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Abstract: This paper delves into the realm of human activity recognition (HAR) by leveraging
the capabilities of Siamese neural networks (SNNs), focusing on the comparative effectiveness of
contrastive and triplet learning approaches. Against the backdrop of HAR’s growing importance
in healthcare, sports, and smart environments, the need for advanced models capable of accurately
recognizing and classifying complex human activities has become paramount. Addressing this,
we have introduced a Siamese network architecture integrated with convolutional neural networks
(CNNss) for spatial feature extraction, bidirectional LSTM (Bi-LSTM) for temporal dependency capture,
and attention mechanisms to prioritize salient features. Employing both contrastive and triplet loss
functions, we meticulously analyze the impact of these learning approaches on the network’s ability
to generate discriminative embeddings for HAR tasks. Through extensive experimentation, the study
reveals that Siamese networks, particularly those utilizing triplet loss functions, demonstrate superior
performance in activity recognition accuracy and F1 scores compared with baseline deep learning
models. The inclusion of a stacking meta-classifier further amplifies classification efficacy, showcasing
the robustness and adaptability of our proposed model. Conclusively, our findings underscore the
potential of Siamese networks with advanced learning paradigms in enhancing HAR systems, paving
the way for future research in model optimization and application expansion.

Keywords: human activity recognition; Siamese neural networks; convolutional neural network;
bidirectional LSTM; attention mechanism; contrastive loss function; triplet loss function

1. Introduction

Human activity recognition (HAR) is an interdisciplinary field of research that has
garnered significant attention due to its wide range of applications, from healthcare moni-
toring and elderly care to sports analytics, interactive gaming, and smart environments. The
core objective of HAR is to identify and classify different human activities based on data
captured from various sensors, such as accelerometers, gyroscopes, or even video cameras.
In healthcare, for example, HAR can facilitate continuous patient monitoring without the
need for intrusive supervision, enabling early detection of deteriorating conditions or fall
detection for the elderly. In smart homes, HAR can enhance energy efficiency and security
by adapting the environment to the occupants’ activities.

Traditionally, HAR has relied heavily on handcrafted feature extraction techniques,
where domain expertise is used to select features from sensor data that are most indicative
of different activities. These features are then fed into classical machine learning models
like support vector machines (SVMs), decision trees, or K-nearest neighbors (KNNs) for
classification. While effective in controlled settings, these traditional methods often fall
short in more complex, real-world scenarios due to their inability to capture the high-
dimensional and dynamic nature of human activities. Moreover, the manual feature
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selection process is labor-intensive and may not generalize well across different tasks
or datasets.

The advent of deep learning has provided new avenues for HAR, with models like con-
volutional neural networks (CNNs) and recurrent neural networks (RNNs), including their
long short-term memory (LSTM) variants, demonstrating the ability to automatically learn
representative features from raw data. These models have shown remarkable success in
capturing the spatial and temporal complexities of human activities. However, deep learn-
ing approaches require substantial labeled data for training and can be computationally
intensive, limiting their applicability in resource-constrained environments. Addition-
ally, the black-box nature of these models often leads to challenges in interpretability, an
important aspect in sensitive applications like healthcare.

Siamese neural networks represent a novel paradigm in the landscape of HAR, offer-
ing a way to mitigate some of the limitations associated with traditional and deep learning
methods. By design, Siamese neural networks are adept at learning from relative compar-
isons rather than absolute label assignments, making them particularly suitable for tasks
where the objective is to gauge similarity or dissimilarity between pairs or groups of data
points, such as in HAR. The incorporation of CNN layers within the Siamese architecture
allows for effective spatial feature extraction from sensor data, capturing intricate patterns
and textures that characterize different activities. Following the CNN layers, Bi-LSTM
networks are employed to model the temporal dependencies in the data, leveraging their
ability to remember past information for extended periods and process sequences in both
forward and backward directions. This bidirectional processing is crucial for understanding
the sequential nature of human movements. To further enhance the model’s focus on rele-
vant features, attention mechanisms are integrated, enabling the network to dynamically
weigh the importance of different inputs, thereby prioritizing features that are most salient
for activity recognition.

Despite these advancements, the problem of robust feature representation and classifi-
cation in HAR remains a significant challenge. The variability in human activities, coupled
with differences in sensor placement, noise, and individual user characteristics, necessitates
the development of more advanced techniques that can adapt to these complexities while
maintaining high accuracy and efficiency.

This study delves into Siamese networks for HAR, with a focus on both contrastive
and triplet learning methods. Our approach integrates Siamese neural networks (SNNs)
with attention mechanisms tailored specifically for HAR—a combination not extensively
explored in previous studies. We also critically analyze the performance of contrastive
and triplet loss functions within this framework. Contrastive learning aims to refine
embeddings by pulling similar instances together and pushing dissimilar ones apart,
facilitated by contrastive loss functions. This enhances the network’s ability to differentiate
activities. Triplet learning extends this concept by using triplets (anchor, positive, and
negative) to further optimize the embedding space, ensuring even more distinct separations
between activities. The research also explores the use of stacking meta-classifiers, which
combine predictions from various models to improve overall classification accuracy. The
comparative analysis of these methodologies is intended to provide valuable insights into
creating more efficient and interpretable HAR systems, demonstrating the versatility and
potential of SNNs in advancing HAR applications.

2. Related Works

Human activity recognition (HAR) has seen significant advancements due to its appli-
cations in health, sports, and smart environments. Deep learning models have particularly
enhanced HAR by effectively extracting spatial and temporal features from sensor data.

Traditional machine learning methods in HAR relied heavily on manual feature extrac-
tion, limiting generalization. Deep learning has revolutionized HAR by enabling automatic
feature extraction, overcoming the limitations of traditional manual methods [1,2].
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Wang et al.’s survey on deep learning for sensor-based activity recognition encap-
sulates this transition, highlighting deep learning’s capability to enhance generalization
performance and its adaptability to unsupervised and incremental learning tasks [1], while
Tee et al. surveyed deep learning models, highlighting the success of hybrid systems that
combine CNN and LSTM layers for activity recognition [2].

CNN s have gained prominence in HAR, due to their proficiency in pattern recognition
and automatic feature extraction. Raj and Kos [3] delve into CNN’s application in HAR,
emphasizing its utility in interpreting temporal and spatial data from wearable sensors.
Their study introduces a CNN-based model for classifying human activities, demonstrating
a notable accuracy improvement on the WISDM dataset for HAR tasks.

