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Abstract: It is crucial to accurately detect moisture-induced defects in steel pipe insulation in or-
der to combat corrosion under insulation (CUI). This study enhances the capabilities of infrared
thermography (IRT) by integrating it with top-performing machine learning models renowned for
their effectiveness in image segmentation tasks. A novel methodology was developed to enrich ma-
chine learning training, incorporating synthetic datasets generated via finite element method (FEM)
simulations with experimental data. The performance of four advanced models—UNet, UNet++,
DeepLabV3+, and FPN—was evaluated. These models demonstrated significant enhancements in
defect detection capabilities, with notable improvements observed in FPN, which exhibited a mean
intersection over union (IoU) increase from 0.78 to 0.94, a reduction in loss from 0.19 to 0.06, and
an F1 score increase from 0.92 to 0.96 when trained on hybrid datasets compared to those trained
solely on real data. The results highlight the benefits of integrating synthetic and experimental data,
effectively overcoming the challenges of limited dataset sizes, and significantly improving the models’
accuracy and generalization capabilities in identifying defects. This approach marks a significant
advancement in industrial maintenance and inspection, offering a precise, reliable, and scalable
solution to managing the risks associated with CUI.
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1. Introduction

Thermographic inspection is a critical component in the non-destructive evaluation
of infrastructure, particularly those based on steel pipes. This technology is essential for
detecting subsurface defects such as corrosion, which are vital for ensuring the structural
integrity and safety of steel-based infrastructure around the world [1,2]. Despite its critical
function, thermography’s integration with modern machine learning and deep learning
algorithms can be limited by the shortage of large datasets [3]. This scarcity greatly impedes
the development and validation of automated systems, which are required for consistent
performance in real-world scenarios. Traditional methods, while effective, rely significantly
on human skill and are subject to inconsistencies and errors [4].

To address these challenges, current research has focused on designing neural network
architectures and tunning hyperparameters [5–8]. This research introduces a series of
advanced image segmentation models—UNet [9], UNet++ [10], DeepLabV3+ [11], and Fea-
ture Pyramid Networks (FPN) [12]—each chosen for their distinct capabilities to improve
defect detection in thermographic images. UNet, known for its effective encoder-decoder
design, excels at complex image segmentation tasks. UNet++ improves on this by incor-
porating nested, dense skip paths, which can improve training accuracy and convergence
time. DeepLabV3+ distinguishes itself with a convolution method that effectively collects
multi-scale information, which is critical for detailed boundary detection in images. FPN
uses a top-down architecture with lateral connections to generate high-level semantic
feature maps at all scales, improving detection performance across a range of defect sizes.

Electronics 2024, 13, 1748. https://doi.org/10.3390/electronics13091748 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091748
https://doi.org/10.3390/electronics13091748
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3016-8184
https://orcid.org/0000-0002-0198-7439
https://orcid.org/0000-0002-8777-2008
https://doi.org/10.3390/electronics13091748
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091748?type=check_update&version=1


Electronics 2024, 13, 1748 2 of 12

The challenge of generating realistic thermal datasets has also been addressed with the
use of generative adversarial networks (GANs) and computational simulations including
the finite element method (FEM). While GANs are useful for enhancing thermal datasets
with synthetically generated images [13], they frequently fail to adequately capture the
complex properties of defects [14]. In contrast, FEM simulations provide a solid framework
for generating high-fidelity synthetic data based on fundamental heat transfer principles
and precise material properties, resulting in a more accurate replication of experimental
conditions.

The present research takes advantage of these technological advancements by com-
bining FEM-generated datasets with the segmentation capabilities of UNet, UNet++,
DeepLabV3+, and FPN. This integration not only improves training data quality but
also improves the models’ capacities to generalize from synthetic to real-world scenarios,
resulting in much higher defect detection accuracy. Our methodology makes a method-
ological contribution, particularly in the detection of moisture-induced defects in steel pipe
insulation—an issue of enormous relevance but underexplored in the existing literature [13].

By combining the employing of synthetic datasets with advanced segmentation mod-
els, automatic defect detection systems can be made more accurate and dependable while
remaining scalable and affordable in comparison to manual inspections and conventional
data augmentation techniques. This initiative has the potential to transform thermographic
inspection techniques by offering a more precise, dependable, and automated method to
find corrosion under insulation (CUI) in steel pipes.

