets sourced from various real industrial domains are imperative to
ensure the generalizability of findings and enhance the applicability of defect prediction
methodologies across diverse software development landscapes.

2.2. Software Defect Prediction Applied in Real Industrial Domains

Case studies of software defect prediction techniques applied in real industrial do-
mains consistently demonstrate the applicability and utility of machine learning-based
software defect prediction technologies in industrial sectors. However, when applied in
real industrial settings, factors such as organization- and domain-specific software, as well
as differences in development processes and practices, can influence the available data
and predictive capabilities. Additionally, the prediction performance shows significant
variability across studies, indicating the difficulty of extrapolating specific research findings
to other domains. Stradowski et al. [11] suggest that while machine learning research on
software defect prediction is increasingly being validated in industry, there is still a lack of
sufficient practical focus to bridge the gap between industrial requirements and academic
research. Table 2 presents previous studies on software defect prediction that has been
applied in real industrial domains.

Table 2. Overview of studies applied in real industrial domains.

Studies Data Buggy Rate (%) Granularity Feature Model Evaluation

[31] MIS Unknown Unknown Complexity
LOC TSVM Accuracy 0.90

[32] GSM+
NASA Avg 0.3~1 File Complexity

LOC Naïve Bayes Recall Average 0.90

[33] Tizen API Unknown API
OO-Metric
Complexity

LOC
Random Forest

Precision 0.8
Recall 0.7

F-measure 0.75

[34] Software in
Vehicle 17.6 Class

Complexity
LOC

Engineering-Metric
Random Forest

Accuracy 0.96
F-measure 0.90

AUC 0.92

[35]

Software in the
maritime and

ocean
transportation

industries

Unknown Unknown

Diffusion
LOC

Purpose
History

Experience

Random Forest

Accuracy 0.91
Precision 0.86

Recall 0.80
F-Measure 0.83

Xing et al. [31] proposed a method for predicting software quality utilizing a transduc-
tive support vector machine (TSVM). Their experimentation focused on medical imaging
system (MIS) software, comprising 40,000 lines of code. The feature set encompassed
11 software complexity metrics, including change reports (CRs) and McCabe’s cyclo-
matic complexity [36]. The study yielded a Type II error rate of 5.1% and a classification

Electronics 2024, 13, 1690 6 of 23

correct rate (CCR, accuracy) of 0.90. SVM demonstrated robust generalization capabil-
ities in high-dimensional spaces, even with limited training samples, facilitating rapid
model construction.

Tosun et al. [32] undertook SDP within the GSM project of the Turkish telecommuni-
cations industry. They opted for the naïve Bayes classification model due to its simplicity,
robustness, and high prediction accuracy. Confronted with a dearth of sufficient and ac-
curate defect history information, they conducted transfer learning utilizing data from
NASA projects. This study underscores the feasibility and effectiveness of applying ma-
chine learning to software defect prediction within real industrial domains, despite the
inherent challenges.

Kim et al. [33] introduced the REMI (risk evaluation method for interface testing)
model tailored for SDP concerning application programming interfaces (APIs). Their
experiments utilized datasets sourced from Samsung Tizen APIs, incorporating 28 code
metrics and 12 process metrics. The model opted for the random forest (RF) method due to
its superior performance compared to alternative models.

Kim et al. [34] applied software defect prediction techniques within the automotive
industry domain. The research entailed experiments conducted on industrial steering
system software, employing a combination of software metrics and engineering metrics.
Eight machine learning models were compared, including linear regression (LR), K-nearest
neighbor (KNN), a support vector machine (SVM), decision tree (DT), multi-layer per-
ceptron (MLP), and random forest (RF), among others. Notably, RF emerged as the top
performer, achieving a ROC-AUC of 92.31%.

Kang et al. [35] implemented SDP within the maritime industry domain. Their ap-
proach involved addressing data imbalances using a synthetic minority oversampling
technique (SMOTE) and incorporating 14 change-level metrics as software metrics. The ex-
perimental outcomes revealed exceptional software defect prediction performance, with an
accuracy of 0.91 and an F-measure of 0.831. Furthermore, the study identified that the cru-
cial features influencing prediction varied from those observed in other industry domains,
underscoring the influence of organizational practices and domain-specific conventions.

In this study, we leverage data sourced from Samsung’s embedded software designed
for telecommunication systems. This dataset comprises nine distinct features, encompass-
ing six metrics that are indicative of software quality and three attributes delineating the
source file types. Additionally, we meticulously assess the influence of these features on
prediction performance to validate the efficacy of the newly introduced attributes.

3. Materials and Methods
3.1. Research Questions

In this study, we formulate the following four research questions (RQs):

RQ1. How effectively does the software defect prediction (SDP) model anticipate defects?

Utilizing performance evaluation metrics such as accuracy, precision, recall, F-measurement,
and the ROC-AUC score, the performance of the SDP with embedded software for telecommu-
nication systems is compared with prior research findings.

RQ2. Did the incorporation of new features augment the performance of SDP?

Through a comparative analysis of performance before and after the integration of
previously utilized features and novel features, and by leveraging the Shapley value to
assess the contribution of new features, the significance of software quality indicators and
source file type information is evaluated.

RQ3. How accurately does the SDP model forecast defects across different versions?

The predictive efficacy within the same version of the dataset, when randomly parti-
tioned into training and testing subsets, is contrasted with predictive performance across
distinct versions of the dataset that are utilized for training and testing. This investigation

Electronics 2024, 13, 1690 7 of 23

seeks to discern variances in defect prediction performance when the model is trained on
historical versions with defect data and is tested with predicting defects in new versions.

RQ4. Does predictive performance differ when segregating source files by type?

Software developers and organizational characteristics are important factors to con-
sider in software defect research. F. Huang et al. [37] analyzed software defects in 29 com-
panies related to the Chinese aviation industry and found that individual cognitive failures
accounted for 87% of defects. This suggests that individual characteristics and environ-
mental factors may significantly impact defect occurrence. In the current study source
files are grouped based on software structure and software development organization
structure, and the predictive performance is compared between cases where the training
and prediction data are in the same group and cases where they are in different groups.
This aims to ascertain the impact of source file type information on prediction accuracy.

3.2. Dataset

In this study, data originating from the base station software development at Samsung
were utilized.

A base station serves as a wireless communication infrastructure, facilitating the con-
nection between user equipment (UE) and the core network, thereby enabling wireless
communication services. The base station software, deployed within the base station,
assumes responsibility for controlling the hardware of the base station and facilitating
communication between mobile users and the base station itself. Its functionalities en-
compass signal processing, channel coding, scheduling, radio resource management, and
handover and security protocols. Figure 2 elucidates the structure of the base station
software, illustrating the mapping relationship between the components of the base sta-
tion software and the specifications outlined in the Third-generation Partnership Project
technical specification (3GPP TS) 38.401 [38].

Electronics 2024, 13, 1690 8 of 24

Figure 2. Software components of the base station.

The requirements for base station software are influenced by various factors. Figure 3
illustrates how these requirements are incorporated into new versions of the base station
software.

Figure 3. Continuous new version software development for the base station.

The first set of requirements originates from international standardization organiza-
tions such as ITU-T, 3GPP, and IEEE. These organizations continually enhance the existing
standards and introduce new ones to align with advancements in wireless communication
technology, thereby necessitating the development of base station software to accommo-
date these evolving specifications. The second set of requirements emerges from the cus-
tomers of base station systems, including network operators and service providers. These
entities consistently pursue novel service development and service differentiation strate-
gies to maintain a competitive advantage in the market. The requirements stemming from
these endeavors drive the development of base station software to meet the evolving

Figure 2. Software components of the base station.

The base station software undergoes the continuous development of new versions.
The development of 5G base station software according to the 3GPP 5G roadmap com-
menced around 2020 or earlier, with two or more packages being developed and deployed

Electronics 2024, 13, 1690 8 of 23

annually. Prior to the introduction of 5G mobile communication services, there existed 4G
mobile communication services. Therefore, the development of 5G base station software
involved extending the functionality of 4G base station software to also support 5G services.
Consequently, if we consider the inclusion of 4G base station software, the development
of base station software dates back to before 2010, indicating over 10 years of continuous
development and the deployment of new features.

The requirements for base station software are influenced by various factors. Figure 3 illus-
trates how these requirements are incorporated into new versions of the base station software.

Electronics 2024, 13, 1690 8 of 24

Figure 2. Software components of the base station.

The requirements for base station software are influenced by various factors. Figure 3
illustrates how these requirements are incorporated into new versions of the base station
software.

Figure 3. Continuous new version software development for the base station.

The first set of requirements originates from international standardization organiza-
tions such as ITU-T, 3GPP, and IEEE. These organizations continually enhance the existing
standards and introduce new ones to align with advancements in wireless communication
technology, thereby necessitating the development of base station software to accommo-
date these evolving specifications. The second set of requirements emerges from the cus-
tomers of base station systems, including network operators and service providers. These
entities consistently pursue novel service development and service differentiation strate-
gies to maintain a competitive advantage in the market. The requirements stemming from
these endeavors drive the development of base station software to meet the evolving

Figure 3. Continuous new version software development for the base station.

