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Abstract: The purpose of this review is to provide a survey of some of themost important

bifurcation phenomena that one can observe in pulse-modulated converter systems when

operating with high corrector gain factors. Like other systems with switching control,

electronic converter systems belong to the class of piecewise-smooth dynamical systems.

A characteristic feature of such systems is that the trajectory is “sewed” together from

subsequent discrete parts. Moreover, the transitions between different modes of operation

in response to a parameter variation are often qualitatively different from the bifurcations

we know for smooth systems. The review starts with an introduction to the concept of

border-collision bifurcations and also demonstrates the approach by which the full dynamics

of the piecewise-linear, time-continuous system can be reduced to the dynamics of a

piecewise-smooth map. We describe the main bifurcation structures that one observes

in three different types of converter systems: (1) a DC/DC converter; (2) a multi-level

DC/DC converter; and (3) a DC/AC converter. Our focus will beon the bifurcations

by which the regular switching dynamics becomes unstable and is replaced by ergodic

or resonant periodic dynamics on the surface of a two-dimensional torus. This transition

occurs when the feedback gain is increased beyond a certain threshold, for instance in
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order to improve the speed and accuracy of the output voltageregulation. For each

of the three converter types, we discuss a number of additional bifurcation phenomena,

including the formation and reconstruction of multi-layered tori and the appearance

of phase-synchronized quasiperiodicity. Our numerical simulations are compared with

experimentally observed waveforms.

Keywords: power electronic converters; DC/DC converter; DC/AC converter; pulse-width

modulation; piecewise-smooth dynamical systems; border-collision bifurcations; torus birth;

torus reconstruction; phase-synchronized quasiperiodicity

1. Introduction

The field of power electronics has undergone a dramatic evolution during the last few decades [1].

For many applications, the classic transformer with its heavy iron anchor and copper windings has

been replaced by a smaller, lighter, and often also significantly cheaper switch-mode operated converter

system [2,3]. The use of relatively high switching frequencies has reduced the requirements on the size

of the output filter components, and together these developments have opened the way for a broad range

of new applications [4–6], including applications in portable PCs and cellular phones [7], as backup

systems for sensitive computer systems and hospital equipment, and as main electric power supplies

at remote locations. Today, power electronic systems with switching operation are used in practically

all sectors of our society. Examples from the industry and transportation sector are aircraft electronics,

traction regulators in trains, and power supplies for electric vehicles [8]. An introduction to some of the

complex nonlinear phenomena that one can observe in power electronics systems may be found in the

book by Banerjee and Verghese [9].

1.1. Power Electronic Converter Systems

To characterize the various types of switch-mode operated converter systems, let us first note that

DC/DC converters use a fixed DC power source, such as a car battery, to provide a DC power output at an

adjustable voltage (or current) level. Converters of this type may be used, for instance, as power supplies

for navigation instruments in boats, for liquid crystal displays, or for solar-energy driven refrigeration

and cooling systems. By coupling two or more DC/DC converters in series, one can obtain an output

voltage that exceeds the available input voltage.

DC/AC converters similarly provide an AC power output of variable frequency and amplitude from a

fixed DC source. In this case, the reference voltage that controls the switching process must prescribe the

desired waveform for the output voltage, and the converter must be fast enough to follow this waveform

with the required accuracy. This type of converter may be used to provide AC power at the normal

utility frequency from a storage battery and thus allows TV sets, vacuum cleaners, and other common

household appliances to be used in summerhouses,etc. DC/AC converters may also be used as so-called
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grid-tie inverters to convert the low voltage, high currentDC power output from solar cell panels into

line-frequency and -voltage AC power that can be fed directly into the public utility network [10].

The output voltage of a switch-mode converter is regulated by controlling the time that the output load

is connected to the input voltage with a properly designedLC-filter acting to smooth out the ripple (or

noise) associated with the switching process. More advanced DC/DC converters may involve the use of

a multilevel architecture in which input voltage is provided at several different levels. A main advantage

of this design is that the output voltage can be supplied withhigher efficiency and less distortion. At

the same time one can generally reduce the cost of the individual components by accepting a lower

voltage rating.