2. Literature Review

Thermographic inspection is a non-destructive testing (NDT) method essential for
maintaining the integrity and safety of infrastructure, particularly those involving steel
pipes. This technique excels at identifying hidden subsurface defects, such as corrosion, by
detecting temperature variations caused by these flaws [15]. Despite its effectiveness, the
widespread application of infrared thermography is often hindered by a common challenge:
the lack of comprehensive and diverse datasets. This limitation impedes the development
of automated systems that can consistently perform under real-world conditions and
increases the risk of errors in manual defect detection [16].

Traditionally, methods like thresholding and edge detection have been used in thermo-
graphic analysis. However, these methods often fall short due to their simplistic approach,
which fails to capture the complexities of heat transfer in defective materials [17]. In con-
trast, advancements in machine learning have introduced more sophisticated techniques
that significantly enhance the capabilities of thermographic analysis. For example, deep
autoencoders [18] and semi-supervised learning [19] approaches have shown promise in
uncovering intricate defect features within thermographic data. These methods utilize both
labeled and unlabeled data to boost model performance and mitigate the risk of overfitting,
a significant advantage given the frequent scarcity of labeled datasets.

Among the advanced models, UNet [20] and its improved version UNet++ are cele-
brated for their encoder–decoder architecture, which excels at detailed image segmentation
crucial for accurate defect detection. UNet++ further enhances this capability by incor-
porating nested, dense skip connections, improving feature propagation and training
accuracy [21]. Another model, DeepLabV3+, uses atrous convolutions to effectively man-
age scale variations and capture fine details at different resolutions, making it particularly
useful for outlining complex defects [22]. Similarly, Feature Pyramid Networks (FPN)
tackle the challenge of detecting multi-scale defects using a pyramid architecture to main-
tain high-level semantic features at all scales, enhancing detection accuracy across varied
conditions [23].

While generative adversarial networks (GANs) have been used to augment thermal
datasets by generating synthetic images [24], they often struggle to capture specific de-
fect characteristics, such as size and depth, accurately. This introduces uncertainties in
defect identification. In response, this research utilized finite element method (FEM) sim-
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ulations [25], which provide high-fidelity synthetic data based on precise heat transfer
equations and material properties. These simulations significantly improve the quality of
training data for machine learning models, ensuring that the synthetic data closely mirrors
real-world defect scenarios.

By integrating FEM-generated datasets with models like UNet, UNet++, DeepLabV3+,
and FPN, this study sets a new benchmark in the field. This methodological advancement
not only addresses the issue of dataset scarcity but also significantly enhances the models’
abilities to detect subsurface defects with unparalleled accuracy. Looking forward, the
ongoing development of computational capabilities and machine learning algorithms is
expected to further enhance the efficiency and effectiveness of thermographic inspections.
Potential future advancements could include real-time processing and the integration of
augmented reality applications, which could improve automated defect detection systems.

3. Method

The methodology of this study is designed to evaluate the effectiveness of combining
finite element method (FEM) simulations with image segmentation to detect moisture-
induced defects in steel pipe insulation. This section explains the detailed experimental
setup and the advanced simulation techniques used, each selected to meet the specific
challenges of thermographic inspection highlighted in previous research. Section 3.1
describes the experimental procedures, including the selection and preparation of steel
pipes and the acquisition of thermal images under controlled conditions. These steps
are crucial for establishing a baseline dataset that accurately reflects real-world defect
scenarios. Section 3.2 discusses how this dataset is enhanced through FEM simulations.
These simulations are meticulously calibrated to produce synthetic yet highly realistic
thermal images, covering a broad spectrum of defect characteristics. Together, these
methods address the critical issue of dataset scarcity and aim to boost the reliability of
automated defect detection systems. By providing a detailed rationale for each experimental
and simulation decision, this section not only ensures the reproducibility of our findings
but also demonstrates the methodological rigor and alignment with the study’s objectives.

3.1. Experiment

This study was meticulously designed to unveil the capabilities of infrared thermogra-
phy (IRT) in identifying defects within the insulation of steel pipes, with a special focus
on moisture presence as an indicator of potential corrosion under insulation (CUI). Such
defects, the consequences of moisture ingress, are known to significantly modify the in-
sulation’s heat transfer coefficient, manifesting as observable temperature variances on
the pipe’s surface. These variances are pivotal for pinpointing the defects’ locations and
extents, effectively simulating real-world scenarios where internal leakages might signify
corrosion or cracks necessitating immediate intervention.