The first set of requirements originates from international standardization organiza-
tions such as ITU-T, 3GPP, and IEEE. These organizations continually enhance the existing
standards and introduce new ones to align with advancements in wireless communication
technology, thereby necessitating the development of base station software to accommodate
these evolving specifications. The second set of requirements emerges from the customers
of base station systems, including network operators and service providers. These entities
consistently pursue novel service development and service differentiation strategies to
maintain a competitive advantage in the market. The requirements stemming from these
endeavors drive the development of base station software to meet the evolving demands
of customers. Lastly, internal demands within base station manufacturers contribute to
requirement generation. In order to sustain a competitive edge in the market, base sta-
tion manufacturers continuously innovate by developing new hardware products and
introducing features that differentiate them from those of other manufacturers.

The requirements arising from these three sources are translated into features of the
base station and are subsequently incorporated into the base station software. These
additional base station features are then included in future base station software packages
for deployment, ultimately facilitating the delivery of services to end-users, namely, mobile
subscribers, through their deployment on operational base stations.

The base station software exhibits several characteristics. Firstly, due to the continuous
development of new versions over a period of more than 20 years, the existing code under-
goes expansion and branching, leading to increased complexity and a higher likelihood of
duplicate code. Secondly, the differentiation demands made by various customers result in
multiple branches in the codebase, contributing to increased complexity and making code
maintenance challenging. Thirdly, there is the continuous development of new hardware
models. The base station software is continuously expanded to support new hardware prod-
ucts, leading to increased code complexity to accommodate various models and address
non-functional requirements such as real-time processing and memory optimization. This
complexity results in features such as increased code complexity to support diverse models,
preprocessing to reduce runtime image size, and the use of common memory to minimize

Electronics 2024, 13, 1690 9 of 23

data copying [39–43]. Lastly, there are heterogeneous characteristics among the subsystems
and blocks of these software systems. The subcomponents of these systems possess unique
software characteristics due to differences in the technical domains; these are developed by
personnel with expertise in each technical domain. Examples of these technical domains
include wireless communication technology, call processing, traffic processing, network
management, and operating system and middleware technology.

In this study, three versions of base station software developed between 2021 and
2022 serve as the experimental dataset. The cumulative number of sample files across the
three versions amounts to 17,727, with 3993 instances (22.5%) exhibiting defects, labeled
as “buggy files” within their respective versions (see Table 3). Notably, there do exist
variations in both the number of samples and the buggy rate across the different versions.
The codebase comprises a blend of C and C++ languages, with C constituting 60.7% and
C++ encompassing 39.3% of the total codebase (see Table 4). Additionally, the sample rate
denotes the proportion of files that were either newly created or modified relative to the
total files, spanning a range from 40% to 74%. The submitter count signifies the number of
individuals involved in coding, ranging from 897 to 1159 individuals. Furthermore, the
feature count denotes the tally of added or modified base station features, with 353, 642,
and 568 features integrated in Versions 1, 2, and 3, respectively. The development period
for each package is either 3 or 6 months.

Table 3. The distribution of base station software development data across versions.

Version Samples
(Files) Buggy Files Buggy Rate Sample

Rate
Code

Submitter
Feature
Count

Dev.
Period

V1 4282 1126 26.3% 42% 897 353 3M
V2 4637 1575 34.0% 40% 1159 642 6M
V3 8808 1292 14.7% 74% 1098 568 6M

Sum 17,727 3993 - - - - -
Average 5909 1331 22.5% - - - -

Table 4. The distribution of base station software development data across programming languages.

Language Samples (Files) Buggy Files Buggy Rate

C 8585 2188 20.3%
C++ 5149 1805 26.0%

Sum 17,727 3993 -
Average 5909 1331 22.5%

3.3. Research Design

The experiments for developing the SDP model are organized into six distinct steps,
with each delineated to accomplish specific objectives. Figure 4 provides an overview of
the scope encompassed by each step within the experiment.

In the first data collection step (1⃝), the recent data from the development projects
of the base station software, encompassing the latest three versions, are gathered to be
utilized as experimental data. The second data processing step (2⃝) involves various tasks
such as outlier correction based on quartiles, oversampling to resolve class imbalances,
scaling for uniformity in the feature value ranges, appropriate feature selection for model
construction, and data selection suitable for model building. In the third data-splitting
step (3⃝), the training and testing data are divided using random splitting, version-based
splitting, and specific group-based splitting methods. Version-based splitting is utilized
for cross-version prediction, while group-based splitting is employed for experiments
involving cross-group prediction. The fourth step (4⃝) involves model selection, where
machine learning algorithms like LR (linear regression), XGB (XGBoost), RB (random forest),
and MLP are employed, after which the model with the highest prediction performance is

Electronics 2024, 13, 1690 10 of 23

chosen. In the fifth step (5⃝), model evaluation is conducted using metrics such as accuracy,
precision, recall, F-measurement, and the ROC-AUC score. Finally, in the sixth step (6⃝) of
the model analysis, feature importance and the Shapley value are utilized to analyze the
significance of features.

Electronics 2024, 13, 1690 10 of 24

Table 4. The distribution of base station software development data across programming languages.

Language Samples (Files) Buggy Files Buggy Rate
C 8585 2188 20.3%

C++ 5149 1805 26.0%
Sum 17,727 3993 -

Average 5909 1331 22.5%

3.3. Research Design
The experiments for developing the SDP model are organized into six distinct steps,

with each delineated to accomplish specific objectives. Figure 4 provides an overview of
the scope encompassed by each step within the experiment.

Figure 4. The experiments for developing the SDP model.

In the first data collection step (①), the recent data from the development projects of
the base station software, encompassing the latest three versions, are gathered to be uti-
lized as experimental data. The second data processing step (②) involves various tasks
such as outlier correction based on quartiles, oversampling to resolve class imbalances,
scaling for uniformity in the feature value ranges, appropriate feature selection for model
construction, and data selection suitable for model building. In the third data-splitting
step (③), the training and testing data are divided using random splitting, version-based
splitting, and specific group-based splitting methods. Version-based splitting is utilized
for cross-version prediction, while group-based splitting is employed for experiments in-
volving cross-group prediction. The fourth step (④) involves model selection, where ma-
chine learning algorithms like LR (linear regression), XGB (XGBoost), RB (random forest),
and MLP are employed, after which the model with the highest prediction performance
is chosen. In the fifth step (⑤), model evaluation is conducted using metrics such as accu-
racy, precision, recall, F-measurement, and the ROC-AUC score. Finally, in the sixth step
(⑥) of the model analysis, feature importance and the Shapley value are utilized to ana-
lyze the significance of features.

Figure 5 delineates the process of gathering training data and executing defect pre-
diction in a scenario characterized by the continuous development of new software ver-
sions. Feature data and the defect data acquired from version N serve as the training da-
taset for the machine learning model. Subsequently, the trained model is applied to pre-
dict defects using the feature data collected from version N + 1.

Figure 4. The experiments for developing the SDP model.

Figure 5 delineates the process of gathering training data and executing defect predic-
tion in a scenario characterized by the continuous development of new software versions.
Feature data and the defect data acquired from version N serve as the training dataset for
the machine learning model. Subsequently, the trained model is applied to predict defects
using the feature data collected from version N + 1.

Electronics 2024, 13, 1690 11 of 24

Figure 5. Data collection and defect prediction across versions.

In the design/implementation phase, both the introduction and the removal of defects
occur simultaneously. During this phase, defects are addressed through methods such as
code reviews, unit testing, and other quality assurance practices. Ideally, all defects intro-
duced during the design/implementation phase should be removed before the verifica-
tion/maintenance phase. Defects that are not addressed during the design/implementa-
tion phase are detected during the verification/maintenance phase. Machine learning is
then employed to learn the characteristics of modules containing these defects. In the de-
sign/implementation phase of version N + 1, software defect prediction (SDP) is used to
identify modules similar to those in version N that experienced defects, categorizing them
as likely to be buggy modules with similar characteristics.

3.4. Software Metrics
Software metrics quantify the characteristics of software into objective numerical val-

ues and are classified into project metrics, product metrics, and process metrics [44]. In
this study, product metrics and process metrics are utilized as features for machine learn-
ing training. Product metrics pertain to metrics related to product quality assessment and
tracking. Representative examples of product metrics include code complexity and the
number of lines of code. Process metrics, on the other hand, relate to process performance
and analysis. Examples of process metrics accumulated during the development process
include the code change volume, code commit count, and number of coding personnel.
Raw data collected from software quality measurement systems consist of metrics at both
the function and file levels, necessitating the transformation of function-level metrics into
file-level metrics. The “min/max/sum” marked in the “Comments” field of Table 5 indi-
cates the conversion of function-level metrics to the corresponding file-level metrics. Ad-
ditionally, identifiers such as the subsystem identifier, block identifier, and language iden-
tifier are employed to differentiate between file types. Subsystems represent the subcom-
ponents of software systems, while blocks are the subcomponents of subsystems.

In this study, the selection of features was guided by established metrics validated in
prior research, aligning with Samsung’s software quality management policy, which en-
compasses quality indicators and source file type information. Given the amalgamation
of C and C++ programming languages within the codebase, we considered metrics that
are applicable to both languages. Our feature set encompassed foundational software met-
rics such as code size, code churn, and code complexity, complemented by additional met-
rics specified by Samsung’s software quality indicators to bolster prediction efficacy. Ad-
ditionally, we extracted subsystem and block information, representing the software’s hi-
erarchical structure, from the file path information. To account for the mixed presence of
C and C++ files, we also incorporated identifiers to distinguish between them. The newly
introduced metrics in this research are highlighted in gray in Table 5 below.