Designing a power electronic converter system for a specificpurpose involves a significant number of

mutually connected problems related to the choice of an appropriate architecture, feedback regulator,

switching frequency, and filter characteristic [11,12]. One has to ensure that requirements on the

accuracy of the output voltage regulation, the level of ripple and noise from the switching process and

the maximal tolerable losses are all met [13,14]. One has to consider the output impedance in relation

to the expected load impedance and check that variations of the output voltage with changes in the input

voltage, the ambient temperature, or the values of specific components are acceptable. One also has to

investigate what happens under special operational conditions, including start-up, input power failure,

short circuiting of the output load, or insulation breakdown. Finally, one needs to examine how the

system behaves outside of its normal range of operation and to determine how large the safety margin to

such other regimes needs to be.

Optimization of the efficiency is one of the main considerations in the design of a switch-mode

modulated converter system. However, as efficiency increases, dissipation decreases, and the system

may become vulnerable to some form of instability. High feedback gain is desirable in order to ensure

a fast and accurate adjustment of the output signal to variations in the reference signal. However, in

connection with the delay in the feedback loop (associated typically with the charging and discharging of

the output filter capacitor), increasing the feedback gain above a certain threshold is likely to give birth to

a new oscillatory component in the system. Together with thealready existing switching dynamics, this

produces so-called torus dynamics,i.e., a form of behavior where two oscillatory components generate a

beating dynamics (known as quasiperiodicity) interruptedin parameter space by a dense set of resonance

regions in which the two modes synchronize with one another at different frequency ratios.

1.2. Bifurcations in a Piecewise-Smooth System

Like other systems with switching control, electronic converter systems belong to a class of

piecewise-smooth dynamical systems [15–17]. A characteristic feature of such systems is that the phase

space is divided into regions with distinctly different dynamics. At the boundaries between these regions,

the trajectories are so to speak ‘sewed’ together from theirdistinct smooth parts [18,19]. Moreover, the

transitions between different dynamical states that can occur in response to the variation of one or more

parameters are qualitatively different from the transitions we know from the classical bifurcation theory

for smooth dynamical systems [20] .
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In general, one can distinguish between two different typesof bifurcations for piecewise smooth

systems. The first type is similar to the bifurcations we knowfor smooth systems. They include both

local bifurcations such as saddle-node, period-doubling and torus-birth (Andronov–Hopf) bifurcations,

where a periodic orbit loses its stability as one (or two) Floquet multiplier(s) (eigenvalues for the

corresponding Poincaré map) crosses out of the unit circlein the complex plane, and global bifurcations

(homoclinic and heteroclinic bifurcations), in which a connection is established from a saddle cycle and

back to the same (or to another) saddle. However, the form of these bifurcations is usually modified by

the piecewise-smooth character of the system. The bifurcation diagram for the torus-birth bifurcation,

for instance, often deviates from the parabolic form that one observes for smooth systems.

For a periodic cycle, the second type of bifurcations, referred to as border-collision (or C-)

bifurcations [21–23], typically involve an abrupt jump of one (or a pair of) multipliers from the inside to

the outside of the unit circle. A stable focus cycle, for instance, may turn into an unstable focus cycle as

two complex conjugated multipliers under variation of a parameter jump out of the unit circle [24,25].

Border-collision bifurcations may give rise to a direct transition from period-2 to period-3 dynamics [23],

or in fact to almost any form of periodic, quasiperiodic or chaotic dynamics. It is also possible that an

ergodic torus can arise directly from a stable node cycle [26]. Besides abrupt jumps of the multipliers

in the complex plane, one of the features that characterize the border-collision bifurcations is that the

amplitude of the appearing mode tends to grow linearly with the distance to the bifurcation point as

opposed to the parabolic growth that one finds for smooth bifurcations.

The complexity of the nonlinear dynamic phenomena we observe in power electronic converter

systems partly derives from the coexistence of the two different types of bifurcation and partly from

the large number of new bifurcation phenomena that border collision can give rise to. In this connection,

it is interesting to note that many practical problems in mechanics and mechanical engineering involve

collisions and/or stick-slip friction. Such systems also lead to piecewise-smooth dynamics and to the

appearance of both border-collision bifurcations [27,28] and of the related phenomena of sliding and

grazing bifurcations [29–31]. Classic examples in this area are metal cutting processes[32], rolling

railway wheels [33], and mooring at sea [34]. Other examples include rotating machines with finite

clearance [35] and vibration absorbers [36]. It may also be of interest to know that the same concepts

can be applied in the study of management systems where discrete decisions, made on the basis of current

information, from time to time will redirect the course of the system [37,38].