In addressing the identified gaps within the existing body of research, six steel pipes
of varied sizes and thicknesses were selected to broaden the scope of the experimental
scenarios. This intentional selection mirrored the prevalent use of these materials in critical
infrastructure, where the accurate detection of subsurface defects is not just beneficial
but imperative for structural integrity. Table 1 catalogs the geometrical properties of each
pipe, including diameters and wall thicknesses, chosen to encompass a wide spectrum of
potential defect scenarios, thereby ensuring the robustness and applicability of our findings
across various conditions.

To simulate moisture ingress and enhance the realism of our experiment, each pipe was
initially insulated with fiberglass, chosen for its widespread industrial use and favorable
thermal properties. The insulation was uniformly applied at a thickness of 0.5 inches
around each pipe, and then strategically cut to create defects of varying sizes. These
sections were saturated with water to levels of 50% of their weight, before being reattached
to their respective pipes. An aluminum cladding, with a thickness of 0.03 inches, enveloped
the insulation layer on each pipe, serving to mimic the external protective layer found in
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operational insulation systems and providing both mechanical protection and weather
resistance. This comprehensive approach, from the methodological preparation of defects
to securing with aluminum cladding, closely replicated the diverse conditions that might
be encountered in real-world industrial settings. Figure 1 illustrates the defects within
the insulation, offering a visual reference to the types and placements of the experimental
conditions, while Figure 2 provides additional clarity on the geometrical positioning
and dimensions of these defects relative to the pipes, aiding in the understanding of the
simulated defect’s types and placements.

Table 1. Dimensions of the pipes.

Pipe ID Length (inch) Diameter (inch) SCH Thickness (inch)

1 126 2 40 0.154

2 126 2 80 0.218

3 126 3 40 0.216

4 126 3 80 0.3

5 126 6 40 0.28

6 126 6 80 0.432
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figuration for pipes with a 2-inch diameter; and (b) configuration for pipes with 3-inch and 6-inch
diameters.

Experimental tests conducted at a steady 90 ◦C were aimed at replicating the typical
operational conditions encountered in industrial piping systems. Mobiltherm 603, chosen
for its property similarities to the fluids typically found in oil pipelines, served as the
heat transfer fluid, providing a realistic simulation environment. A heat transfer system
(HTS) was precisely configured to simulate operational conditions by uniformly heating
the process fluid within the pipes, achieving temperatures up to 150 ◦C at 30 PSI. This
system played a pivotal role in establishing a steady-state thermal regime across the pipe
system, which was essential for accurate thermal imaging. The HTS and its configuration,
detailed in Figure 3, showcased the integral components and their arrangement for precise
temperature control.
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Figure 3. Components of the experimental setup.

The FLIR T650Sc thermal camera, selected for its high resolution of 640 × 480 pixels,
was utilized to capture thermal images. Maintaining the precise temperature was crucial
for the reliability of the thermal data collected; ensuring a uniform temperature distribution
across the pipe’s surface was vital for highlighting anomalies attributed to the inserted
defects. This approach ensured that the observed thermal patterns provided a consistent
and accurate basis for analysis, emphasizing the impact of defects on heat transfer through
the insulation.

The captured thermal images were subjected to a preprocessing step involving image
denoising, aimed at minimizing the influence of excessive noise. Given the predefined
locations of the defects, regions of interest (ROI) were established based on these positions
for later analysis. Figure 4 shows the defined ROI, based on the position and size of the
defect, for pipe number 6. As can be seen, the position of the defect is known in the thermal
image, so a circle is defined that circumscribes the square.
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3.2. Data Augmentation with FEM