Figure 5. Data collection and defect prediction across versions.

In the design/implementation phase, both the introduction and the removal of defects
occur simultaneously. During this phase, defects are addressed through methods such
as code reviews, unit testing, and other quality assurance practices. Ideally, all defects
introduced during the design/implementation phase should be removed before the verifica-
tion/maintenance phase. Defects that are not addressed during the design/implementation
phase are detected during the verification/maintenance phase. Machine learning is then
employed to learn the characteristics of modules containing these defects. In the de-
sign/implementation phase of version N + 1, software defect prediction (SDP) is used to
identify modules similar to those in version N that experienced defects, categorizing them
as likely to be buggy modules with similar characteristics.

3.4. Software Metrics

Software metrics quantify the characteristics of software into objective numerical
values and are classified into project metrics, product metrics, and process metrics [44]. In
this study, product metrics and process metrics are utilized as features for machine learning

Electronics 2024, 13, 1690 11 of 23

training. Product metrics pertain to metrics related to product quality assessment and
tracking. Representative examples of product metrics include code complexity and the
number of lines of code. Process metrics, on the other hand, relate to process performance
and analysis. Examples of process metrics accumulated during the development process
include the code change volume, code commit count, and number of coding personnel.
Raw data collected from software quality measurement systems consist of metrics at both
the function and file levels, necessitating the transformation of function-level metrics
into file-level metrics. The “min/max/sum” marked in the “Comments” field of Table 5
indicates the conversion of function-level metrics to the corresponding file-level metrics.
Additionally, identifiers such as the subsystem identifier, block identifier, and language
identifier are employed to differentiate between file types. Subsystems represent the
subcomponents of software systems, while blocks are the subcomponents of subsystems.

Table 5. Product metrics and process metrics.

No Metric Type Feature Name Definition Comments

1

Product Metric

Ploc Physical LOC min/max/sum
2 Bloc Build LOC min/max/sum
3 CommentLOC Comment LOC
4 fan_in Fan In min/max/sum
5 CC Cyclomatic Complexity min/max/sum
6 GV 1 Global Variables accessing to min/max/sum
7 MCD 1 Module Circular Dependency min/max/sum
8 DC 1 Duplicate Code
9 PPLOC 1 Preprocessor LOC

10

Process Metric

cl_count Change List Count min/max/sum
11 cloc_a Added LOC min/max/sum
12 cloc_c Changed LOC min/max/sum
13 cloc_d Deleted LOC min/max/sum
14 cov_l, cov_b 1 Line/Branch Coverage min/max/sum
15 Critical/Major 1 Static Analysis Defect
16 FileType1 1 Programming Language Type
17 Group_SSYS 1 Subsystem ID 0~4
18 Group_BLK 1 Block ID 0~99

1 indicates metrics that have been newly introduced in the current research.

In this study, the selection of features was guided by established metrics validated
in prior research, aligning with Samsung’s software quality management policy, which
encompasses quality indicators and source file type information. Given the amalgamation
of C and C++ programming languages within the codebase, we considered metrics that
are applicable to both languages. Our feature set encompassed foundational software
metrics such as code size, code churn, and code complexity, complemented by additional
metrics specified by Samsung’s software quality indicators to bolster prediction efficacy.
Additionally, we extracted subsystem and block information, representing the software’s
hierarchical structure, from the file path information. To account for the mixed presence of
C and C++ files, we also incorporated identifiers to distinguish between them. The newly
introduced metrics in this research are highlighted in gray in Table 5 below.

Metrics derived from Samsung’s software quality indicators include the GV (global
variable), MCD (module circular dependency), DC (duplicate code), and PPLOC (Pre-
processor LOC). These metrics were derived by analyzing the defects identified during
system testing by the software validation department. Figure 6 illustrates the process of
measuring metrics in the software development process and improving metrics based on
defect prevention. The software quality management system periodically measures quality
metrics, including the metrics related to code. When defects are detected during system
testing, an analysis of these defects is conducted, leading to the derivation of metrics for

Electronics 2024, 13, 1690 12 of 23

proactive defect detection. These metrics are then added back into the software quality
management system’s quality indicators and are measured regularly.

Electronics 2024, 13, 1690 12 of 24

Table 5. Product metrics and process metrics.

No Metric Type Feature Name Definition Comments
1

Product Metric

Ploc Physical LOC min/max/sum
2 Bloc Build LOC min/max/sum
3 CommentLOC Comment LOC

4 fan_in Fan In min/max/sum
5 CC Cyclomatic Complexity min/max/sum
6 GV 1 Global Variables accessing to min/max/sum
7 MCD 1 Module Circular Dependency min/max/sum
8 DC 1 Duplicate Code

9 PPLOC 1 Preprocessor LOC

10

Process Metric

cl_count Change List Count min/max/sum
11 cloc_a Added LOC min/max/sum
12 cloc_c Changed LOC min/max/sum
13 cloc_d Deleted LOC min/max/sum
14 cov_l, cov_b 1 Line/Branch Coverage min/max/sum
15 Critical/Major 1 Static Analysis Defect
16 FileType1 1 Programming Language Type
17 Group_SSYS 1 Subsystem ID 0~4
18 Group_BLK 1 Block ID 0~99

1 indicates metrics that have been newly introduced in the current research.

Metrics derived from Samsung’s software quality indicators include the GV (global
variable), MCD (module circular dependency), DC (duplicate code), and PPLOC (Prepro-
cessor LOC). These metrics were derived by analyzing the defects identified during sys-
tem testing by the software validation department. Figure 6 illustrates the process of meas-
uring metrics in the software development process and improving metrics based on defect
prevention. The software quality management system periodically measures quality met-
rics, including the metrics related to code. When defects are detected during system test-
ing, an analysis of these defects is conducted, leading to the derivation of metrics for pro-
active defect detection. These metrics are then added back into the software quality man-
agement system’s quality indicators and are measured regularly.

Figure 6. Updating quality metrics based on defects identified in the system test.

In industrial software development projects, domain-specific metrics are frequently
utilized to bolster prediction accuracy. Many of these metrics were omitted from this
study due to disparities in development methodologies or insufficient data accumulation.
For instance, metrics such as EXP (developer experience), REXT (recent developer experi-
ence), and SEXP (developer experience on a subsystem), as employed by Kamei et al. [12],
were not integrated into our research. Instead, to better align with the attributes of

Figure 6. Updating quality metrics based on defects identified in the system test.

In industrial software development projects, domain-specific metrics are frequently
utilized to bolster prediction accuracy. Many of these metrics were omitted from this study
due to disparities in development methodologies or insufficient data accumulation. For
instance, metrics such as EXP (developer experience), REXT (recent developer experience),
and SEXP (developer experience on a subsystem), as employed by Kamei et al. [12], were
not integrated into our research. Instead, to better align with the attributes of embedded
software for telecommunication systems, we introduced nine supplementary features, as
delineated below.

• The GV (global variable) represents a count of the global variables in each file that
reference variables in other files. Global variables increase the dependencies between
modules, deteriorating maintainability and making it difficult to predict when and by
which module a value is changed, thereby complicating debugging. Therefore, it is
generally recommended to use global variables at a moderate level to minimize the
risk of such issues. However, in embedded software, there is a tendency toward the
increased usage of global variables due to constraints in speed and memory.

• MCD (module circular dependency) indicates the number of loops formed when con-
necting files with dependencies. Having loops deteriorates the maintainability of the
code, so it is recommended to avoid creating loops. In the case of large-scale software
development, such as communication system software, where multiple developers
work on the code for extended periods, such dependencies can unintentionally arise.

• DC (duplicate code) represents the size of the repetitive code. When there is a lot of
duplicate code, there is a higher risk of missing modifications to some of the code
during the maintenance process, which can be problematic. Therefore, removing
duplicate code is recommended. Embedded software for communication systems
tends to have a large overall codebase, where the code continuously expands to
support new hardware developments. At the same time, development schedules may
not allow sufficient time for the timely market release of new versions, and there is
less likelihood of the same developer consistently handling the same code. In such
environments, developers may not have enough time to analyze the existing code
thoroughly, leading them to copy the existing code when developing code for new
hardware models, resulting in duplicates.

• PPLOC (Preprocessor LOC) is the size of the code within preprocessor directives
such as #ifdef. . . and #if. . . These codes are assessed for compilation inclusion based
on the satisfaction of conditions written alongside preprocessor directives during
the compilation time. In embedded software for communication systems, due to
the memory constraints of hardware devices like DSPs (digital signal processors),
the only codes running on each piece of hardware are included in the execution
image to minimize code size. For this purpose, preprocessor directives are employed.

Electronics 2024, 13, 1690 13 of 23

However, similar to DC, this practice leads to the generation of repetitive, similar
codes, increasing the risk of omitting modifications to some codes during code editing.

• cov_l and cov_b, respectively, represent line coverage and branch coverage, indicating
the proportion of tested code out of the total code. A lower proportion of tested
code in developer testing increases the likelihood of defects being discovered during
system testing.

• Critical/Major denotes the number of defects detected by static analysis tools. If these
defects are not addressed by the developer in the testing phase, the likelihood of
defects being discovered during system testing increases.