The shift towards deep learning has become widely popular in recent years. Xia et al. [4]
demonstrated leveraging LSTM and CNN architectures to automatically extract features
from sensor data, significantly improving model performance and robustness across various
datasets. Luwe et al. [5] presented a hybrid model combining 1D-CNN with Bi-LSTM,
achieving remarkable accuracy on several datasets, and demonstrating the potential of
deep learning in HAR, whereas Roobini and Naomi [6] explored the use of smartphones for
HAR, employing ConvLSTM and RNNLSTM models to analyze sensor data, emphasizing
the potential of deep learning in mobile-based HAR.

Furthermore, Zhao et al. [7] introduced a deep network using residual bidirectional
LSTM, showcasing significant improvements in HAR accuracy, significantly on standard
datasets, by leveraging both spatial and temporal dimensions. Li and Wang [8] developed
a model combining residual networks and Bi-LSTM to capture complex activity patterns
with high accuracy across several datasets.

Nafea et al. [9] introduced a novel methodology utilizing CNNs with varying kernel
dimensions and Bi-LSTM for capturing features from sensor data, demonstrating improve-
ments in HAR accuracy. Khan et al. [10] presented a hybrid CNN-LSTM model tailored
for HAR, which excelled in extracting spatial and temporal features, marking a significant
advancement in activity recognition research.

Siamese networks, known for their pairwise comparison approach, have been adapted
for HAR to refine feature embeddings. Their ability to learn from relative comparisons
makes them suitable for HAR tasks, as explored in various studies focused on enhancing
model performance through advanced embedding techniques. For instance, Sheng and
Huber [11] explored Siamese networks for weakly supervised HAR, utilizing similarity
loss to train models that effectively segment and recognize continuous activity sequences
without explicit labels. Contrastive and triplet learning have revolutionized HAR by refin-
ing embedding spaces for better activity differentiation. Li et al. [12] proposed similarity
embedding networks trained with pairwise similarity loss, showcasing robustness against
mislabeled samples and enhanced classification accuracy.

The literature underscores a transition from manual feature extraction to automatic
feature learning through deep neural networks, significantly advancing HAR. The com-
bination of spatial feature extraction via CNNs with temporal modeling using LSTM or
Bi-LSTM layers has become a cornerstone in HAR models. Siamese networks, with their
ability to learn from relative comparisons, present a promising avenue for HAR, especially
when coupled with contrastive or triplet learning approaches. These methodologies not
only improve the granularity of feature embeddings but also enhance a model’s ability to
generalize across diverse and noisy datasets.

3. Preliminaries
3.1. Basic Concepts of Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) stand at the forefront of feature extraction,
particularly from visual data. CNNs employ layers of convolutions that apply various
filters to the input data, effectively capturing spatial hierarchies of features. This process
allows CNNSs to learn complex patterns, from simple edges in the initial layers to intricate
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details in deeper layers, making them ideal for tasks requiring detailed feature analysis,
such as image and signal processing. Figure 1 shows an overview of the CNN.
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Figure 1. Overview of CNN.

3.2. Fundamentals of Bidirectional Long Short-Term Memory (Bi-LSTM) Networks

Bidirectional long short-term memory (Bi-LSTM) networks extend the capabilities of
traditional recurrent neural networks (RNNs) by processing data points in both forward
and backward directions. This bidirectionality enables the network to preserve information
from both past and future states, offering a more comprehensive understanding of temporal
dynamics. Bi-LSTMs are particularly effective in time-series data applications, such as
speech and language processing, where the context from both directions is crucial for
accurate interpretation. Figure 2 shows an overview of the Bi-LSTM network.
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Figure 2. Overview of Bi-LSTM.

3.3. Overview of Attention Mechanisms

Attention mechanisms have revolutionized the way neural networks process se-
quences, allowing models to focus on specific parts of the input data that are more relevant
to the task at hand. This focus is achieved by assigning different weights to various parts of
the data, enabling models to prioritize and aggregate information from the most pertinent
areas. Attention mechanisms enhance model performance in tasks requiring nuanced
understanding and contextual awareness, such as machine translation and document
summarization. Figure 3 shows an overview of the attention mechanism.
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Figure 3. Overview of attention mechanisms.

The attention mechanism utilized in our SNNs for HAR is a critical component that
helps the model prioritize and consolidate information from input sequences, thereby
enhancing its ability to discern subtle activity patterns.

In the model, the attention mechanism is designed to allow the network to focus
on the key input elements, query (Q), key (K), and value (V). The query (Q) component
represents the current state or element at a specific timestep in the sequence, seeking
relevant information from the entire input; keys (K) unlock information in value elements
by being compared against queries to determine their relevance or importance; and values
(V) contain the actual information from the input data, providing content for the model
to focus on once their corresponding keys are deemed relevant through comparison with
a query.

The operations involving Q, K, and V are depicted as follows.

1. Dimension matching: initially, queries and keys are transformed through dense
layers to ensure they match in dimensionality. This transformation facilitates the effective
computation of attention scores.

2. Score computation: attention scores are computed by taking the dot product of the
query matrix, Q, with the transpose of the key matrix, K, mathematically represented as
scores = QKT indicating the relevance of each input element.

3. Application of softmax: the softmax function normalizes the scores into a probability
distribution, represented as attention weights = softmax (scores), focusing the model’s
attention by amplifying the highest scores and diminishing the lower ones, ensuring the
weights sum to 1 for interpretability as probabilities.

4. Weighted sum of values: the final step in the attention mechanism involves comput-
ing a weighted sum of values using the previously calculated attention probabilities to form
a context vector, context vector = }_(attention weights x V'), dynamically aggregating the
most relevant information for the model to focus on.

3.4. Overview of Siamese Networks, Contrastive Learning, and Triplet Learning

Siamese networks, renowned for their dual architecture, are adept at comparing
and contrasting pairs of input data. By sharing weights between identical subnetworks,
they excel in tasks that require assessing the similarity or relationship between two data
points, such as in verification and matching tasks. In the Siamese network architecture, the
principle of weight sharing is crucial and particularly instrumental when it comes to tasks
that involve learning fine distinctions between similar and dissimilar instances.

In a Siamese network, each identical subnetwork processes different elements of input
pairs or triplets with shared weights, ensuring consistent feature extraction across all
inputs. Uniform feature extraction across subnetworks in Siamese networks ensures fair
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and consistent comparisons between different inputs, crucial for their primary function of
effectively comparing and contrasting inputs.
Figure 4 depicts a generic Siamese network.
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Figure 4. Generic Siamese network.

Contrastive learning, commonly integrated within Siamese frameworks, enhances
this capability by encouraging the model to differentiate between similar (positive) and
dissimilar (negative) pairs, thus cultivating robust and discriminative feature representa-
tions. In the case of contrastive learning, weight sharing ensures that the feature extraction
process for both inputs in a pair is symmetrical, allowing the network to accurately measure
similarities or differences based on the same feature representation.