1.3. Purpose and Content of the Review

In a series of papers published over the last decade we have discussed different forms of instabilities

and nonlinear dynamic phenomena that can arise in pulse-width modulated DC/DC and DC/AC

converters operating with high feedback gain factors [39–46]. This work has particularly focused on

the mechanisms by which border-collision bifurcations canlead to the appearance of quasiperiodic

and/or resonant periodic dynamics as a pair of complex conjugated Floquet multipliers for the regular

switching cycle jumps from the inside to the outside of the unit circle in the complex plane [41,42].

We have demonstrated experimentally how this type of bifurcation can occur in both DC/DC [43] and

DC/AC converters, and we have illustrated how the usual smooth torus-birth bifurcation (also known
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as Andronov–Hopf or secondary Hopf bifurcation) is modifiedby the non-smooth character of the

converter. We have also studied border-collision processes among the various resonant and non-resonant

modes on the two-dimensional torus [39,40] and, in a couple of recent publications, we have illustrated

the appearance [45] and reconstruction [46] of multi-layered tori,i.e., of sets of ergodic or resonant tori,

emerged one within the other.

Different forms of instability in electronic converter systems have also been studied by a significant

number of other authors. Aroudiet al. [47], for instance, have observed the nearly abrupt transition

to quasiperiodicity via a modified Andronov–Hopf bifurcation followed by a transition to chaotic

dynamics through torus breakdown. Mazumderet al. [48] have demonstrated how instabilities in a

closed loop converter system can arise on both a slow and a fast scale, and Daiet al. [49] have

described a slow-scale instability in single-phase power-factor-correction power supplies. More recently,

Aroudi et al. [50] have determined the asymptotic slow-scale stability boundary, while

Rodriguezet al. [51] have applied a ripple-based approach to predict the fast-scale instability in DC/DC

switching power supplies.

The purpose of the present review is to provide a survey of some of the most important bifurcation

phenomena that one can observe in pulse-modulated converter systems. With this aim we shall first

analyze a simple DC/DC converter with a single input level and thereafter examine both a multilevel

DC/DC converter and a DC/AC converter. The focus of our presentation will be on the bifurcations

through which the regular (period-1) switching dynamics isreplaced by ergodic or resonant periodic

dynamics on the surface of the torus. However, for each of theconsidered converters we shall present

examples of additional bifurcation phenomena. To provide arelevant background for our analysis, the

review starts with an illustration of some of the basic features of border-collision bifurcations. This is

supported by an illustration of the approach by which the time-continuous dynamics of a piecewise linear

system can be replaced by the piecewise-smooth dynamics of adiscrete-time map.

2. Border-Collision Bifurcations in Piecewise-Linear Systems

Many systems of practical interest are non-smooth. In particular, the repeated switching of the circuit

topology characteristic of pulse-modulated control systems destroys the smoothness of their temporal

dynamics. The trajectory then consists of a sequence of arcseach describing the smooth dynamics

between two switching processes. Each time a switching occurs, the topology of the circuit changes and,

with appropriate initial conditions, the system will continue the next part of its trajectory in accordance

with the equations of motion for the new topology.

For mechanical systems, lack of smoothness is characteristic of problems involving impacts or

stick-slip motion. As listed in the introduction, classical examples include metal cutting processes

and rotating machines with finite clearances. Other examples are die tossing [52] and the operation of

mechanical randomizers such as, for instance, the pin-ballmachine (or Galton apparatus) [53]. In view

of improving the resistance to earthquakes for new constructions (as well as for historic monuments),

attempts are presently being made to use concepts from the theory of non-smooth dynamical systems to

analyze the dynamics and collapse of buildings.
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In information processing, lack of smoothness arises, for instance, from the use of signal limiters [54]

and from the process of digitalization. As mentioned above,the discrete decisions characteristic of

managerial systems produce non-smooth dynamics, and the same is true for macroeconomic systems

that operate with specific intervention thresholds in orderto limit the variation of certain exchange rates

or to control the price fluctuations of particular commodities. This wide range of applicability obviously

contributes to the rapidly growing interest in the dynamicsof piecewise-smooth systems.

The purpose of this section is to use a few simple examples to explain how and why the dynamics

of piecewise-linear systems differs qualitatively from the dynamics we observe in smooth systems.

Period-doubling and Hopf bifurcations, for instance, are modified such that the emerging mode is born

with a finite amplitude. At the same time, the period-doubling cascade is truncated, and border-collision

bifurcations are found to allow direct transitions from period-1 dynamics to almost any form of behavior.