• FileType serves as an identifier for distinguishing between C code and C++ code. It is
a feature aimed at incorporating the differences between C and C++ code into machine
learning training.

• Group_SSYS serves as information to identify subsystems. Subsystems are subunits
that constitute the entire software structure. This feature enables the machine learning
model to reflect the differences between subsystems in its training.

• Group_BLK serves as information to identify blocks. Blocks are subunits that constitute
subsystems in the software structure. This feature enables the machine learning model
to reflect the differences between blocks in its training.

3.5. Defect Labeling

The defect labels are determined based on the defect information described in the code
commit description. In reality, it is challenging to manage defect information in a way that
enables the perfect tracking of defect codes in industrial domains. Defect tracking requires
additional effort, but it is often difficult to allocate resources for this purpose. Therefore,
it is necessary to find an optimal solution tailored to the specific development processes
and practices of each domain or organization. In this study, code commit descriptions were
subjected to text mining to classify code commits containing topics that are highly relevant
to the defects as code commits resulting from defect fixes.

3.6. Mitigating Class Imbalance

The data used in this study contain class imbalance, with the buggy class accounting
for 22.5% of the data. This imbalance arises because the proportion of actual buggy code
in the entire source code is significantly lower than that of clean code. Balancing class
ratios is an important step to improve prediction performance in software defect prediction.
In software defect prediction, the goal is to increase recall, which measures the model’s
ability to predict actual defects, and to reduce the false positive (FP) rate, which represents
the proportion of non-defective classes that are misclassified as defective among all the
non-defective classes. With the advancement of machine learning technology, various
techniques have been proposed to address class imbalance. In the field of software defect
prediction, SMOTE (a synthetic minority oversampling technique) [45,46] is commonly
used, but research is ongoing to further enhance prediction performance, including studies
applying GAN models [27,47]. In this study, we utilize SMOTEENN, a technique that
combines both oversampling and under-sampling methods.

3.7. Machine Learning Models

Software defect prediction can be approached using various machine-learning models.
Research in this area aims to compare the performance of different models, identify the
most superior model, or analyze the strengths and weaknesses of each model to guide
their selection for real-world industrial domain applications. In this study, LR (logistic
regression), RF (random forest), and XGB (XGBoost) [48], which are commonly used in
industrial domain applications and offer interpretable prediction results, are used as the
base models. Additionally, MLP (multilayer perceptron) is employed to evaluate prediction
performance. Among these models, XGB exhibited the most superior performance in this
study and was selected as the SDP model.

Electronics 2024, 13, 1690 14 of 23

3.8. Model Performance Assessment

The performance evaluation metrics widely used in software defect prediction include
accuracy, precision, recall, the F-measure, and the ROC-AUC score. Table 6 presents the con-
fusion matrix used to define these performance evaluation metrics. In this study, the goal is
to increase both recall and precision, which together contribute to the F-measure, reflecting
the model’s ability to predict defects among actual defects in software defect prediction.

Table 6. Confusion matrix.

Confusion
Matrix

Predicted Class
Buggy (Positive) Clean (Negative)

Actual Class
Buggy TP (True Positive) FN (False Negative)
Clean FP (False Positive) TN (True Negative)

Accuracy (ACC) quantifies the proportion of accurately predicted instances relative to
the total number of instances.

ACC =
TP + TN

TP + FP + TN + FN
(1)

Precision delineates the ratio of accurately predicted positive instances to the total
number of instances classified as positive.

Precision =
TP

TP + FP
(2)

Recall signifies the ratio of accurately predicted positive instances to the total number
of actual positive instances.

Recall =
TP

TP + FN
(3)

F-measure amalgamates both Precision and Recall, calculated as the harmonic mean
of the two values.

F − measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

3.9. Feature Importance Analysis

Feature importance analysis aims to determine how much each feature contributes to
predictions. In this study, feature importance and the Shapley value are used to assess the
importance of features.

The Shapley value [49,50], which is derived from coalitional game theory, indicates
how much a feature contributes to the model’s predictions. This concept helps measure
the importance of each feature and interpret the model’s prediction results. To understand
how much a specific feature contributes to predictability, the Shapley value calculates the
contribution of a particular feature by comparing scenarios where the feature is included
and excluded in all combinations of features.

The Shapley value is defined through the following value function. The Shapley value
of features in set S represents their contribution to the predicted value, assigning weights to
all possible combinations of feature values and summing them. The contribution of using
all features equals the sum of the contributions of the individual features.

∅j(val) =
∞

∑
S⊆{1, ...,p} \ {j}

|S|!(p − |S| − 1)!
p!

(val(S ∪ {j})− val(S)) (5)

∅j: The Shapley value of each feature.
S: The subset of features excluding the feature of interest.
j: The set of the feature of interest.
p: The number of total features.

Electronics 2024, 13, 1690 15 of 23

3.10. Cross-Version Performance Measurement

In this study, an SDP model is constructed using the complete dataset comprising three
versions: V1, V2, and V3. The dataset is randomly partitioned, with 70% being allocated for
training purposes and the remaining 30% for testing. Subsequently, the finalized SDP model
is deployed within an environment characterized by continuous software development,
leveraging historical version data to train and predict faulty files in newly developed
iterations. Consequently, cross-version performance assessment entails scrutinizing and
interpreting the variations in prediction efficacy when employing data from the preceding
versions for training and subsequent versions for testing.

Although the optimal scenario would entail training with data from past versions
(Vn) and testing with data from the succeeding version (Vn+1) to gauge cross-version per-
formance comprehensively, the limited availability of data spanning solely three versions
necessitates a more nuanced approach. Hence, experiments are executed by considering all
feasible permutations of the versions, wherein each version alternately serves as both train-
ing and testing data, facilitating a comprehensive evaluation of cross-version performance.

3.11. Cross-Group Performance Measurement

Large-scale software can exhibit different software characteristics among its subcom-
ponents, each contributing to the overall functionality. In the software utilized in this study,
which has over a thousand developers, the technical domains of the software are distinctly
categorized into wireless protocols, NG protocols, operations management, and OS and
middleware. By leveraging the file path information, the entire dataset is segmented into
several groups with identical features. Cross-group performance measurements are then
conducted to ascertain whether there are differences in characteristics among these groups.
Figure 7 illustrates the method of instance grouping.

Electronics 2024, 13, 1690 16 of 24

training and testing data, facilitating a comprehensive evaluation of cross-version perfor-
mance.

3.11. Cross-Group Performance Measurement
Large-scale software can exhibit different software characteristics among its subcom-

ponents, each contributing to the overall functionality. In the software utilized in this
study, which has over a thousand developers, the technical domains of the software are
distinctly categorized into wireless protocols, NG protocols, operations management, and
OS and middleware. By leveraging the file path information, the entire dataset is seg-
mented into several groups with identical features. Cross-group performance measure-
ments are then conducted to ascertain whether there are differences in characteristics
among these groups. Figure 7 illustrates the method of instance grouping.

Figure 7. Grouping instances using TF-IDF and K-means (revised).

To separate groups using path information, the paths are tokenized into words and
then vectorized using TF-IDF (term frequency-inverse document frequency) (②). Subse-
quently, K-NN clustering is applied to the vectorized path information to cluster similar
paths into five groups (comprising four representative subsystem codes + miscellaneous
code) (③). Defining groups in this manner allows for the identification of differences in
characteristics among the groups. When such differences are observed, adding group in-
formation as a feature to the model can provide additional information, thereby poten-
tially improving prediction performance. Table 7 shows the result of grouping the files.

Table 7. Distribution of the base station software data groups (subsystems).

Group Samples (Files) Buggy Files Buggy Rate
G0 3999 1321 24.8%
G1 3477 1319 27.5%
G2 1743 328 15.8%
G3 2118 263 11.0%
G4 2397 762 24.1%

Sum 17,727 3993 22.5%

4. Results
In this section, we undertake an examination of the four research questions (RQs)

outlined in Section 3.1, utilizing knowledge derived from the results of our experiments.

Answer for RQ1. How effectively does the software defect prediction (SDP) model anticipate de-
fects?

Table 8 showcases the performance measurement outcomes of the XGB-based SDP
model across six distinct scenarios. Initially, performance evaluation was conducted with-
out any data preprocessing (①), followed by successive additions of scaling (②), outlier
removal (③), class imbalance resolution through oversampling (④), the incorporation of

Figure 7. Grouping instances using TF-IDF and K-means (revised).

To separate groups using path information, the paths are tokenized into words and
then vectorized using TF-IDF (term frequency-inverse document frequency) (2⃝). Subse-
quently, K-NN clustering is applied to the vectorized path information to cluster similar
paths into five groups (comprising four representative subsystem codes + miscellaneous
code) (3⃝). Defining groups in this manner allows for the identification of differences in
characteristics among the groups. When such differences are observed, adding group infor-
mation as a feature to the model can provide additional information, thereby potentially
improving prediction performance. Table 7 shows the result of grouping the files.

Table 7. Distribution of the base station software data groups (subsystems).

Group Samples (Files) Buggy Files Buggy Rate

G0 3999 1321 24.8%
G1 3477 1319 27.5%
G2 1743 328 15.8%
G3 2118 263 11.0%
G4 2397 762 24.1%

Sum 17,727 3993 22.5%

Electronics 2024, 13, 1690 16 of 23

4. Results

In this section, we undertake an examination of the four research questions (RQs)
outlined in Section 3.1, utilizing knowledge derived from the results of our experiments.