Expanding on this foundation, triplet learning introduces an advanced perspective
by utilizing triplets of data points, consisting of an anchor, a positive example (similar to
the anchor), and a negative example (dissimilar to the anchor). The triplet loss function, a
key component of triplet learning, aims to ensure that the anchor is closer to the positive
example than to the negative example by a defined margin. This approach not only
distinguishes between similar and dissimilar pairs but also fine-tunes the relative distances
within the embedding space, fostering even more nuanced feature representations. In
triplet learning, weight sharing across the branches processing the anchor, positive, and
negative inputs guarantees that the distance metrics are computed consistently.

Sharing weights in a network streamlines learning by reducing the number of parame-
ters, speeding up training, and lessening computational demands. Using the same weights
for different inputs helps the network generalize better, a key advantage in applications
like HAR where consistent performance across various conditions and subjects is crucial.
Consistent feature extraction ensures that embeddings are comparable, enhancing the
effectiveness of contrastive and triplet loss functions that depend on reliable distances
between embeddings.

4. Proposed System Architecture

The proposed system architecture for human activity recognition (HAR) using a
Siamese neural network incorporates a synergistic combination of convolutional neural
networks (CNNs), bidirectional long short-term memory (Bi-LSTM) units, and attention
mechanisms. The system is further enhanced with supervised contrastive learning, employ-
ing contrastive and triplet loss functions, and is finalized with a stacking meta-classifier for
robust activity classification. This architecture is designed to leverage the strengths of each
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component, resulting in a robust and efficient system capable of effectively tackling the
challenges of spatial and temporal variability in human activities from smartphone sensor
data, ensuring high accuracy and reliability in activity recognition.

4.1. Siamese Network Architecture

The proposed Siamese network for human activity recognition (HAR) is designed to
harness the strengths of convolutional neural networks (CNNs), bidirectional long short-
term memory (Bi-LSTM) networks, and attention mechanisms. This integration facilitates a
robust extraction and representation of features from sensor data, capturing both spatial
patterns and temporal dynamics inherent in human activities. Figure 5 illustrates the
proposed Siamese neural network architecture with a contrastive loss function and a
stacking meta-classifier.

Input
CNN Bi-LSTM Attention
Subnetwork 1 *
ubnetwor N Predicted
Shared Weights Contrasti\_fe N Stack'mg_ ; Output
_ 3 |Loss Function Meta-Classifier
v
Input
CNN Bi-LSTM Attention

Subnetwork 2

Figure 5. Proposed Siamese neural network architecture with contrastive loss function and stacking
meta-classifier.

4.1.1. Feature Extraction and Representation

The process begins with the Siamese network components performing their respective
roles in feature extraction and representation.

A.CNN:

The CNN component of the Siamese network is pivotal in extracting spatial features
from the input sensor data. The architecture typically consists of multiple convolutional
layers followed by pooling layers. Each convolutional layer, C;, applies a set of learnable
filters, k, followed by a nonlinear activation function, o, typically ReLU (0 (x)) = max(0, x)),
to introduce nonlinearity. The operation can be represented as:

Ci(x) = o(Wi*x +b;) 1)

where W; and b; denote the weights and bias for the ith layer, and * represents the convolu-
tion operation.

Pooling layers (usually max pooling) follow convolutional layers to reduce the spatial
dimensions of the feature maps, thereby decreasing the computational complexity and
enhancing the network’s ability to generalize by focusing on dominant features.

The initial layers capture basic features, which are combined into more complex
representations in deeper layers. This hierarchical feature extraction process is crucial for
identifying the nuanced spatial characteristics of different activities, making CNNs an
integral part of the Siamese network’s architecture for HAR.

B. Bi-LSTM:

Following the CNN layers, Bi-LSTM networks are employed to capture the temporal
dependencies in the activity data. Unlike traditional unidirectional LSTMs that process
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data in a single direction, Bi-LSTMs analyze the sequence in both forward and backward
directions, providing a comprehensive context of the sequence at each point. This bidi-
rectional analysis is particularly beneficial for HAR, where the context before and after a
particular moment can significantly influence the interpretation of an activity.

Bi-LSTMs consist of two LSTM layers that process the data in opposite directions, and
their outputs are combined at each time step. For a given time step, ¢, the forward LSTM

(LSTM) and backward LSTM (iS TM) operations are defined as:
T = LSTM (1,11

? = m(xt,fa)

%
The final output at each time step k; is the concatenation of forward, h;, and backward,

)

ﬁ, hidden states, capturing information from both past and future contexts.

This setup allows the network to retain information from both past and future states,
capturing the dynamic temporal patterns and transitions between different states of activity,
which are critical for accurate recognition.

C. Attention Mechanism:

An attention mechanism is applied to the outputs of the Bi-LSTM layers, enabling the
network to focus on the most relevant temporal features for activity recognition.

The attention mechanism assigns weights, «;, to the LSTM outputs, h;, focusing
the network on the most relevant temporal features. The context vector, ¢, is computed
as follows:

ey = tl(l’lt>
__exp(er)
i expler) (3)

T
c = Z Détht
t=1

where a(+) is a learnable function that computes the relevance score, e, of each time step,
and T is the total number of time steps.

It can be observed that the relevance score, e;, is computed. Here, the function,
a, transforms the hidden state, /i, at each time step, f, to compute a relevance score,
et, determining the contribution of each time step’s data to the final output based on
its assessed relevance. The softmax function applied to relevance scores, ¢;, uses the
exponential function to amplify score differences and normalizes these scores into attention
weights, a;, representing probabilities that reflect the importance of each time step’s data.
Finally, the context vector, ¢, is calculated as the weighted sum of hidden states, h;, using
attention weights, a;, synthesizing input data by emphasizing features from the most
relevant time steps.

This mechanism dynamically assigns higher weights to more informative features,
enhancing the network’s ability to discern subtle differences between similar activities and
improving the overall accuracy of the HAR system. Additionally, by learning the function,
a, and relevance scores, ¢;, the model adapts to varying data and contexts without manual
intervention, while the attention weights, a;, improve interpretability by revealing which
data parts are deemed important.

Xt

4.1.2. Embedding Generation in Siamese Network

Within the Siamese architecture, the processed features from the CNN, Bi-LSTM, and
attention layers are combined to generate a comprehensive embedding for each input
sample. This embedding serves as a compact and informative representation of the sensor
data, suitable for distinguishing between various activities based on their inherent spatial
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and temporal characteristics. The Siamese network leverages these embeddings to compare
input samples, learning a metric space where similar activities are closely positioned, and
dissimilar ones are distant. This embedding generation process is central to the network’s
ability to accurately recognize and classify human activities.