2.1. The Sewing Approach

The dynamics of a mooring buoy connected via a cable to a largeoil tanker and subjected to the regular

forcing from the waves of the ocean may be considered as an example of a piecewise-linear mechanical

system [34]. The buoy can be pictured as an inverted pendulum that, by virtue of its buoyancy, displays a

state of equilibrium in the upright position. For small excursions around this state, the one-dimensional

dynamics of the forced system may then be represented by

d2x

dt2
+ α

dx

dt
+ F (x) = B cos t (1)

whereα represents the viscous friction,F (x) the restoring force, andB the amplitude of the periodic

forcing. The restoring force has a contributionh1x from the buoyancy, and there is also a contribution

to F (x) from the force exerted by the mooring cable. In the crudest possible approximation we may

assume this second force to vanish when the cable is slackened, but to contribute an elastic termh2x

when, forx < 0, the cable is stretched. Together these contributions define a piecewise linear restoring

force of the form

F (x) =







(h1 + h2)x, x ≤ 0

h1x, x > 0

whereh1 andh2 are constant parameters.

On both sides of the stretching pointx = 0, the system is linear and in these regions, the equation of

motion can be solved analytically [55]. However, to obtain the total solution we must connect the partial

solutions across the sewing border atx = 0. For our simple mechanical oscillator, the sewing conditions

are that both the positionx and the velocitydx/dt must vary continuously across this border.

Figure1 shows the results of such a sewing procedure for different values of the model parameters.

For certain parameter values, the solutions can be connected in such a way that the total dynamics

is periodic (Figure1a). For other values, however, the individual pieces cannotbe connected into

a trajectory that closes to itself, and our simple piecewise-linear system displays chaotic dynamics

(Figure1b). In reality, the cable force may not vary as abruptly as we have assumed in the above model.

However, this is not an essential objection to our discussion. Many realistic mechanical systems involve

forces that, at least within a reasonable modeling framework, can be considered to change abruptly.
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This is the case, for instance, for the above mentioned vibration dampers [36] and rolling railway wheel

sets [33] that involve collisions between hard bodies. In a similar way, our discussion of different power

electronic converter systems will assume that the switching process is instantaneous and ideal.

Figure 1. Phase space projections of the motion of a simplified mooringbuoy. The mooring

cable is stretched forx < 0 and loose forx > 0. On both sides of the stretching point, the

trajectory can be determined analytically, but connectingpieces of the trajectory across the

sewing line in many cases does not lead to a periodic orbit. (a) Periodic solution forα = 2,

h1 = 40, h2 = 360 andB = 100; (b) Chaotic solution forα = 0.1, h1 = 40, h2 = 360, and

B = 50.

(a) (b)

2.2. Modification of the Period-Doubling Bifurcations

It is well-known that the simple logistic map

xk = f(xk−1) = λxk−1(1− xk−1), k = 1, 2, 3.... (2)

for increasing values ofλ gives rise to a cascade of period-doubling bifurcations starting with the

first period doubling atλ = 3.0 and accumulating in a transition to chaos at the Feigenbaum point

λF = 3.571.... It is also known that this transition is generic to a class ofsmooth one-dimensional

maps with a quadratic extremum and that it is characterized by two universal scaling parameters [56,57].

The first period doubling takes place when the slopef ′(xk−1) of the map, evaluated at the fixed pointx∗,

becomes equal to−1. However, it is the second and third derivatives of the map,f ′′(x∗) andf ′′′(x∗), that

determine the form of the solution close to the bifurcation.If the so-called Schwarzian derivative [58]

Sf(x) ≡
f ′′′(x)

f ′(x)
−

3

2

(

f ′′(x)

f ′(x)

)2

(3)

is negative, the period doubling will be supercritical, anda stable period-2 solution will be born.

In the opposite case whereSf(x) is positive, the bifurcation is subcritical, and an unstable period-2

cycle that has existed together with the stable fixed point will disappear in the bifurcation. For the
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logistic map,f ′′′(x) vanishes andf ′′(x) = −2λ 6= 0 for all values ofx. Hence,Sf(x∗) is negative,

and the bifurcation leads to a stable period-2 solution. Moreover, the Schwarzian derivative has the

interesting property that if it is negative for the mapf(x), then it is negative for all iterationsfn(x),

n = 1, 2, 3... of that map. Therefore, once started, the period-doubling cascade will also continue to

display supercritical bifurcations.