Answer for RQ1. How effectively does the software defect prediction (SDP) model anticipate defects?

Table 8 showcases the performance measurement outcomes of the XGB-based SDP
model across six distinct scenarios. Initially, performance evaluation was conducted with-
out any data preprocessing (1⃝), followed by successive additions of scaling (2⃝), outlier
removal (3⃝), class imbalance resolution through oversampling (4⃝), the incorporation of
new metrics (5⃝), and, eventually, the addition of file type information (6⃝). The ML-SDP
exhibited optimal performance when comprehensive preprocessing was applied, incorpo-
rating all new features and employing the XGB classifier. In this scenario, the performance
metrics were as follows: recall of 0.63, F-measurement of 0.74, and an ROC-AUC score
of 0.87.

Table 8. Performance assessment result for the SDP model.

Classifier
1⃝ No Processing 2⃝ Scaling

Precision Recall F-measurement Accuracy ROC-AUC Precision Recall F-measurement Accuracy ROC-AUC

RF 0.69 0.41 0.52 0.83 0.85 0.69 0.41 0.52 0.83 0.85
LR 0.63 0.39 0.49 0.81 0.76 0.71 0.34 0.46 0.82 0.83

XGB 0.63 0.45 0.53 0.82 0.85 0.63 0.45 0.53 0.82 0.85
MLP 0.44 0.25 0.32 0.76 0.54 0.49 0.47 0.48 0.77 0.75

Classifier
3⃝ Outlier Processing 4⃝ Oversampling

Precision Recall F-measurement Accuracy ROC-AUC Precision Recall F-measurement Accuracy ROC-AUC

RF 0.67 0.4 0.5 0.82 0.85 0.49 0.74 0.59 0.77 0.85
LR 0.58 0.42 0.49 0.80 0.8 0.42 0.78 0.55 0.71 0.81

XGB 0.64 0.47 0.54 0.82 0.85 0.51 0.69 0.58 0.78 0.84
MLP 0.42 0.41 0.41 0.74 0.65 0.39 0.41 0.4 0.72 0.61

Classifier
5⃝ Additional Metric 6⃝ Sample Grouping

Precision Recall F-measurement Accuracy ROC-AUC Precision Recall F-measurement Accuracy ROC-AUC

RF 0.5 0.76 0.6 0.78 0.86 0.52 0.75 0.61 0.79 0.86
LR 0.42 0.62 0.5 0.72 0.72 0.42 0.62 0.5 0.72 0.72

XGB 0.54 0.73 0.62 0.8 0.86 0.55 0.74 0.63 0.80 0.87
MLP 0.39 0.3 0.34 0.74 0.51 0.45 0.25 0.32 0.76 0.5

In comparison with prior studies, the predicted performance displayed notable varia-
tions, with some studies indicating higher performance and others demonstrating lower
performance compared to our experiment. Table 9 provides a comparative analysis of
our results with those from previous studies. Among 12 prior studies, including 7 on
open-source projects and 5 on industrial domain projects, our study exhibited lower perfor-
mance than 6 of the studies and comparable performance with 6 of the studies. Thus, it can
be inferred that the ML-SDP model, developed using Samsung’s embedded software for
telecommunication systems, has achieved a meaningful level of performance.

Table 9. Performance comparison with prior studies.

Studies Precision Recall F-Measurement Accuracy ROC-AUC Data

[5] 0.99 0.98 0.99 - - PC1
[23] 0.82 0.83 - - 0.88 Apache
[25] - - 0.58~0.82 0.70~0.86 - iEdit, . . .
[26] - 0.77 - - - AEEEM, . . .
[27] - - 0.50~0.86 - - AEEEM, . . .
[28] - 0.50 - - - AEEEM, . . .
[29] - - 0.626 - - Camel, . . .
[31] - - - 0.90 - MIS
[32] - 0.90 - - - GSM, NASA
[33] 0.80 0.70 0.75 - - Tizen API
[34] - - 0.90 0.96 0.92 Vehicle S/W
[35] 0.86 0.80 0.83 0.91 - Ship S/W

This study 0.55 0.74 0.63 0.80 0.87 Samsung

Electronics 2024, 13, 1690 17 of 23

Answer for RQ2. Did the incorporation of new features augment the performance of SDP?

Figure 8 provides a visual representation of the changes in predictive performance
resulting from data processing and feature addition. Before incorporating the six new
metrics and three source file types of information, the performance metrics were as follows:
precision 0.51, recall 0.69, F-measurement 0.58, accuracy 0.78, and an ROC-AUC score of
0.84. Subsequently, after integrating the new metrics and source file type information, the
performance metrics improved to: precision 0.55, recall 0.74, F-measurement 0.63, accuracy
0.80, and an ROC-AUC score of 0.87. After introducing the new metrics, all five indicators
exhibited an improvement. Upon closer examination of the F-measure, there was a 6.90%
increase from 0.58 to 0.62 (5⃝) and, upon the inclusion of three additional source file types,
four out of the five indicators showed further enhancement, resulting in a 1.72% increase
from 0.62 to 0.63 (6⃝). Overall, the total increase amounted to 0.86%. It is evident that the
additional features introduced in this study significantly contributed to an enhancement of
the predictive power of the SDP model.

Electronics 2024, 13, 1690 18 of 24

Answer for RQ2. Did the incorporation of new features augment the performance of SDP?

Figure 8 provides a visual representation of the changes in predictive performance
resulting from data processing and feature addition. Before incorporating the six new met-
rics and three source file types of information, the performance metrics were as follows:
precision 0.51, recall 0.69, F-measurement 0.58, accuracy 0.78, and an ROC-AUC score of
0.84. Subsequently, after integrating the new metrics and source file type information, the
performance metrics improved to: precision 0.55, recall 0.74, F-measurement 0.63, accu-
racy 0.80, and an ROC-AUC score of 0.87. After introducing the new metrics, all five indi-
cators exhibited an improvement. Upon closer examination of the F-measure, there was a
6.90% increase from 0.58 to 0.62 (⑤) and, upon the inclusion of three additional source file
types, four out of the five indicators showed further enhancement, resulting in a 1.72%
increase from 0.62 to 0.63 (⑥). Overall, the total increase amounted to 0.86%. It is evident
that the additional features introduced in this study significantly contributed to an en-
hancement of the predictive power of the SDP model.

Figure 8. The changes in predictive performance due to data preprocessing and feature addition.

An examination of feature contributions, as depicted in Figure 9, reveals notable in-
sights into the predictive power of various metrics. The contributions of traditional and
widely used metrics in SDP, such as BLOC (build LOC), CLOC (changed LOC), and CC
(cyclomatic complexity) remained high. However, some of the new features, such as
Group_BLK, cov_l (line coverage), DC (duplicate code), Group_SSYS, and PPLOC also
played an important role in improving prediction performance. Meanwhile, the GV, Crit-
ical/Major, and MCD features showed only minimal contributions.

Figure 8. The changes in predictive performance due to data preprocessing and feature addition.

An examination of feature contributions, as depicted in Figure 9, reveals notable
insights into the predictive power of various metrics. The contributions of traditional
and widely used metrics in SDP, such as BLOC (build LOC), CLOC (changed LOC), and
CC (cyclomatic complexity) remained high. However, some of the new features, such
as Group_BLK, cov_l (line coverage), DC (duplicate code), Group_SSYS, and PPLOC
also played an important role in improving prediction performance. Meanwhile, the GV,
Critical/Major, and MCD features showed only minimal contributions.

Moreover, the Shapley value analysis underscored the pivotal role of certain quality
metrics in capturing fault occurrence trends. Specifically, coverage, DC, and PPLOC dis-
played robust associations with fault occurrence, affirming their effectiveness as indicators
for quality enhancement initiatives. Conversely, the GV, Critical/Major, and MCD features
demonstrated minimal associations with fault occurrence, implying their limited utility
in defect prediction scenarios. These findings provide actionable insights for prioritizing
metrics and refining defect prediction strategies to bolster software quality.

Electronics 2024, 13, 1690 18 of 23Electronics 2024, 13, 1690 19 of 24

Figure 9. Shapley values of the XGB model.

Moreover, the Shapley value analysis underscored the pivotal role of certain quality
metrics in capturing fault occurrence trends. Specifically, coverage, DC, and PPLOC dis-
played robust associations with fault occurrence, affirming their effectiveness as indica-
tors for quality enhancement initiatives. Conversely, the GV, Critical/Major, and MCD
features demonstrated minimal associations with fault occurrence, implying their limited
utility in defect prediction scenarios. These findings provide actionable insights for prior-
itizing metrics and refining defect prediction strategies to bolster software quality.

Answer for RQ3. How accurately does the SDP model forecast defects across different versions?

A comparative analysis of prediction performance across both same-version and
cross-version scenarios yielded insightful observations. The precision metrics revealed
that among the six cross-version predictions, four exhibited lower values than their same-
version counterparts, while two displayed higher values. Similarly, the recall metrics in-
dicated consistently lower performance across all six cross-version predictions. The F-
measurement metrics exhibited lower values in five out of six cross-version cases and
higher values in one case. Accuracy metrics followed a similar trend, with lower values
observed in four cases and higher values in two cases compared to the same-version pre-
dictions (see Figure 10).