4.1.3. Siamese Network with Contrastive and Triplet Learning Approaches

A Siamese network architecture is characterized by twin branches that process input
data in parallel, with each branch handling one element of an input pair or triplet. These
branches are identical, sharing the same weights and architecture, which ensures uniform
feature extraction across the inputs. This shared-weight design is fundamental for the
network’s capability to assess and differentiate the extracted features from each input,
making it particularly effective for tasks that involve comparing similarities or discrepancies
between data samples.

In the context of HAR, the Siamese network leverages contrastive and triplet learn-
ing approaches to refine its ability to distinguish between similar and dissimilar activity
instances. These learning paradigms are underpinned by specially designed loss functions
that guide the network towards generating embeddings where similar instances are closer
together, and dissimilar instances are further apart in the embedding space.

A. Contrastive Loss:

The contrastive loss function is pivotal in the contrastive learning approach, primarily
focusing on pairs of input samples, and is used to differentiate between positive (similar)
and negative (dissimilar) pairs.

For a pair of embeddings, x; and X, the contrastive loss, L¢ontr, can be mathematically
represented as:

Leontr (51,33, Y) = (1= Y) (D (3,))* + 5 (V) (max(0,m — D(x;,%))* (@

where:

Y is a binary label indicating whether x; and x; are similar (Y = 0) or dissimilar
(Y=1).

D(x;, x;) is the distance between the embeddings of the ith and jth samples.

m represents the margin, a hyperparameter that defines how far apart the dissimilar
pairs should be.

This function penalizes the network for close embeddings of dissimilar pairs and
distant embeddings of similar pairs, thereby encouraging similar activities to have closer
embeddings and vice versa.

B. Triplet Loss:

The triplet loss function extends the contrastive learning approach by considering
triplets of samples, consisting of an anchor, 4, a positive example, p (similar to the anchor),
and a negative example, n (dissimilar to the anchor). The triplet loss, Ly, is defined as:

Lm-p(a, p,n) = max(0,D(a, p) — D(a,n) + m) (o)

where:

D(a,p) and D(a, n) are the distances between the anchor and the positive example,
and the anchor and the negative example, respectively.

m is the margin, enforcing a minimum separation between the positive and negative
pairs relative to the anchor.

The triplet loss aims to ensure that the anchor is closer to the positive example than to
the negative example by at least margin m, thereby structuring the embedding space in a
way that reflects the relationships within the input data.



Electronics 2024, 13, 1739

10 of 23

Through these loss functions, the Siamese network, whether in its twin or triplet
configuration, optimizes its embeddings to effectively capture the nuances of human
activities, facilitating accurate recognition and classification.

4.2. Stacking Meta-Classifier as a Decision Maker

The final component of the proposed system is the stacking meta-classifier, which
has decision-making capabilities and integrates the outputs from the Siamese network
to perform the final classification of activities. This meta-classifier combines predictions
from multiple base classifiers, each trained on the embeddings generated by the Siamese
network, to produce a final prediction. The stacking approach leverages the diversity of the
base classifiers, allowing for a more nuanced and accurate classification decision. Figure 6
depicts a block diagram representation of a stacking meta-classifier.

Embedding Output

Classifier

Embedding output ————> Final Output
Classifier » Classifier
— —

Embedding

1

Qutput

Classifier

(

Figure 6. Block diagram representation of stacking meta-classifier.

The incorporation of the stacking meta-classifier provides several benefits, including;:

*  Robustness against overfitting by combining multiple models.

*  Reducing the likelihood of the final classifier being overly reliant on the idiosyncrasies
of the training data.

* Improved predictive performance, as it can capture complex patterns that may be
missed by individual classifiers.

5. Implementation Aspects

This section discusses the dataset and preprocessing.

5.1. Dataset

For the implementation of the proposed Siamese network with contrastive and triplet
learning approaches for human activity recognition (HAR), the widely recognized UCI
HAR dataset is utilized. This dataset is a benchmark in the field of HAR and provides a
comprehensive foundation for developing and evaluating machine learning models.

5.1.1. UCI HAR Dataset Overview

The UCI HAR dataset was collected from a group of 30 volunteers within an age
bracket of 19-48 years. Each participant performed six activities: walking, walking upstairs,
walking downstairs, sitting, standing, and laying. The activities were recorded using a
smartphone worn on the waist, equipped with embedded inertial sensors.

Sensor Types and Data Characteristics

*  Accelerometer and gyroscope: the dataset incorporates readings from the smart-
phone’s accelerometer and gyroscope. The accelerometer captures linear accelera-
tion, while the gyroscope measures angular velocity. Both sensors provide three-
dimensional data, representing the x-, y-, and z-axes.
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*  Sampling rate: the signals were sampled in fixed-width sliding windows of 2.56 s,
with a 50% overlap between consecutive windows, resulting in a sampling rate of
50 Hz.

*  Signal processing: the signals from both sensors were preprocessed by applying noise
filters and then sampled in fixed-width sliding windows. The sensor acceleration
signal, which has gravitational and body motion components, was separated using a
Butterworth low-pass filter into body acceleration and gravity.

*  Feature extraction: from each window, a vector of features was obtained by calculating
variables from the time and frequency domain. This includes measures such as mean,
standard deviation, median, max, min, skewness, kurtosis, and various others, leading
to 561 feature vectors per sample.

The dataset was divided into two sets: 70% of the volunteers were selected to generate
the training data and 30% the test data. Figure 7 visually represents the distribution of
observations across different activities in a UCI HAR. Such a distribution for total data
is shown in Figure 7a; similarly, training data and test data are shown in Figure 7b and
Figure 7c, respectively.

Observations by Activity
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Activity Activity

(b) (0)

Figure 7. Distribution of observations by activity (a) Total data. (b) Training data. (c) Test data.

This richly annotated dataset not only provides the raw time-series data but also
the preprocessed features, making it versatile for different kinds of analysis and model
training approaches.

For the proposed Siamese network, both raw sensor data for deep feature extraction
and preprocessed features for baseline comparisons can be employed. The diversity of
activities, coupled with the multi-dimensional sensor data, presents an excellent opportu-
nity to explore and validate the efficacy of the Siamese network architecture, contrastive
learning, and triplet loss functions in distinguishing complex human activities.
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5.1.2. Data Preprocessing

The data preprocessing stage is crucial for preparing the UCI HAR dataset for effective
learning by the Siamese network. The process involves several steps:

*  Normalization: each feature in the dataset is normalized to have a zero mean and unit
variance, ensuring consistency across different scales of sensor readings.

¢  Windowing: the continuous sensor data stream is segmented into fixed-sized windows
with a 50% overlap, as per the original dataset’s configuration. Each window is treated
as an independent sample.