If the logistic map is replaced by the piecewise linear skew tent map [59]

xk = Tl,p(xk−1) =







lxk−1 + c, 0 ≤ xk−1 ≤ d

p (xk−1 − 1), d ≤ xk−1 ≤ 1
(4)

with l > 0 andp < 0 denoting the slopes of the two line segments, the transitionto chaos takes a very

different form. To reduce the number of parameters let us simplify the situation by choosing

c = 1− l
(

1 +
1

p

)

and d = 1 +
1

p

such that the map becomes continuous, and its top point fallsin (xk−1, xk) = (d, 1).

With these conditions, the fixed point of the skew tent map is determined by the intersection between

the main diagonalxk = xk−1 and the downwards sloping line element of the skew tent map. As long

as|p| < 1, the fixed point will be stable. At the bifurcation pointp = −1 an expanding period-2 type

dynamics is initiated. However, because the map has no curvature, stabilization does not occur, and the

oscillation continues to expand until the amplitude becomes large enough for points of the itinerary to

reach the line segment to the left. Provided that|pl| < 1, the dynamics will then stabilize in a period-2

cycle. We conclude that the stabilization process is non-local, that both slopes (p andl) are involved, and

that the stable period-2 cycle is born with a finite amplitude. This transition is illustrated in Figure2.

Figure 2. First period-doubling transition in the skew tent map.p is the slope of the

descending line segment. (a) Stable fixed point for|p| < 1; (b) Stable period-2 cycle for

|p| > 1 and|pl| < 1; (c) Sketch of the bifurcation diagram illustrating the birth of a period-2

cycle of finite amplitude.l = 0.67.

(a) (b) (c)

Let us now change the role ofp and l such thatl becomes the bifurcation parameter andp is kept

constant and equal to−4. With one point on each line element, the Floquet multiplier(eigenvalue) for
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the period-2 cycle is the productpl of the two slopes. As the value ofl increases, the period-2 cycle will

therefore lose its stability atl = 0.25 when|pl| starts to exceed 1. However, the period-4 solution that

one might immediately expect to take over has two points on each line segment and, if|pl| > 1, then the

multiplier p2l2 > 1. The period-4 cycle is therefore born to be unstable, and so are all other cycles in

the period-doubling cascade. As illustrated in Figure3, the result is that the system jumps directly into a

4-band chaotic attractor.

Figure 3. Stationary solutions to the skew tent map for different values of the slope of the

ascending line segment. (a) period-2 cycle forl = 0.15; (b) chaotic attractor forl = 0.30;

and (c) period-3 cycle forl = 0.45. p = −4.

(a) (b) (c)

As the slopel continues to increase, the bands of the chaotic attractor broaden and merge with one

another via two subsequent crises (or homoclinic bifurcations), first a collision with the unstable period-2

cycle and then a collision with the unstable fixed point. Withfurther increase of the slopel, the system

reaches a new stable periodic solution, namely the period-3solution. This solution has a multiplier of

pl2 and, forp = −4, this eigenvalue will be numerically less than 1 all the way up to l = 0.5.

The bifurcation diagram in Figure4 allows us to follow some of the transitions in more detail. The

slopel of the ascending line element continues to serve as bifurcation parameter, andp = −4. To the

left in the bifurcation diagram we first observe the period-2solution, followed by the 4-band, 2-band

and fully mixed chaotic attractors. This is succeeded by a window with stable period-3 dynamics. For

l = 0.5, the period-3 solution destabilizes into a 6-band chaotic attractor and, through a couple of global

bifurcations, this attractor again merges into a single-band chaotic attractor.

The two-dimensional bifurcation diagram in Figure5 provides a more complete overview of the

dynamics of the skew tent map when bothl andp are varied. Note that the vertical axis displays−p on

a logarithmic scale. The large white region is the region of single band chaotic dynamics.γn denotes

a region with stable period-n dynamics andΣm is a region withm-band chaotic dynamics. Along the

horizontal linelog2(−p) = 2 we recover the one-dimensional bifurcation sequence in Figure4. In the

vertical direction we can follow a sequence of regions with period-2, period-3, period-4,etc., dynamics.