To enhance the dataset and complement the experimental findings, the study’s setup
was replicated within the COMSOL Multiphysics environment. This simulation aimed to
precisely model the steel pipes, fiberglass insulation, and aluminum cladding, incorporating
defects similar to moisture ingress, as outlined in the experimental section, to thoroughly
analyze their thermal impact. The simulation was based on the assumption of material
homogeneity across all components. Boundary conditions were established to assume no
heat loss at the pipe ends, a choice that reflected the experimental setup, where defects
were strategically placed far from the edges to reduce edge effects on thermal data. This
approach ensured a focused analysis of the thermal behavior attributable to the introduced
defects, aligning the computational model closely with the physical experiments. To ensure
the simulation closely matched the experimental setup, the exact diameters and thicknesses
of the pipes used in the experiment were replicated in the COMSOL Multiphysics envi-
ronment. This step was vital for accurately simulating the conditions observed during
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the physical experiments. In the simulation, defects were introduced by substituting a
section of the original insulation with a new material meant to simulate wet insulation,
representing moisture ingress. This approach involved removing the original insulation in
the defect areas and replacing it with material properties adjusted to reflect wet insulation,
thereby simulating various levels of moisture presence, as explored in the experiment.
Moreover, the simulation extended the investigation to a broader range of defect sizes,
from as small as 0.1 inches to as large as 5 inches, aiming to understand the impact of defect
size on thermal performance more comprehensively. The sizes and configurations of these
defects, as well as the expanded range explored, are detailed in Table 2.

Table 2. Range of simulated defects for each pipe ID.

Pipe ID Size of Defects (inch)

1, 2 0.1, 0.2, 0.3, . . ., 4

3, 4, 5, 6 0.1, 0.2, 0.3, . . ., 5

To model the wet insulation’s thermal properties accurately, we utilized mixture rules.
These rules allow for the calculation of the insulation’s effective thermal properties, such as
thermal conductivity (k), density (ρ), and specific heat capacity at a constant pressure (cp),
taking into account varying moisture contents. The premise of our approach is grounded
in volume-weighted averages, ensuring a precise representation of the wet insulation’s
behavior. The equations deployed are as follows [26]:

kwet = Vwater.kwater + Vinsulation.kinsulation (1)

ρwet = Vwater.ρwater + Vinsulation.ρinsulation (2)

cpwet =
Vwater.ρwater.cpwater + Vinsulation.ρinsulation.cpinsulation

ρwet
(3)

where:

• Vwater and Vinsulation are the volume fractions of water and insulation, respectively,
satisfying Vwater + Vinsulation = 1;

• kwater, ρwater, and cpwater are the thermal conductivity, density, and specific heat capacity
at constant pressure of water, respectively;

• kinsulation, ρinsulation, and cpinsulation are the corresponding properties of the insulation
material.

This formulation provides a nuanced view of how moisture content influences the
insulation’s thermal properties, laying a foundation for our experimental validation and
simulations. These formulations allowed us to accurately model the thermal behavior of
insulation with 50% wetness levels, directly correlating with the experimental conditions.
Table 3 presents the material properties used in the simulation, including the base properties
of steel, fiberglass insulation, water, and aluminum. These properties were essential for
ensuring the accuracy of the simulation results.

The conduction occurred between the solid phases of the simulation in each material,
and also in the materials that have contact surfaces. The formulation of q = −k(Text − T),
where k is the conduction heat transfer coefficient, Text is the external temperature, and T is
the temperature of the surface, governs these conductions. Inside the pipe, a forced internal
convection was also set to replicate the experimental conditions. The fluid used within
the pipe was Mobil Therm 603, to mimic the experiment. The convection heat transfer
formulation was q = h

(
Tf luid − Tsolid

)
, where q represents the heat transfer rate per unit

area, h is the convective heat transfer coefficient, Tf luid is the fluid temperature, and Tsolid is
the temperature solid surface.
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Table 3. Thermophysical properties considered in the computational simulation.

Property Thermal
Conductivity

Specific Heat at
Constant Pressure Density Emissivity

Symbol k (J/m·K) cp (J/kg·K) ρ (kg/m3) ε

Aluminum 220 2710 1890 0.9

Carbon Stell 54 456 7830 -

Insulation 0.086 387 208 -

Water 0.6 4186 1000 -

Mobil Therm 603 0.127 2330 784 -

The outer surface of the aluminum cladding experienced two types of heat transfer.
The first was external natural convection with the ambient environment. The second was
radiation heat transfer, with a surface emissivity set at 0.9, q = εσ

(
T4

amb − T4), where ε is
the radiation coefficient and Tamb is the ambient temperature.