5.2. Experimental Setup
5.2.1. Configuration of Neural Network Models

The configuration of the Siamese network’s subnetwork involves a meticulously
designed architecture that leverages a combination of convolutional neural networks
(CNNSs), bidirectional long short-term memory (Bi-LSTM) units, and a custom attention
mechanism to process and analyze sensor data for human activity recognition (HAR).

A. Initial Feature Extraction with CNN Layers:

The model begins with an input layer that accommodates the preprocessed sensor
data, followed by a Conv1D layer with a defined number of filters and kernel size, using
‘same’ padding to maintain the input’s dimensionality while extracting spatial features.
Batch normalization is applied to normalize the activations, followed by a ReLU activation
function for nonlinearity. A MaxPooling1D layer with a pool size of 2 reduces the dimen-
sionality of the features, which is essential for the network’s efficiency and to capture the
most relevant spatial features.

This setup is duplicated with another Conv1D layer, where the number of filters is
adjusted to refine the feature maps. The sequence of batch normalization, ReLU activation,
and max pooling is repeated to further process the spatial features for temporal analysis.

B. Temporal Dependency Modeling with Bi-LSTM Layers:

The spatial features are then passed through Bi-LSTM layers to model the temporal
dependencies within the data. The first Bi-LSTM layer, with a set number of units, incor-
porates dropout to mitigate overfitting and processes the data bidirectionally, capturing
temporal dependencies from past and future contexts. A ReLU activation function is
applied to ensure nonlinearity. A second Bi-LSTM layer with a similar setup refines the
temporal feature representation.

C. Feature Prioritization with Attention Mechanism:

A custom attention mechanism is employed on the outputs of the Bi-LSTM layers to pri-
oritize and focus on the most relevant temporal features for activity recognition. This mecha-
nism calculates attention weights for the Bi-LSTM outputs, emphasizing significant features.
A Lambda layer is used to extract key elements from the attention-weighted sequence,
focusing on the most informative temporal features for the final activity classification.

5.2.2. Stacking Meta-Classifier for Final Classification

A stacking meta-classifier is employed for the final classification, integrating outputs
from various base classifiers trained on the optimized embeddings. The configuration of
each base classifier, such as decision trees, extra trees, random forest, and LightGBM, is
specified with parameters tailored to the HAR task. The final classification is performed
by an SVC classifier, which integrates the base classifiers’ predictions to produce the final
activity labels.
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5.2.3. Training Procedure

The training process for the Siamese neural network in human activity recognition
(HAR) is meticulously designed to ensure effective learning and generalization. The
procedure encompasses optimization strategies, hyperparameter tuning, and validation
approaches, tailored to the specific requirements of the network architecture and the
HAR task.

Case 1: Training with Contrastive Loss Function:

For the contrastive learning approach, the network is trained on pairs of input sam-
ples, using the contrastive loss function to minimize the distance between embeddings of
similar activities and maximize the distance for dissimilar activities. This training regime
encourages the model to learn embeddings that cluster similar activities closely in the
embedding space, enhancing the discriminative capability of the network.

Case 2: Training with Triplet Loss Function:

In the triplet learning scenario, the network is trained on triplets of samples (anchor,
positive, and negative), utilizing the triplet loss function. This approach aims to ensure that
the anchor is closer to the positive sample than to the negative sample by a defined margin,
further structuring the embedding space for improved activity recognition.

5.2.4. Optimization and Hyperparameters

The training utilizes both Adam and stochastic gradient descent (SGD) with momen-
tum optimizers, leveraging their unique advantages:

*  Adam optimizer: known for its adaptive learning rate adjustment, the Adam optimizer
is initialized with a learning rate of 0.0001, betal set to 0.96, beta2 to 0.99985, and
epsilon to 1 x 1078, This configuration helps in accommodating the variances in gradi-
ents, making Adam particularly effective for datasets with noisy or sparse gradients.

*  5GD with momentum: SGD, augmented with a momentum term of 0.6, is employed
to expedite the training by smoothing the gradient descent process. The momentum
assists in overcoming potential oscillations and stabilizes the updates, facilitating a
more direct path toward the optimization minima.

Key hyperparameters are carefully selected to optimize the network’s performance:

e  Regularization: L2 regularization, with a weight decay of 1 x 102 is applied to
penalize large weights, reducing the risk of overfitting.

*  Dropout: a dropout rate of 0.5 is implemented in the LSTM layers to randomly exclude
a subset of features during training, further preventing the model from becoming
overly dependent on specific neurons.

Hyperparameter tuning was conducted iteratively, with the validation set performance
guiding the adjustments. This involves experimenting with various hyperparameter com-
binations to find the optimal setup that maximizes validation accuracy while maintaining a
balance between learning efficiency, model complexity, and generalization.

The final tuning of hyperparameters in our model encompasses:

—  Batch size: we experimented with different batch sizes to evaluate their effects on

model generalization and computational efficiency during training. After testing batch
sizes of 32 and 64, it became evident that a batch size of 64 strikes an optimal balance,
enhancing both the training speed and overall model performance.

—  Number of epochs: the total number of epochs was determined by observing the

behavior of the loss function during training. We tested the model across 50, 100, and
200 epochs, with an early stopping mechanism triggered if the validation loss did not
improve for 10 consecutive epochs. Our findings suggest that extending training to
200 epochs generally allows the model sufficient time to converge to a robust solution.
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To visually monitor the training progress and facilitate timely adjustments, we plotted
loss function graphs for both the training and validation phases across different epochs.
These graphs are crucial for understanding how the loss evolves, identifying when the
model begins to plateau, and determining the optimal moment for early stopping based on
stabilization or deterioration in loss reduction. Figure 8 presents these loss function graphs:
Figure 8a illustrates the training and validation loss over 100 epochs, while Figure 8b ex-
tends this analysis to 200 epochs, providing insights into the longer-term training dynamics.

Loss: Training vs. Validation Loss: Training vs. Validation

2.4 - =
—— Training Loss 1.75 4 —— Training Loss

21 Validation Loss Validation Loss

1.50
1.84

1.2579
1.5

1.00
1.2

0.75
0.9

\ 0.50
0.6
0.25 4

0.3 —

0.01— . . . . . 0.00 1

(a) (b)

Figure 8. Loss function graphs. (a) Training and validation loss over 100 epochs. (b) Training and
validation loss over 200 epochs.

5.3. Results and Analysis
5.3.1. Overview of Performance Metrics

To comprehensively evaluate the performance of the proposed Siamese network model
for human activity recognition (HAR), we employ several standard evaluation metrics,
namely accuracy, precision, recall, and F1 score. These metrics provide insights into various
aspects of model performance, from general accuracy to the balance between precision
and recall.

A. Accuracy:

This metric represents the overall correctness of the model, calculated as the ratio of
correctly predicted observations to the total observations. It gives a quick overview of
the model’s effectiveness but may not always provide a complete picture, especially in
imbalanced datasets.