This sequence can be related to the so-called period-addingsequence for the logistic map [60], i.e., the

sequence of the last, stable appearance for cycles of various periodicity.
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Figure 4. Bifurcation scenario for the skew tent map. As the period-2 solution destabilizes

so do all other solutions in the period-doubling cascade, and the system jumps into a 4-band

chaotic state. The four bands of the chaotic attractor mergevia two subsequent homoclinic

bifurcations. Note that the characteristic periodic windows in the chaotic regime are missing

until, finally, a stable period-3 solution emerges.

Figure 5. Two-dimensional bifurcation diagram for the skew tent map.γn, n = 2, 3, 4...

denote regions of stable period-n dynamics, andΣm are regions withm-band chaotic

dynamics. The multiband chaotic regimes withm = 8 and4 adjacent to theγ4 domain

are quite narrow and, therefore, not explicitly marked.

From this we can deduce, for instance, that the single band chaotic attractor formed by merging of

the bands of the 6-band attractor may lead to the opening of a window for the period-4 solution that

has a multiplier ofpl3 (i.e., three points fall on the ascending line element and one point falls on the

descending line element). It is interesting to note, however, that many of the periodic windows that one

can observe for smooth maps are missing in the bifurcation diagram for the piecewise-linear map. This

includes, for instance, the first of the three period-5 windows that for smooth maps exists between the

period-2 and the period-3 cycles.
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2.3. Border-Collision Bifurcations

The study of border-collision bifurcations has a long history in the Russian literature [18,61]. Here,

they are commonly referred to as C-bifurcations, derived from the Russian word “shivanije” meaning

“sewing”. Feigin obtained analytical conditions for period-doubling transitions to occur in piecewise

continuous systems [18] and also developed conditions for the emergence of complexsubharmonic

oscillations and of families of unstable periodic orbits [61]. In the Western literature, one of the first

explicit studies of border-collision bifurcations appears to be the paper by Nusse and Yorke on direct

transitions from period-2 to period-3 for piecewise smoothsystems [21]. Based primarily on studies

of low-dimensional piecewise-linear maps, Nusse and York demonstrated bifurcation diagrams with

period-2 to period-3, period-2 to period-5,etc., transitions. This analysis was extended in a couple of

subsequent papers [22,23] in which more detailed explanations of the observed phenomena were given

and applications to physical and economic systems discussed. Bifurcation studies for piecewise-linear

maps have also been performed, for instance by Banerjeeet al. [24,25], by Zhusubaliyevet al. [62],

and by Gardiniet al. [63]. The above discussion of the modifications imposed to the period-doubling

bifurcations in piecewise-linear maps is mostly based on the work of Maistrenkoet al. [59].

To start our discussion of border-collision bifurcations,let us consider a slightly different version of

the skew tent map examined by Nusse and York [23]:

xk = Tµ(xk−1) =







axk−1 + µ, xk−1 ≤ 0

bxk−1 + µ, xk−1 > 0
(5)

Here, we shall assume that the slopea is kept constant (a = 0.5). The slopeb < 0 and the valueµ of

the top point are considered as control parameters. Forµ < 0, the map displays a stable fixed point with

x∗ = 2µ. For values of|b| < 1, the map also displays a stable fixed point for positive values of µ, the

coordinate of which isx∗ = 1/(1− b).

For µ = 0, the fixed point crosses from the ascending to the descendingpart of the map. When

this happens, the system undergoes a border-collision bifurcation in which the eigenvalue of the fixed

point abruptly changes froma to b. For b < −1, the fixed point in the right hand side of the map is

no longer stable. Figure6 shows a series of one-dimensional bifurcation diagrams obtained by varying

µ for different values ofb. In Figure6a, b = −1.5, and the map displays a transition from period-1

to period-2 dynamics for increasing values ofµ. For b = −3.5 (b), the border-collision bifurcation at

µ = 0 produces a transition to stable period-3 dynamics, forb = −4.15 (c) it produces 6-band chaotic

dynamics, forb = −4.4 (d) 3-band chaotic dynamics, and, finally, forb = −5.5 (e) a single band chaotic

attractor. These results are obviously in full agreement with the scenarios described for the skew tent

map in Section 2.2.

The important conclusion to be drawn from the above discussion is that the stable fixed point in a

piecewise linear system can bifurcate directly into many different forms of periodic or chaotic solutions.