Overall, the average prediction performance under cross-version conditions demon-
strated a notable decline across all five metrics compared to the same-version predictions.
Particularly noteworthy was the average F-measurement (f1-score), which decreased from
0.62 for the same version to 0.54 for cross-version predictions, reflecting a significant 13%
decrease in prediction performance (see Table 10).

The observed deterioration in prediction performance under cross-version conditions
underscores the presence of distinct data characteristics among the different versions. It also
suggests that the anticipated prediction performance under cross-version conditions is ap-
proximately 0.54, based on the F-measurement metric. These findings highlight the im-
portance of considering version-specific nuances and adapting the prediction models ac-
cordingly to maintain optimal performance across diverse software versions.

Figure 9. Shapley values of the XGB model.

Answer for RQ3. How accurately does the SDP model forecast defects across different versions?

A comparative analysis of prediction performance across both same-version and
cross-version scenarios yielded insightful observations. The precision metrics revealed
that among the six cross-version predictions, four exhibited lower values than their same-
version counterparts, while two displayed higher values. Similarly, the recall metrics
indicated consistently lower performance across all six cross-version predictions. The
F-measurement metrics exhibited lower values in five out of six cross-version cases and
higher values in one case. Accuracy metrics followed a similar trend, with lower values
observed in four cases and higher values in two cases compared to the same-version
predictions (see Figure 10).

Electronics 2024, 13, 1690 20 of 24

Table 10. Comparison of prediction performance under cross-version conditions.

Case Precision Recall F-Measurement Accuracy ROC-AUC
Average for Within-Version 0.55 0.72 0.62 0.79 0.86
Average for Cross-Version 0.52 0.62 0.54 0.76 0.81

Figure 10. Prediction performance under cross-version conditions.

Answer for RQ4. Does predictive performance differ when segregating source files by type?

The analysis of prediction performance across cross-group scenarios revealed nota-
ble trends. Among the 20 cross-group predictions, 13 exhibited lower precision compared
to the same group, while 7 showed higher precision. Similarly, 18 predictions demon-
strated lower recall, with only 2 displaying higher values. The F-measurement scores fol-
lowed a similar pattern, with 19 predictions showing lower values and 1 demonstrating
improvement. Accuracy metrics indicated lower values in 16 cases and higher values in 4
cases compared to the same group predictions (see Figure 11).

On average, predictive performance under cross-group conditions was consistently
lower across all five metrics compared to the same group predictions. Specifically, the aver-
age F-measurement for the same group was 0.60, while for cross-group predictions, it de-
creased to 0.50, reflecting a notable 17% decrease in predictive performance (see Table 11).

The observed decline in predictive performance under cross-group conditions under-
scores the significance of variations in data characteristics among different groups. To ad-
dress this, we incorporated source file type information for group identification. Figure 8
demonstrates that the addition of source file type information resulted in a 1% improve-
ment in precision, recall, and F-measurement metrics, indicating its effectiveness in en-
hancing prediction performance across diverse group scenarios.

Table 11. Comparison of prediction performance under cross-group conditions.

Case Precision Recall F-Measurement Accuracy ROC-AUC
Average of Within-Group 0.51 0.73 0.60 0.81 0.85
Average of Cross-Group 0.46 0.58 0.50 0.77 0.79

Figure 10. Prediction performance under cross-version conditions.

Overall, the average prediction performance under cross-version conditions demon-
strated a notable decline across all five metrics compared to the same-version predictions.
Particularly noteworthy was the average F-measurement (f1-score), which decreased from

Electronics 2024, 13, 1690 19 of 23

0.62 for the same version to 0.54 for cross-version predictions, reflecting a significant 13%
decrease in prediction performance (see Table 10).

Table 10. Comparison of prediction performance under cross-version conditions.

Case Precision Recall F-Measurement Accuracy ROC-AUC

Average for Within-Version 0.55 0.72 0.62 0.79 0.86
Average for Cross-Version 0.52 0.62 0.54 0.76 0.81

The observed deterioration in prediction performance under cross-version conditions
underscores the presence of distinct data characteristics among the different versions. It
also suggests that the anticipated prediction performance under cross-version conditions
is approximately 0.54, based on the F-measurement metric. These findings highlight the
importance of considering version-specific nuances and adapting the prediction models
accordingly to maintain optimal performance across diverse software versions.

Answer for RQ4. Does predictive performance differ when segregating source files by type?

The analysis of prediction performance across cross-group scenarios revealed notable
trends. Among the 20 cross-group predictions, 13 exhibited lower precision compared to the
same group, while 7 showed higher precision. Similarly, 18 predictions demonstrated lower
recall, with only 2 displaying higher values. The F-measurement scores followed a similar
pattern, with 19 predictions showing lower values and 1 demonstrating improvement.
Accuracy metrics indicated lower values in 16 cases and higher values in 4 cases compared
to the same group predictions (see Figure 11).

Electronics 2024, 13, 1690 21 of 24

Figure 11. Prediction performance under cross-group conditions.

5. Discussion and Conclusions
This study proposes an SDP model tailored for Samsung’s embedded software in

telecommunication systems, yielding several significant results and implications. Firstly,
it validates the applicability of SDP in the practical realm of embedded software in tele-
communication systems. The model demonstrated moderate performance levels com-
pared to the existing research, with an F-measurement of 0.63, a recall of 0.74, and an
accuracy of 0.80. Secondly, specialized features like DC and PPLOC, which are specific to
Samsung, were found to enhance predictive performance, leading to an increase in F-
measurement from 0.58 to 0.62. Thirdly, the inclusion of information in three file types,
namely, subsystem, block, and language identifiers, as features for machine learning train-
ing contributed to performance improvements, as evidenced by an increase in F-measure-
ment from 0.62 to 0.63. Lastly, this study quantitatively confirmed the significance of Sam-
sung’s software quality metrics as indicators of software quality, enhancing predictive
performance when incorporated as features.

Our SDP model has been adopted in real-life projects to evaluate the effectiveness of
software quality metrics, implement just-in-time buggy module detection [51], and en-
hance test efficiency through recommendations for buggy module-centric test cases. The
model is intended to aid developers in identifying faulty modules early, understanding
their causes, and making targeted improvements, such as removing duplicate code and
optimizing preprocessing directives.

The study has successfully developed an ML-SDP model tailored to embedded soft-
ware in telecommunication systems, highlighting its applicability in similar domains and
the effectiveness of novel features. The findings of this study suggest that Samsung’s re-
search outcomes are likely to be generalizable, as follows.
• This case study into embedded software for communication purposes provides em-

pirical validation research results.
• Specialized features, such as PPLOC and DC, could serve as valuable indicators for

software defect prediction and quality management in software that shares similar
traits. These metrics hold a potential for application in analogous domains.

• If the proposed research methodology is concretized and tailored guidelines are es-
tablished, this provides opportunities for the propagation of extension into domains
with different characteristics.
However, several avenues for further research and expansion have been identified.

Firstly, there is a crucial need to go into more depth regarding cases where the predicted
values deviate from the actual values. Investigating such instances, pinpointing the

Figure 11. Prediction performance under cross-group conditions.

On average, predictive performance under cross-group conditions was consistently
lower across all five metrics compared to the same group predictions. Specifically, the
average F-measurement for the same group was 0.60, while for cross-group predictions, it
decreased to 0.50, reflecting a notable 17% decrease in predictive performance (see Table 11).

Table 11. Comparison of prediction performance under cross-group conditions.

Case Precision Recall F-Measurement Accuracy ROC-AUC

Average of Within-Group 0.51 0.73 0.60 0.81 0.85
Average of Cross-Group 0.46 0.58 0.50 0.77 0.79

Electronics 2024, 13, 1690 20 of 23

The observed decline in predictive performance under cross-group conditions un-
derscores the significance of variations in data characteristics among different groups. To
address this, we incorporated source file type information for group identification. Figure 8
demonstrates that the addition of source file type information resulted in a 1% improvement
in precision, recall, and F-measurement metrics, indicating its effectiveness in enhancing
prediction performance across diverse group scenarios.

5. Discussion and Conclusions

This study proposes an SDP model tailored for Samsung’s embedded software in
telecommunication systems, yielding several significant results and implications. Firstly, it
validates the applicability of SDP in the practical realm of embedded software in telecom-
munication systems. The model demonstrated moderate performance levels compared to
the existing research, with an F-measurement of 0.63, a recall of 0.74, and an accuracy of 0.80.
Secondly, specialized features like DC and PPLOC, which are specific to Samsung, were
found to enhance predictive performance, leading to an increase in F-measurement from
0.58 to 0.62. Thirdly, the inclusion of information in three file types, namely, subsystem,
block, and language identifiers, as features for machine learning training contributed to
performance improvements, as evidenced by an increase in F-measurement from 0.62 to
0.63. Lastly, this study quantitatively confirmed the significance of Samsung’s software
quality metrics as indicators of software quality, enhancing predictive performance when
incorporated as features.

Our SDP model has been adopted in real-life projects to evaluate the effectiveness of
software quality metrics, implement just-in-time buggy module detection [51], and enhance
test efficiency through recommendations for buggy module-centric test cases. The model is
intended to aid developers in identifying faulty modules early, understanding their causes,
and making targeted improvements, such as removing duplicate code and optimizing
preprocessing directives.