B. Precision:

Precision indicates the ratio of correctly predicted positive observations to the total
predicted positives. High precision relates to a low false positive rate, crucial in scenarios
where the cost of a false positive is high.

C. Recall (Sensitivity):

Recall measures the ratio of correctly predicted positive observations to all observa-
tions in the actual class. It is particularly important in cases where missing a positive (e.g.,
failing to recognize an activity) is critical.

D. F1 score:

The F1 score is the weighted average of precision and recall, taking both false positives
and false negatives into account. It is a better measure than accuracy for imbalanced
datasets. Initially, we considered both the mean and the weighted F1 scores. While calculat-
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ing the mean F1 score, which averages the F1 scores for each class, the model’s effectiveness
tends to distort—overestimating performance on prevalent activities while undervaluing
it on rarer ones. In contrast, the weighted F1 score compensates for this imbalance by
weighting the score of each class according to its frequency, thus providing a more accurate
reflection of the model’s performance across diverse activities. Ultimately, we decided to
use the weighted F1 score only for this study. This metric is particularly apt for HAR tasks
where some activities might be overrepresented and others underrepresented in the dataset.
Using the weighted F1 score ensures a fairer assessment of the model’s effectiveness across
all activity types, aligning with our aim to develop a robust HAR system.

E. Confusion Matrix:

The confusion matrix provides a detailed breakdown of the model’s performance
across different classes, showing the true positives, false positives, true negatives, and false
negatives for each activity class. This can help identify specific classes where the model
may be underperforming.

By leveraging these metrics, we can gain a comprehensive understanding of the pro-
posed Siamese network model’s strengths and limitations, guiding further improvements
and refinements for enhanced HAR performance.

5.3.2. Results

The experimental results derived from training the Siamese network with both con-
trastive and triplet loss functions, using two different optimizers (SGD and Adam), provide
insightful revelations about the model’s performance and the impact of loss functions and
optimization strategies on human activity recognition (HAR).

A. Contrastive Loss Function Results:

Upon applying the SGD optimizer, the model achieved an accuracy of 93.98%, with
both precision and recall at 93.92%, leading to an F1 score of 93.9%. The alignment between
precision and recall indicates a balanced performance in identifying true positives and
minimizing false negatives and positives.

Using the Adam optimizer, the Siamese network exhibited marginally reduced perfor-
mance metrics, achieving an accuracy of 92.48%, with precision and recall hovering around
92.45% and 92.45%, and a corresponding F1 score of 92.39%. This slight decrement in
performance relative to the SGD optimizer could be ascribed to the adaptive learning rate
mechanism of Adam. Although this feature typically aids in achieving faster convergence,
it may have resulted in less than optimal progression through the specific loss landscape of
this HAR task, slightly impacting the overall model efficacy.

The results from the contrastive loss function experiments suggest that, while both
optimizers perform commendably, SGD offers a slight edge in this context, potentially due
to its simpler and more consistent update mechanism, which might be better suited to the
contrastive loss landscape in this specific HAR task.

B. Triplet Loss Function Results:

Applying the SGD optimizer with the triplet loss function, the model trained with the
SGD optimizer showed a notable improvement, achieving an accuracy of 95.21%, precision
at 95.19%, recall at 95.18%, and an F1 score of 95.18%. This enhancement in performance
metrics, compared with contrastive loss, highlights the efficacy of the triplet loss function
in structuring the embedding space in a way that more effectively discriminates between
different activities.

In the case of the Adam optimizer, using the triplet loss function, the performance
with Adam, while still robust, was slightly lower than with SGD, with accuracy at 93.2%,
precision at 93.21%, recall at 93.16%, and an F1 score of 93.15%. This indicates that, while
Adam’s adaptive learning rate mechanism is effective, it may not fully capitalize on the
structural advantages offered by the triplet loss function, as SGD does.
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The superior results achieved with the triplet loss function, particularly with the SGD
optimizer, underscore the benefit of utilizing a triplet framework for HAR tasks. The
structured approach of comparing an anchor with both a positive and a negative sample
likely provides a more nuanced and effective way to differentiate between activities, leading
to improved model performance. Table 1 shows various evaluation metrics for SSN-CL
and SSN-TL with Adam and SGD optimizers.

Table 1. Evaluation metrics for SSN-CL and SSN-TL with Adam and SGD optimizers.

Loss Function Contrastive Triplet
Metrics/Optimizer SGD Adam SGD Adam
Accuracy 93.98% 92.48% 95.21% 93.2%
Precision 93.92% 92.45% 95.19% 93.21%
Recall 93.92% 92.43% 95.18% 93.16%
F1 score 93.9% 92.39% 95.18% 93.15%

Figure 9 illustrates the overall accuracy for contrastive vs. triplet loss functions.

Accuracy for Contrastive vs. Triplet Loss Functions

100
Optimizer

. SGD

mm Adam

98

96

Accuracy (%)

Contrastive
Loss Function

Figure 9. Accuracy for contrastive vs. triplet loss functions.

Figure 10 depicts the confusion matrix for the Siamese network with the contrastive
loss function. Such confusion matrices for the Adam optimizer and SGD optimizer are
depicted in Figure 10a and Figure 10b, respectively.

Confusion Matrix (Percentage)

Confusion Matrix (Percentage) 100

(b)

Figure 10. Siamese network with contrastive loss function. (a) Adam optimizer. (b) SGD optimizer.
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Figure 11 depicts the confusion matrix for the Siamese network with the triplet loss
function. Such confusion matrices for the Adam optimizer and SGD optimizer are depicted
in Figure 11a and Figure 11b, respectively.

Confusion Matrix (Percentage) Confusion Matrix (Percentage)
- 100 100

-40

(b)
Figure 11. Siamese network with triplet loss function. (a) Adam optimizer. (b) SGD optimizer.

The discrepancy in the performance of Adam and SGD optimizers, particularly in
classifying the “sitting” activity, arises from their inherent optimization behaviors. Adam
uses adaptive learning rates tailored to each parameter based on gradient moments, which
can sometimes lead to issues like overshooting in scenarios with subtle feature differences,
as seen in the frequent misclassification of “sitting” as “standing”. In contrast, SGD
updates all parameters uniformly with a single rate, leading to more stable convergence
and possibly better generalization in tasks with closely similar activities. Adam’s approach
might introduce biases due to its variable learning rates, affecting its ability to distinguish
between similar physical states like “sitting” and “standing”.