As long as the system only operates on one side of a discontinuity we cannot know what will happen

when it starts to cross into another region of phase space. Itis worth noticing how the emerging periodic

or chaotic solutions grow linearly with the distance to the bifurcation point. We should also stress that,

besides stable periodic (and chaotic) solutions, the border-collision bifurcation atµ = 0 produces a great

variety of unstable periodic solutions [17].
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Figure 6. Border-collision bifurcations in the skew tent map. The slope of the descending

part of the map isb = −1.5 (a); b = −3.5 (b); b = −4.15 (c); b = −4.4 (d); and

b = −5.5 (e). Note the direct transition from stable period-1 dynamics(fixed point) to

period-2, period-3, and different forms of chaotic dynamics.

(a) (b) (c)

(d) (e)

2.4. Synchronization Phenomena in Piecewise-Linear Systems

Let us finally provide a simple analyses that explains some ofthe characteristic structure of the

resonance zones (or Arnol’d tongues) that one observes in piecewise linear systems. Discussions of

synchronization phenomena for systems of two interacting smooth oscillators are usually based on the

so-called sine-circle map [64,65]:

ϑk = f(ϑk−1) = ϑk−1 + Ω−
K

2π
sin 2πϑk−1 mod 1 (6)

whereϑk, k = 1, 2, . . . measures the phase of one of the oscillators each time the other oscillator has

completed a full cycle.Ω represents the mean phase advance per cycle (or the mistuning between the

two oscillators), andK is a measure of the coupling strength. Formally, (6) can be considered as a

mapping of a pointϑk−1 on the periphery of a circle into a subsequent pointϑk. Due to the presence of

the coupling term, the phase advanceϑk − ϑk−1 in a given iteration depends on the initial phaseϑk−1.

Broadly speaking, this implies that there are phase relations between the two oscillators that the system

tends to pass quickly and other values of the phase relation that the system tries to maintain.

A more detailed analysis shows that if the coupling is strongenough compared with the mistuning

(K > 2π/Ω), the sine-circle map will display two points of intersection with the main diagonal. One

point in which the slope of the map is numerically less than 1 is a stable fixed point (a node), and the
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other fixed point is a saddle. The stable fixed point represents the state of stable 1:1 synchronization, and

the region in (Ω, K) parameter space in which this fixed point exists is the 1:1 synchronization regime.

The range of mistuning for which synchronization can be achieved increases with the coupling

strength. Moreover, similar synchronization regimes exist for other rational ratios of the frequencies

of the two interacting oscillators. A broader introductionto the theory of synchronization in smooth

systems may be found in the books by Pikovskyet al.[66], by Balanovet al. [67], and by Mosekilde [68].

The question is now how the structure of synchronization regimes changes if we replace the interacting

smooth oscillators with a system of interacting piecewise-smooth oscillators. As a simplified approach

to this problem we may consider the so-called rotating sawtooth map

ϑk = R(ϑk−1) mod 1 (7)

with

R(ϑk−1) = Ω +



















2ϑk−1, 0 ≤ ϑk−1 < b

(1− 4b)ϑk−1 + b

1− 2b
, b ≤ ϑk−1 < 1− b

2ϑk−1 − 1, 1− b ≤ ϑk−1 < 1

first suggested by Uherka [69].

HereΩ, the average phase advance per iteration, again representsthe mistuning between the two

interacting oscillators. As for the sine-circle map, an increasing value ofΩ manifests as a vertical shift

of the map. As a measure of the coupling strength,b describes how the phase advance depends on the

present phase. In particular, the value ofb controls the slope(1 − 4b)/(1 − 2b) of the intermediate line

section and, hence, the stability of the various resonance solutions.

Figure7a presents the rotating sawtooth map forΩ = 0 and b = 0.27. The point of intersection

between the map and the main diagonal in the middle of the diagram represents the 1:1 resonance cycle.

Since the slope of the map in this point is numerically less than1, the fixed point is stable. The point of

intersection between the map and the main diagonal at (0, 0) represents a 1:1 resonance cycle of saddle

type.

The phase diagram in Figure7b provides an overview some of the main resonance regions in the

(Ω, b) plane. It is interesting to notice how the resonance regions for the piecewise-linear map display

a so-called sausages-on-a-string (or necklace) structurewith its characteristic shrinking points [70,71]

where the edges of a resonance zone intersect one another. Weshall meet this phenomenon repeatedly

in our discussion of resonance behavior in power electronicconverter systems. Moreover, rather than by

the saddle-node bifurcations as for smooth systems, the edges of the resonance zones are now made up

by border-collision bifurcations.