The mesh size was set to automatic, allowing for finer mesh in areas with defects and
around thin structures, while coarser mesh was applied elsewhere, such as the no-heat-loss
ends. This strategy optimized computational resource utilization.

The simulations were set to steady-state conditions to mimic the experimental setup,
focusing on achieving a uniform thermal regime that mirrored the steady-state thermal
distribution observed in the experiments. This approach ensured that the simulation results
were directly comparable to the experimental findings, facilitating a coherent analysis of
the impact of insulation defects. Figure 5 showcases the simulation results for Pipe ID 1,
featuring a defect characterized by 50% wetness and a size of 1 inch. These results high-
light the thermal patterns and anomalies induced by the wet insulation defect, providing
valuable insights into the defect’s impact on the thermal efficiency of the insulation system.
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The simulation findings indicated that the presence of water in the insulation, as
expected, increased thermal conductivity. This change aids in identifying the areas of leak-
age, underscoring the potential of thermal imaging in detecting moisture-induced defects.
These results affirm the efficacy of combining experimental data with FEM simulations to
better understand the thermal dynamics of insulated piping systems and the critical role of
defect size and moisture content in influencing thermal conductivity and, consequently,
defect detectability.

4. Model Architecture and Training Details

In this study, the architectures of UNet, UNet++, DeepLabV3+, and FPN were used
for segmenting thermal images to detect insulation defects. Each model employs the
‘Resnet152’ encoder, pre-trained on the ImageNet dataset, to leverage its deep architecture
and superior feature extraction capabilities. This choice was based on the hypothesis
that Resnet152’s extensive feature recognition enhances the models’ ability to identify
complex defect patterns in thermal imagery, providing a strong foundation for accurate
segmentation.

The models were optimized using the Adam optimizer with an initial learning rate of
0.0001. A StepLR learning rate scheduler was applied to decrease the learning rate by a
factor of 0.1 every 10 epochs, optimizing model convergence by adjusting the rate based
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on performance over time. To address class imbalance in segmentation tasks, DiceLoss
was selected as the loss function due to its effectiveness in handling such disparities. The
performance of each model was evaluated using the intersection over union (IoU) score
and the F1 score, key metrics for assessing precision and reliability in defect identification.

To balance computational demands and model performance, a batch size of four
was used during both training and validation phases. The dataset was split, with 90%
allocated for training and 10% for validation, allowing for a rigorous evaluation of the
models’ generalization to new data. The training lasted for 50 epochs, considered suf-
ficient for the models to learn from the dataset’s complexities. The training involved
forward propagation for loss computation and backpropagation for parameter updates,
with performance metrics logged to track and assess the models’ learning and segmen-
tation effectiveness. The implementation framework was PyTorch, using segmentation
models from the segmentation_models_pytorch library. This setup ensured a standardized
input size of 512 × 512 pixels for images and masks, enhancing computational efficiency.
Color encoding within the masks helped clearly delineate different defect types, improving
segmentation precision.

5. Results and Discussion

The evaluation of four deep learning models—UNet-R152, UNet++-R152, DeepLabV3+-
R152, and FPN-R152—was meticulously carried out in two distinct scenarios to determine
their effectiveness in identifying moisture-induced defects within steel pipe insulation
using thermal imaging. The initial training scenario involved a dataset of 20 experimental
images, each representing a variety of defect conditions, to test each model’s learning capa-
bilities with a purely real-world dataset. The second scenario expanded the dataset with
2000 synthetic images generated via finite element method (FEM) simulations, combined
with the original experimental images. This approach aimed to expose the models to a
wider array of defect scenarios, enhancing their generalization capabilities.

Validation against a separate set of experimental images not included in the training
dataset allowed for a direct comparison of model performance across both scenarios.
It was hypothesized that incorporating synthetic data alongside experimental images
would enrich the learning environment for each model, potentially boosting their ability to
generalize across previously unencountered defect types and conditions. Figure 6 illustrates
the models’ proficiencies in defect identification under various conditions, underscoring
the benefits of integrating synthetic with experimental data in the training process.
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Figure 6. Predicted position of the defect, for pipe ID 6, defect size of five inches, with different
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(f) UNet++, synthetic dataset; (g) DeepLabV3+, synthetic dataset; and (h) FPN, synthetic dataset.
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5.1. Performance Evaluation Metrics

The performance of each model was evaluated using three key metrics: F1 score, loss,
and mean intersection over union (IoU). The F1 score, which balances precision and recall,
indicates the accuracy and reliability of each model. Loss quantifies the divergence between
predicted outcomes and actual values, with lower scores indicating superior performance.
Mean IoU offers a precise measure of segmentation accuracy by assessing the alignment
between the model’s defect predictions and the actual defect areas.