The study has successfully developed an ML-SDP model tailored to embedded soft-
ware in telecommunication systems, highlighting its applicability in similar domains and
the effectiveness of novel features. The findings of this study suggest that Samsung’s
research outcomes are likely to be generalizable, as follows.

• This case study into embedded software for communication purposes provides empir-
ical validation research results.

• Specialized features, such as PPLOC and DC, could serve as valuable indicators for
software defect prediction and quality management in software that shares similar
traits. These metrics hold a potential for application in analogous domains.

• If the proposed research methodology is concretized and tailored guidelines are
established, this provides opportunities for the propagation of extension into domains
with different characteristics.

However, several avenues for further research and expansion have been identified.
Firstly, there is a crucial need to go into more depth regarding cases where the predicted
values deviate from the actual values. Investigating such instances, pinpointing the under-
lying causes of discrepancies, and mitigating prediction errors can significantly enhance
the accuracy of predictions. We plan to conduct in-depth investigations into cases where
the predictions deviate, aiming to uncover new features influencing defect prediction. Sec-
ondly, it is imperative to explore the applicability of advanced methods that are known to
enhance prediction performance in real-world industrial settings. One promising direction
is the utilization of SDP models leveraging Transformer, a cutting-edge deep learning
(DL) technology.

Author Contributions: Conceptualization, H.K. and S.D.; methodology, H.K. and S.D.; formal analy-
sis, H.K.; investigation, H.K.; writing—original draft preparation, H.K.; writing—review and editing,
S.D.; supervision, S.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Electronics 2024, 13, 1690 21 of 23

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Please contact the corresponding author or first author of this paper.

Acknowledgments: The authors wish to thank Dong-Kyu Lee, Senior Engineer, Software Engineering,
Samsung Elec., for sharing software quality data for the thesis.

Conflicts of Interest: Author Hongkoo Kang was employed by the company SAMSUNG ELEC-
TRONICS CO. Ltd. The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Antinyan, V. Revealing the Complexity of Automotive Software. In Proceedings of the 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event USA, 8 November
2020; pp. 1525–1528.

2. Stradowski, S.; Madeyski, L. Exploring the Challenges in Software Testing of the 5G System at Nokia: A Survey. Inf. Softw. Technol.
2023, 153, 107067. [CrossRef]

3. Wahono, R.S. A Systematic Literature Review of Software Defect Prediction: Research Trends, Datasets, Methods and Frameworks.
J. Softw. Eng. 2015, 1, 1–16.

4. IEEE Std 610.12-1990; IEEE Standard Glossary of Software Engineering Terminology. IEEE: Manhattan, NY, USA, 1990; pp. 1–84.
[CrossRef]

5. Shafiq, M.; Alghamedy, F.H.; Jamal, N.; Kamal, T.; Daradkeh, Y.I.; Shabaz, M. Scientific Programming Using Optimized Machine
Learning Techniques for Software Fault Prediction to Improve Software Quality. IET Softw. 2023, 17, 694–704. [CrossRef]

6. Iqbal, A.; Aftab, S.; Ali, U.; Nawaz, Z.; Sana, L.; Ahmad, M.; Husen, A. Performance Analysis of Machine Learning Techniques on
Software Defect Prediction Using NASA Datasets. Int. J. Adv. Sci. Comput. Appl. 2019, 10, 300–308. [CrossRef]

7. Paramshetti, P.; Phalke, D.A. Survey on Software Defect Prediction Using Machine Learning Techniques. Int. J. Sci. Res. 2012, 3,
1394–1397.

8. Thota, M.K.; Shajin, F.H.; Rajesh, P. Survey on Software Defect Prediction Techniques. Int. J. Appl. Sci. Eng. 2020, 17, 331–344.
[CrossRef] [PubMed]

9. Durelli, V.H.S.; Durelli, R.S.; Borges, S.S.; Endo, A.T.; Eler, M.M.; Dias, D.R.C.; Guimarães, M.P. Machine Learning Applied to
Software Testing: A Systematic Mapping Study. IEEE Trans. Reliab. 2019, 68, 1189–1212. [CrossRef]

10. Stradowski, S.; Madeyski, L. Machine Learning in Software Defect Prediction: A Business-Driven Systematic Mapping Study. Inf.
Softw. Technol. 2023, 155, 107128. [CrossRef]

11. Stradowski, S.; Madeyski, L. Industrial Applications of Software Defect Prediction Using Machine Learning: A Business-Driven
Systematic Literature Review. Inf. Softw. Technol. 2023, 159, 107192. [CrossRef]

12. Kamei, Y.; Shihab, E.; Adams, B.; Hassan, A.E.; Mockus, A.; Sinha, A.; Ubayashi, N. A Large-Scale Empirical Study of Just-in-Time
Quality Assurance. IEEE Trans. Softw. Eng. 2013, 39, 757–773. [CrossRef]

13. Menzies, T.; Greenwald, J.; Frank, A. Data Mining Static Code Attributes to Learn Defect Predictors. IEEE Trans. Softw. Eng. 2007,
33, 2–13. [CrossRef]

14. Catal, C.; Diri, B. A Systematic Review of Software Fault Prediction Studies. Expert Syst. Appl. 2009, 36, 7346–7354. [CrossRef]
15. Amasaki, S.; Takagi, Y.; Mizuno, O.; Kikuno, T. A Bayesian Belief Network for Assessing the Likelihood of Fault Content. In

Proceedings of the 14th International Symposium on Software Reliability Engineering, Denver, CO, USA, 17–20 November 2003;
pp. 215–226.

16. Akmel, F.; Birihanu, E.; Siraj, B. A Literature Review Study of Software Defect Prediction Using Machine Learning Techniques.
Int. J. Emerg. Res. Manag. Technol. 2018, 6, 300. [CrossRef]

17. Khan, M.J.; Shamail, S.; Awais, M.M.; Hussain, T. Comparative Study of Various Artificial Intelligence Techniques to Predict
Software Quality. In Proceedings of the 2006 IEEE International Multitopic Conference, Islamabad, Pakistan, 23–24 December
2006; pp. 173–177.

18. Kim, S.; Zimmermann, T.; Whitehead, E.J., Jr.; Zeller, A. Predicting Faults from Cached History. In Proceedings of the 29th
International Conference on Software Engineering (ICSE’07), Minneapolis, MN, USA, 20–26 May 2007; pp. 489–498.

19. Hassan, A.E. Predicting Faults Using the Complexity of Code Changes. In Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, Vancouver, BC, Canada, 16 May 2009; pp. 78–88.

20. Khoshgoftaar, T.M.; Seliya, N. Tree-Based Software Quality Estimation Models for Fault Prediction. In Proceedings of the Eighth
IEEE Symposium on Software Metrics, Ottawa, ON, Canada, 4–7 June 2002; pp. 203–214.

21. Li, J.; He, P.; Zhu, J.; Lyu, M.R. Software Defect Prediction via Convolutional Neural Network. In Proceedings of the 2017 IEEE
International Conference on Software Quality, Reliability and Security (QRS), Prague, Czech Republic, 25–29 July 2017; IEEE:
Prague, Czech Republic, 2017; pp. 318–328.

https://doi.org/10.1016/j.infsof.2022.107067
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1049/sfw2.12091
https://doi.org/10.14569/IJACSA.2019.0100538
https://doi.org/10.6703/IJASE.202012_17(4).331
https://www.ncbi.nlm.nih.gov/pubmed/37649031
https://doi.org/10.1109/TR.2019.2892517
https://doi.org/10.1016/j.infsof.2022.107128
https://doi.org/10.1016/j.infsof.2023.107192
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1016/j.eswa.2008.10.027
https://doi.org/10.23956/ijermt.v6i6.286

Electronics 2024, 13, 1690 22 of 23

22. Chen, J.; Hu, K.; Yu, Y.; Chen, Z.; Xuan, Q.; Liu, Y.; Filkov, V. Software Visualization and Deep Transfer Learning for Effective
Software Defect Prediction. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Seoul,
Republic of Korea, 27 June 2020; pp. 578–589.

23. Malhotra, R.; Jain, A. Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality. J. Inf.
Process. Syst. 2012, 8, 241–262. [CrossRef]

24. Chidamber, S.R.; Kemerer, C.F. A Metrics Suite for Object Oriented Design. IEEE Trans. Softw. Eng. 1994, 20, 476–493. [CrossRef]
25. Lee, S.; Kim, T.-K.; Ryu, D.; Baik, J. Software Defect Prediction with new Image Conversion Technique of Source Code. J. Korean

Inst. Inf. Sci. Eng. 2021, 239–241. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11112825
(accessed on 21 October 2023).

26. Sojeong, K.; Eunjung, J.; Jiwon, C.; Ryu, D. Software Defect Prediction Based on Ft-Transformer. J. Korean Inst. Inf. Sci. Eng. 2022,
1770–1772. Available online: https://www-dbpia-co-kr.translate.goog/journal/articleDetail?nodeId=NODE11113815&_x_tr_
sl=ko&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc (accessed on 21 October 2023).