5.3.3. Benchmark Model Evaluation

To thoroughly assess the efficacy of our proposed Siamese neural network (SNN)
approach, we constructed a benchmark model equipped with a CNN layer, a Bi-LSTM
layer, and an attention mechanism. This configuration serves as a baseline to rigorously test
the performance of our SNN under different training dynamics. We implemented training
sessions using contrastive loss, focusing on evaluating the improvements this configuration
brings to the model’s discriminative power for human activity recognition (HAR) tasks.
Such systematic training and evaluation highlight the SNN’s capacity to significantly
enhance feature distinction and recognition accuracy in complex pattern analysis scenarios,
achieving an impressive accuracy of 91.5%. This analysis not only validates the robustness
of our methodology but also demonstrates its potential to set new benchmarks in the field.

5.3.4. Results Comparison with Well-Known Baseline Models

The performance of the proposed Siamese neural network model, trained with con-
trastive (SSN-CL) and triplet loss (SSN-TL) functions, has been evaluated against several
well-established baseline models in the domain of human activity recognition (HAR). The
comparison is presented in terms of accuracy and F1 score, two key metrics that pro-
vide insights into the model’s overall effectiveness and balance between precision and
recall, respectively.

The table delineates the comparative analysis of various algorithms.
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A.LSTM:

A standard LSTM model serves as a baseline to assess the importance of temporal
feature modeling in HAR. Such an LSTM model provides an accuracy and F1 score of 90.8%.
While effective for capturing temporal dependencies, its relatively simpler architecture
might limit its capability to handle the complex spatial-temporal dynamics in HAR data.

B. Bi-LSTM:

The Bi-LSTM model, with its bidirectional processing of temporal data, can evaluate
the benefits of capturing temporal dependencies from both past and future contexts. Bi-
LSTM shows a slight improvement over the standard LSTM, achieving an accuracy and F1
score of 91.1%. This improvement underscores the value of capturing both past and future
context in activity recognition.

C. Res-LSTM:

Incorporating residual connections, the residual LSTM (Res-LSTM) model further
enhances the network’s ability to learn from the data, reaching an accuracy of 91.6% and an
F1 score of 91.5%. The residual connections likely aid in mitigating the vanishing gradient
problem, allowing for deeper and more effective learning.

D. ConvLSTM:

The ConvLSTM model, which combines convolutional layers with LSTM units, achieves
an accuracy of 92.24%. The absence of an F1 score makes it difficult to evaluate its precision—
recall balance, but the accuracy suggests a significant advantage in capturing spatial features
alongside temporal dependencies.

E. SSN-CL (Siamese Network with Contrastive Loss):

The Siamese network trained with a contrastive loss function demonstrates an accuracy
of 93.98% and an F1 score of 93.9%, indicating a robust performance that benefits from the
comparative learning framework and effective embedding of activity features.

F. SSN-TL (Siamese Network with Triplet Loss):

The most notable performance is observed with the Siamese network employing
triplet loss, yielding the highest accuracy of 95.21% and an F1 score of 95.18%. This model’s
superior performance can be attributed to the triplet loss function’s efficacy in optimizing
the feature space, providing clear separations between different activity classes.

Table 2 shows the comparison of the proposed SNN models with some of the well-
known baseline models. The comparison illustrates the efficacy of Siamese networks,
particularly with triplet loss, in handling the challenges of HAR. The SSN-TL model out-
performs traditional and more recent approaches, highlighting the potential of leveraging
structured loss functions and Siamese architectures for advanced activity recognition tasks.

Table 2. Comparison of proposed SSN model with well-known baseline models.

Algorithm Accuracy F1 Score
LSTM 90.8% 90.8%
Bi-LSTM 91.1% 91.1%
Res-LSTM 91.6% 91.5%
ConvLSTM 92.24% NA
SSN-CL 93.98% 93.9%

SSN-TL 95.21% 95.18%
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5.4. Analysis
5.4.1. Critical Analysis on Loss Functions and Optimizers

The differential performance between the contrastive and triplet loss functions, as well
as between the SGD and Adam optimizers, offers valuable insights.

A. Loss Function Impact:

The improved performance with the triplet loss function suggests that the additional
context provided by the negative samples in triplet training offers a significant advantage in
learning a more discriminative feature space for HAR tasks. This is particularly evident with
the precision metric, where the triplet loss function with SGD outperforms the contrastive
loss function, indicating a higher success rate in correctly identifying specific activities
without increasing false positives.

Considering loss function impact, the triplet loss function shows a consistent improve-
ment over contrastive loss across all metrics. For example, the accuracy improvement when
moving from contrastive to triplet loss with SGD is about 1.23%, and, with Adam, it is only
0.72%. This pattern is observed across all metrics, indicating the triplet loss’s effectiveness
in enhancing model performance.

B. Optimizer Influence:

The consistent performance of the SGD optimizer across both loss functions highlights
its suitability for the structured learning landscapes created by contrastive and triplet loss
functions. While Adam is generally robust and adaptable, its performance in this context
suggests that the adaptive learning rates might not always align optimally with the loss
landscapes of HAR tasks, especially when using the triplet loss function.

While considering optimizer impact, within each loss function category, SGD tends
to outperform Adam slightly. For instance, under contrastive loss, the difference in accu-
racy between SGD and Adam is 1.5%, and, under triplet loss, it is 2.01%. This trend is
consistent across all metrics, suggesting that SGD may provide a more stable and effective
optimization path for these specific loss functions in the given task.

5.4.2. Overall Evaluation:

It can be stated that the combination of triplet loss and SGD optimizer yields the best
performance across all metrics, with an accuracy of 95.21%, precision of 95.19%, recall of
95.18%, and F1 score of 95.18%. This suggests that, for tasks similar to the one represented
by these data, this combination might be the most effective.

The consistency in the ranking of configurations (triplet loss with SGD > triplet
loss with Adam > contrastive loss with SGD > contrastive loss with Adam) across all
metrics suggests that the observed performance differences are robust and not specific to a
particular evaluation criterion.

The performance gaps between different configurations are relatively modest, particu-
larly between the two optimizers for each loss function. This suggests that, while there are
clear trends, the choice of optimizer might not be as critical as the choice of loss function
for this specific task.

5.4.3. Performance Insights of Stacking Meta-Classifier

The stacking meta-classifier demonstrated a notable improvement in the overall classi-
fication accuracy and F1 scores, particularly when compared with individual base classifiers.
This improvement can be attributed to several factors inherent in the stacking approach:

*  Diversity of base classifiers: the stacking meta-classifier combines predictions from
a variety of base classifiers, each with its unique strengths and biases. This diversity
enables the meta-classifier to capture a broader range of patterns and relationships
within the data, leading to more robust and accurate predictions.
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e Complementary learning: different classifiers may excel in recognizing different
types of activities or nuances within the HAR data. By aggregating their predictions,
the stacking meta-classifier effectively harnesses their complementary capabilities,
mitigating individual weaknesses and enhancing the overall predictive power.