5.2. Quantitative Analysis

Table 4 provides a detailed quantitative analysis of the validation metrics for the
models trained under each scenario. This comparative analysis highlights significant
improvements across all models when trained with the hybrid dataset, demonstrating the
vital role of synthetic data in augmenting the training set and enhancing defect detection
accuracy.

Table 4. Evaluation metrics of UNET for each dataset.

Dataset UNet-R152 UNet++-R152 DeepLabV3+-R152 FPN-R152

Experiment
F1 0.87 F1 0.90 F1 0.89 F1 0.92

Loss 0.61 Loss 0.52 Loss 0.37 Loss 0.19
Mean IoU 0.64 Mean IoU 0.74 Mean IoU 0.73 Mean IoU 0.78

Experiment +
Finite Element

F1 0.88 F1 0.96 F1 0.93 F1 0.96
Loss 0.59 Loss 0.41 Loss 0.30 Loss 0.06

Mean IoU 0.72 Mean IoU 0.81 Mean IoU 0.85 Mean IoU 0.94

UNet saw slight improvements across all metrics, with mean IoU increasing from
0.64 to 0.72, loss decreasing from 0.61 to 0.59, and F1 score rising marginally from 0.87 to 0.88.
These changes suggest a moderate increase in the model’s ability to match the prediction
accuracy with actual defect characteristics, especially in terms of segmentation consistency.
UNet++ experienced more pronounced enhancements. The mean IoU improved from
0.74 to 0.81, and the loss decreased from 0.52 to 0.41, coupled with a substantial rise in the
F1 score from 0.90 to 0.96. This indicates a significant boost in both the precision and the
reliability of the model’s defect identifications, likely due to its sophisticated architecture,
which effectively handles multi-scale information and skip connections to mitigate the
vanishing gradient problem.

DeepLabV3+ showed marked gains, with mean IoU climbing from 0.73 to 0.85 and
loss reducing from 0.37 to 0.30. The F1 score also improved from 0.89 to 0.93. These
metrics suggest that the model’s atrous convolutions effectively capture fine details across
different scales, which is critical for outlining complex defect shapes accurately. FPN
exhibited the most substantial improvements: the mean IoU jumped from 0.78 to 0.94,
the loss dramatically dropped from 0.19 to 0.06, and the F1 score increased from 0.92 to
0.96. These results indicate exceptional performance enhancements in defect detection
accuracy and reliability, with significant reductions in prediction errors. The model’s
pyramid architecture, which maintains high-level semantic features at all scales, appears to
be highly effective in handling varied defect sizes and complexities.

Overall, these metrics collectively demonstrate that integrating synthetic data into
the training process substantially boosts the models’ capabilities in accurately segmenting
defects. This improvement is critical for applications where precise and reliable defect
detection is essential, affirming the utility of synthetic datasets in training more robust and
adaptable machine learning models for industrial applications.

5.3. Model Performance

The observed improvements in the F1 scores, alongside more pronounced enhance-
ments in loss and mean intersection over union (IoU) across all models, clearly demonstrate
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the impactful role of synthetic data in enhancing model evaluation dynamics. While in-
creases in F1 scores were modest for some models, the significant reductions in loss and
improvements in mean IoU, particularly for models like FPN-R152 and DeepLabV3+-R152,
illustrate a finely tuned balance between precision and recall. This balance is crucial, as
improvements in recall can sometimes diminish precision, reflecting a trade-off in model
performance characteristics.

FPN-R152’s exceptional results, achieving a high mean IoU of 0.94 and the lowest loss
of 0.06, suggest a potential risk of overfitting. These metrics indicate strong defect detection
capabilities; however, the extreme reduction in loss combined with a high mean IoU might
also imply that the model is overly fitted to the training data specifics, potentially limiting
its generalizability to new, unseen datasets. This observation underscores the need for
meticulously calibrating model complexity and training dynamics to prevent overfitting
while still maintaining high accuracy and reliability.