27. Choi, J.; Lee, J.; Ryu, D.; Kim, S. Identification of Generative Adversarial Network Models Suitable for Software Defect Prediction.
J. KIISE 2022, 49, 52–59. [CrossRef]

28. Lee, J.; Choi, J.; Ryu, D.; Kim, S. TabNet based Software Defect Prediction. J. Korean Inst. Inf. Sci. Eng. 2021, 1255–1257. Available
online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11036011&nodeId=NODE11036011&medaTypeCode=
185005&isPDFSizeAllowed=true&locale=ko&foreignIpYn=Y&articleTitle=TabNet+%EA%B8%B0%EB%B0%98%EC%9D%98
+%EC%86%8C%ED%94%84%ED%8A%B8%EC%9B%A8%EC%96%B4+%EA%B2%B0%ED%95%A8+%EC%98%88%EC%B8
%A1&articleTitleEn=TabNet+based+Software+Defect+Prediction&language=ko_KR&hasTopBanner=true (accessed on 21
October 2023).

29. Zhang, Q.; Wu, B. Software Defect Prediction via Transformer. In Proceedings of the 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference (IT-NEC), Chongqing, China, 12–14 June 2020; pp. 874–879.

30. Qureshi, M.R.J.; Qureshi, W.A. Evaluation of the Design Metric to Reduce the Number of Defects in Software Development. Int. J.
Inf. Technol. Converg. Serv. 2012, 4, 9–17. [CrossRef]

31. Xing, F.; Guo, P.; Lyu, M.R. A Novel Method for Early Software Quality Prediction Based on Support Vector Machine. In
Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE’05), Chicago, IL, USA, 8–11
November 2005; pp. 10–222.

32. Tosun, A.; Turhan, B.; Bener, A. Practical Considerations in Deploying AI for Defect Prediction: A Case Study within the Turkish
Telecommunication Industry. In Proceedings of the 5th International Conference on Predictor Models in Software Engineering,
Vancouver, BC, Canada, 18 May 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 1–9.

33. Kim, M.; Nam, J.; Yeon, J.; Choi, S.; Kim, S. REMI: Defect Prediction for Efficient API Testing. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, Bergamo, Italy, 30 August 2015; pp. 990–993.

34. Kim, D.; Lee, S.; Seong, G.; Kim, D.; Lee, J.; Bhae, H. An Experimental Study on Software Fault Prediction considering Engineering
Metrics based on Machine Learning in Vehicle. In Proceedings of the Korea Society of Automotive Engineers Fall Conference and
Exhibition, Jeju, Republic of Korea, 18–21 November 2020; pp. 552–559.

35. Kang, J.; Ryu, D.; Baik, J. A Case Study of Industrial Software Defect Prediction in Maritime and Ocean Transportation Industries.
J. KIISE 2020, 47, 769–778. [CrossRef]

36. McCabe, T.J. A Complexity Measure. IEEE Trans. Softw. Eng. 1976, SE-2, 308–320. [CrossRef]
37. Huang, F.; Liu, B. Software Defect Prevention Based on Human Error Theories. Chin. J. Aeronaut. 2017, 30, 1054–1070. [CrossRef]
38. ETSI TS 138 401. Available online: https://www.etsi.org/deliver/etsi_ts/138400_138499/138401/17.01.01_60/ts_138401v17010

1p.pdf (accessed on 21 October 2023).
39. Han, I. Communications of the Korean Institute of Information Scientists and Engineers. Young 2013, 31, 56–62.
40. Shin, H.J.; Song, J.H. A Study on Embedded Software Development Method (TBESDM: Two-Block Embedded Software Develop-

ment Method). Soc. Converg. Knowl. Trans. 2020, 8, 41–49.
41. Friedman, M.A.; Tran, P.Y.; Goddard, P.L. Reliability Techniques for Combined Hardware and Software Systems; Defense Technical

Information Center: Fort Belvoir, VA, USA, 1992.
42. Lee, S.; No, H.; Lee, S.; Lee, W.J. Development of Code Suitability Analysis Tool for Embedded Software Module. J. Korean

Inst. Inf. Sci. Eng. 2015, 1582–1584. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06602802
(accessed on 21 October 2023).

43. Lee, E. Definition of Check Point for Reliability Improvement of the Embedded Software. J. Secur. Eng. Res. 2011, 8, 149–156.
44. Moser, R.; Pedrycz, W.; Succi, G. A Comparative Analysis of the Efficiency of Change Metrics and Static Code Attributes for Defect

Prediction. In Proceedings of the 13th International Conference on Software Engineering—ICSE ’08; ACM Press: Leipzig, Germany,
2008; p. 181.

45. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

46. SMOTE—Version 0.11.0. Available online: https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.
SMOTE.html (accessed on 15 October 2023).

47. Yoo, B.J. A Study on the Performance Comparison and Approach Strategy by Classification Methods of Imbalanced Data. Korean
Data Anal. Soc. 2021, 23, 195–207. [CrossRef]

https://doi.org/10.3745/JIPS.2012.8.2.241
https://doi.org/10.1109/32.295895
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11112825
https://www-dbpia-co-kr.translate.goog/journal/articleDetail?nodeId=NODE11113815&_x_tr_sl=ko&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc
https://www-dbpia-co-kr.translate.goog/journal/articleDetail?nodeId=NODE11113815&_x_tr_sl=ko&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc
https://doi.org/10.5626/JOK.2022.49.1.52
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11036011&nodeId=NODE11036011&medaTypeCode=185005&isPDFSizeAllowed=true&locale=ko&foreignIpYn=Y&articleTitle=TabNet+%EA%B8%B0%EB%B0%98%EC%9D%98+%EC%86%8C%ED%94%84%ED%8A%B8%EC%9B%A8%EC%96%B4+%EA%B2%B0%ED%95%A8+%EC%98%88%EC%B8%A1&articleTitleEn=TabNet+based+Software+Defect+Prediction&language=ko_KR&hasTopBanner=true
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11036011&nodeId=NODE11036011&medaTypeCode=185005&isPDFSizeAllowed=true&locale=ko&foreignIpYn=Y&articleTitle=TabNet+%EA%B8%B0%EB%B0%98%EC%9D%98+%EC%86%8C%ED%94%84%ED%8A%B8%EC%9B%A8%EC%96%B4+%EA%B2%B0%ED%95%A8+%EC%98%88%EC%B8%A1&articleTitleEn=TabNet+based+Software+Defect+Prediction&language=ko_KR&hasTopBanner=true
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11036011&nodeId=NODE11036011&medaTypeCode=185005&isPDFSizeAllowed=true&locale=ko&foreignIpYn=Y&articleTitle=TabNet+%EA%B8%B0%EB%B0%98%EC%9D%98+%EC%86%8C%ED%94%84%ED%8A%B8%EC%9B%A8%EC%96%B4+%EA%B2%B0%ED%95%A8+%EC%98%88%EC%B8%A1&articleTitleEn=TabNet+based+Software+Defect+Prediction&language=ko_KR&hasTopBanner=true
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE11036011&nodeId=NODE11036011&medaTypeCode=185005&isPDFSizeAllowed=true&locale=ko&foreignIpYn=Y&articleTitle=TabNet+%EA%B8%B0%EB%B0%98%EC%9D%98+%EC%86%8C%ED%94%84%ED%8A%B8%EC%9B%A8%EC%96%B4+%EA%B2%B0%ED%95%A8+%EC%98%88%EC%B8%A1&articleTitleEn=TabNet+based+Software+Defect+Prediction&language=ko_KR&hasTopBanner=true
https://doi.org/10.5815/ijitcs.2012.04.02
https://doi.org/10.5626/JOK.2020.47.8.769
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1016/j.cja.2017.03.005
https://www.etsi.org/deliver/etsi_ts/138400_138499/138401/17.01.01_60/ts_138401v170101p.pdf
https://www.etsi.org/deliver/etsi_ts/138400_138499/138401/17.01.01_60/ts_138401v170101p.pdf
https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE06602802
https://doi.org/10.1613/jair.953
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://doi.org/10.37727/jkdas.2021.23.1.195

Electronics 2024, 13, 1690 23 of 23

48. Introduction to Boosted Trees—Xgboost 2.0.0 Documentation. Available online: https://xgboost.readthedocs.io/en/stable/
tutorials/model.html (accessed on 21 October 2023).

49. Molnar, C. 9.5 Shapley Values|Interpretable Machine Learning. Available online: https://christophm.github.io/interpretable-ml-
book/shapley.html (accessed on 21 October 2023).

50. Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural
Information Processing Systems; Curran Associates Inc.: Glasgow, Scotland, 2017; Volume 30.

51. Zhao, Y.; Damevski, K.; Chen, H. A Systematic Survey of Just-in-Time Software Defect Prediction. ACM Comput. Surv. 2023, 55,
1–35. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://christophm.github.io/interpretable-ml-book/shapley.html
https://christophm.github.io/interpretable-ml-book/shapley.html
https://doi.org/10.1145/3567550

	Introduction
	Related Work
	Software Defect Prediction Applied in Open-Source Projects
	Software Defect Prediction Applied in Real Industrial Domains

	Materials and Methods
	Research Questions
	Dataset
	Research Design
	Software Metrics
	Defect Labeling
	Mitigating Class Imbalance
	Machine Learning Models
	Model Performance Assessment
	Feature Importance Analysis
	Cross-Version Performance Measurement
	Cross-Group Performance Measurement

	Results
	Discussion and Conclusions
	References