*  Weighted contributions: the final decision of the stacking meta-classifier is based on the
weighted contributions of the base classifiers. This weighting mechanism allows the
meta-classifier to prioritize more reliable predictions and adjust the influence of each
base classifier based on its performance, further refining the classification outcomes.

¢ Error correction: the meta-classifier layer can serve as an error-correcting mechanism,
effectively reconciling conflicting predictions from the base classifiers. This can be par-
ticularly beneficial in scenarios where certain activities are easily confusable, helping
to reduce false positives and negatives.

6. Discussion
6.1. Challenges and Limitations of Siamese Neural Network Models

The experimental results from the Siamese neural network model, incorporating CNN,
Bi-LSTM, and attention mechanisms for human activity recognition (HAR), alongside the
utilization of contrastive and triplet loss functions, offer a rich dataset for analysis. This
discussion delves into the impact of these components on HAR performance and evaluates
the strengths and limitations of the chosen loss functions for embedding optimization.

6.1.1. Impact of CNN, Bi-LSTM, and Attention Mechanisms
A.CNN Layers:

The convolutional neural network (CNN) layers play a critical role in spatial feature
extraction from the sensor data. By capturing inherent spatial patterns related to different
activities, CNN layers provide a foundational understanding of the data’s physical char-
acteristics. Their ability to hierarchically extract features makes them indispensable for
distinguishing between activities with subtle spatial differences. However, CNNs primarily
focus on spatial aspects and might overlook temporal dependencies crucial for HAR, where
the sequence of movements is vital.

B. Bi-LSTM Layers:

The bidirectional long short-term memory (Bi-LSTM) layers address the temporal
dimension that CNNs might neglect. By processing data both forwards and backwards,
Bi-LSTMs capture temporal dependencies and the sequential nature of human activi-
ties, crucial for differentiating between activities with similar spatial features but distinct
temporal patterns. The challenge with Bi-LSTMs, however, lies in their complexity and
higher computational requirements, which can lead to longer training times and increased
model complexity.

C. Attention Mechanism:s:

The integration of attention mechanisms serves to enhance the model’s focus on
salient features, whether spatial or temporal. By weighting the importance of different
features, the attention layer helps the network to prioritize critical information and improve
classification accuracy. While highly effective, the success of attention mechanisms depends
on their proper configuration and integration within the network, requiring careful tuning
to avoid overshadowing other model components.

6.1.2. Contrastive vs. Triplet Loss Functions
A. Contrastive Loss Function:

The use of a contrastive loss function, focusing on minimizing distances between
similar pairs and maximizing distances between dissimilar pairs, is instrumental in creating
a discriminative embedding space. This approach is straightforward and intuitive, making
it a popular choice for tasks involving similarity learning. However, its binary nature
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(comparing pairs) might limit the model’s ability to capture the broader structure of
the embedding space, potentially resulting in less optimal separation between different
activity classes.

B. Triplet Loss Function:

The triplet loss function extends the pairwise comparison approach by incorporating
an additional negative sample for each anchor-positive pair. This three-way comparison
introduces a margin that further separates dissimilar activities, providing a more structured
and well-separated embedding space. This can lead to superior performance in distinguish-
ing between activities, as evidenced by the experimental results. The main limitation of the
triplet loss function lies in its increased complexity and the challenge of selecting effective
triplets, which can significantly impact training dynamics and convergence.

6.2. Challenges of Stacking Meta-Classifier

While the stacking meta-classifier has shown promising results, there are considera-
tions and challenges to be mindful of:

*  Model complexity: the addition of a meta-classifier layer increases the overall complex-
ity of the model. This can have implications for training time, computational resources,
and the risk of overfitting, necessitating careful regularization and validation practices.

e  Hyperparameter tuning: the performance of the stacking meta-classifier is contin-
gent on the selection of base classifiers and their hyperparameters, as well as the
meta-classifier’s own configuration. Optimal tuning is critical but can be time-
consuming and computationally intensive, requiring extensive experimentation and
cross-validation.

¢ Interpretability: the stacking approach, by virtue of combining multiple classifiers,
can obscure the decision-making process, making it more challenging to interpret how
specific predictions are derived. This may be a consideration in applications where
transparency and explainability are important.

7. Conclusions and Future Work

This study has successfully demonstrated the utility of Siamese neural network archi-
tecture, enhanced with CNN, Bi-LSTM, and attention mechanisms, for the task of human
activity recognition (HAR). The CNN layers effectively extracted spatial features, while the
Bi-LSTM layers captured crucial temporal dependencies. Attention mechanisms further
refined the model’s focus on salient features, significantly improving activity classification
accuracy. The application of contrastive and triplet loss functions for training the Siamese
network optimized the embedding space, leading to superior discriminative capability.
Additionally, the implementation of a stacking meta-classifier leveraged the strengths of
multiple base classifiers, further enhancing the model’s performance.

The results from this study affirm the efficacy of Siamese neural networks in HAR,
particularly when combined with triplet learning and stacking meta-classifiers. This
approach adeptly navigates the spatial-temporal complexities of human activities, offering
a robust framework for accurate activity recognition and classification. The superior
performance of SSN-CL and SSN-TL over well-known baseline models in HAR can be
attributed to their sophisticated architecture that adeptly captures the complex spatial—-
temporal nature of human activities, the strategic optimization of embeddings through
contrastive and triplet loss functions, and the enhanced decision-making facilitated by the
stacking meta-classifier.

The promising outcomes of this study open several avenues for future research, which
are as follows:

¢ Exploring semi-supervised learning: given the often limited availability of labeled data
in HAR, applying semi-supervised learning within the Siamese network framework
could be a fruitful direction. This approach could leverage unlabeled data to en-
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hance model performance, making the training process more efficient and potentially
improving the generalizability of the model.

Transfer learning and domain adaptation: the application of transfer learning and
domain adaptation techniques could address challenges related to dataset diversity
and sensor discrepancies, enhancing the model’s adaptability and reducing the reliance
on extensive labeled datasets.

Real-time and on-device deployment: optimizing the network for real-time processing
on mobile or wearable devices presents a practical challenge. Future work could
focus on model efficiency to facilitate deployment in real-world applications without
sacrificing accuracy.

Cross-domain applications: the proposed network architecture’s versatility suggests
potential applications beyond HAR, in domains requiring detailed classification or
recognition tasks, such as gesture recognition, anomaly detection, or medical diagnostics.

Incorporating semi-supervised learning into the Siamese network for HAR represents

a particularly compelling direction for future research. This approach could significantly
expand the model’s learning capacity, enabling it to leverage the vast amounts of unlabeled

data

often available in HAR scenarios. Such advancements could pave the way for more

scalable, efficient, and adaptable HAR systems, with broad implications across various
domains and real-world applications.
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