The variation in error types and performance metrics between the models highlights
the intricate interplay that governs these measures. UNet++-R152 and DeepLabV3+-
R152, for instance, show robust performance improvements without the overfitting con-
cerns noted in FPN-R152. This suggests that their architectural features—such as the
increased depth and network pathways in UNet++ and the atrous convolution capabilities
in DeepLabV3+—offer a more balanced approach to learning from augmented datasets.
These features likely aid in capturing more complex patterns without overly conforming to
the specifics of the training data, thereby enhancing the models’ generalization capabilities.

Furthermore, the strategic integration of synthetic data addresses the challenge of
overfitting, a common issue when models are confined to learning from limited datasets. By
broadening the variety and volume of training examples, synthetic data foster a deeper and
more robust understanding of defect characteristics across various scenarios. This approach
not only enriches each model’s comprehension of defect characteristics but also strengthens
predictive accuracy and reliability across a wider range of real-world conditions. Such
advancements pave the way for more effective management of corrosion under insulation
(CUI) and other critical industrial applications, highlighting the value of synthetic data in
advancing the field of thermographic inspections.

5.4. Discussion

The integration of synthetic data generated by Finite Element Method (FEM) sim-
ulations with experimental images provides a scalable and effective methodology for
enhancing machine learning models’ defect detection capabilities. The empirical results
from this study, especially the notable improvements in key performance metrics across
all models, validate the approach’s effectiveness in various industrial applications that
demand precise and reliable defect detection.

Expanding the training dataset with synthetic data opens new avenues for research
and development in machine learning-based inspection methods. This enhancement not
only improves the models’ ability to generalize across diverse conditions but also fortifies a
more resilient framework for addressing real-world challenges in industrial contexts. The
use of synthetic data helps overcome common challenges, such as overfitting and under-
generalization, by allowing the models to develop more comprehensive representations of
defects. Moreover, the varied performance enhancements observed across different models
underscore the necessity of choosing the appropriate architecture tailored to the specific
needs and constraints of the application. Selecting the right model architecture is essential
for optimizing both the efficacy and computational efficiency of defect detection systems in
industrial applications.

In summary, this methodology marks a significant step forward in the effective man-
agement of corrosion under insulation (CUI) and other similar industrial hazards. It
advances the application of sophisticated imaging and machine learning techniques in in-
dustrial inspections. By effectively merging synthetic with experimental data, this strategy
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sets the stage for developing inspection systems that are not only more accurate but also
adaptable to the evolving needs of industrial environments.

6. Conclusions

This study represents a significant stride in advancing the detection of moisture-
induced defects in steel pipe insulation, a key factor in preventing corrosion under insula-
tion (CUI). Through a sophisticated integration of experimental data and finite element
method (FEM) simulations, the research delineates the critical role of water’s thermal
properties in enhancing defect detectability via infrared thermography. This method offers
a non-invasive, precise, and effective means for the early detection of potential CUI sites,
contributing to the safety and integrity of industrial infrastructure.

By incorporating synthetic data generated from FEM simulations into the training of
advanced machine learning models—UNet, UNet++, DeepLabV3+, and FPN—the study
has significantly enhanced their accuracy and generalization capabilities across varied
scenarios. This advancement underscores the utility of synthetic data in boosting the
learning capabilities of the models, leading to more precise and robust defect detection.

Looking ahead, future research will aim to deepen the understanding of material
properties under diverse conditions and explore time-dependent thermography techniques
to further refine detection methodologies. This will enhance their practical applicability and
reliability in real-world settings. Additionally, ongoing evaluations will focus on conducting
rigorous comparisons with existing models and methods. These comparisons, ideally based
on clear metrics and statistically significant differences, are essential to concretely determine
the extent of improvements offered by these advanced techniques. Such efforts will not only
validate the effectiveness of integrating synthetic and experimental data but also ensure
that the developed methodologies are robust and adaptable to the dynamic conditions of
industrial environments.

In conclusion, this research not only charts a path toward more effective management
of CUI but also demonstrates the potent applications of advanced imaging and machine
learning techniques in the realm of industrial inspections. By effectively blending synthetic
and experimental data, this work lays the groundwork for the development of inspection
systems that are not only more accurate but are also capable of adapting to evolving
industrial challenges.
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