As illustrated in Figure7c, the border-collision bifurcation that delineates the region of stable 1:1

synchronization will occur when one of the corner points of the map in Figure7a falls on the main

diagonal. With the assumed slope of2 for the left and right hand line segments of the map, this is

the case forb = 0.27 andΩ = b. The lineΩ = b thus delineates the region with0 : 1 (or 1:1)

synchronization in Figure7b. This type of border-collision bifurcation is analogous in some sense to the

tangent (or saddle-node) bifurcation in a smooth system [66,67].
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Figure 7. (a) Rotating sawtooth map forΩ = 0 and b = 0.27; (b) Resonance tongue

diagram delineating the regions in parameter space in whichstable 1:1,1 : 5, 1 : 4,

1 : 3, etc., synchronization occurs. Note the characteristic sausages-on-a-string structure;

(c) Border-collision bifurcation at the edge of 1:1 synchronization regime.b = 0.27, Ω = b;

(d) Stable1 : 2 synchronization. b = 0.1, Ω = 0.5; (e) 2 : 4 synchronized state.

b = 0.299995, Ω = 0.5.

(a) (b)

(c) (d) (e)

Figure7d illustrates the1 : 2 resonance cycle that exists in the Uherka map forΩ = 0.5 andb = 0.1,

i.e., in the lower part of the1 : 2 resonance region. The periodic solution now involves two iterations

before returning to itself, and both iterations fall on the intermediate line element. The eigenvalue for

this cycle is(1 − 4b)2/(1 − 2b)2 or approximately0.56 for b = 0.1. Hence, the cycle is stable. Finally,

Figure7e illustrates the2 : 4 synchronized state that exists forΩ = 0.5 andb = 0.299995, i.e., in the

upper part of the1 : 2 regime. This resonance cycle involves four iterations before it starts to repeat

itself. With two points that fall on the intermediate line section and two points that fall on the outer line

sections, the eigenvalue is4(1 − 4b)2/(1 − 2b)2 or approximately0.29. This cycle is also stable, and

for increasing values ofb, the1 : 2 regime continues to exist until the eigenvalue numericallybecomes

equal to one. This happens for2(4b− 1)/(1− 2b) = 1 or b = 0.3.
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A more detailed description of border-collision bifurcations in piecewise-smooth systems may be

found in our book [17]. However, let us now turn the attention to the use of these concepts in the study

of bifurcation phenomena in power electronic converter systems.

3. DC/DC Converter System

DC/DC converter systems represent some of the most commonlyused systems in modern power

electronics. Such systems may function as power supplies for navigation instruments in space- and

aircrafts, for solar energy driven refrigerators at remotelocations, for liquid crystal displays, and for a

broad range of other systems that require a well-regulated current or voltage source. While the primary

power source,i.e., the input voltage to the converter, may vary over time, theconverter is built to adjust its

switching cycle to compensate for this variation. Moreover, the converter operates with a relatively high

efficiency (typically 80–90%), and the individual converter can supply power to different subsystems,

each requiring their own specific voltage level [72].

The purpose of this section is to examine the role that border-collision bifurcations may play in

connection with operation of a DC/DC converter with pulse-width modulation. As previously described,

the repeated switching of the circuit topology characteristic of pulse-width modulated converters destroys

the smoothness of the temporal dynamics. Each time a switching occurs, the topology of the circuit

changes and, with appropriate sewing conditions, the system will continue its trajectory in accordance

with the equations of motion for the new topology [73,74]. We shall assume that the switching processes

are ideal, that is, that the switching occurs instantaneously and without time delays, and that it does

not cause any high frequency transients. In this way, the smooth dynamics of the system is related to

the characteristics of the output filter, and to the smoothing of the control signal that may occur in the

corrector circuit.

Our analysis starts by illustrating how the time-continuous model of the converter can be reduced

to a time-discrete mapping by integrating the system from switching event to switching event [75–77].

Since the system may be considered as linear in the time intervals between the switching processes,

a main requirement to this approach is a procedure for determination of the switching times. It is

worth noticing that whereas the time-continuous system is piecewise linear, the time-discrete map is

piecewise smooth. As one might expect, this implies that themodifications of the bifurcations we know

from smooth systems will be somewhat less dramatic than the modifications described in Section 2 for

piecewise-linear maps.

Since first reported by Hamill and Jefferies [78], instabilities and chaotic oscillations in DC/DC

converters with pulse-width modulation (PWM) have been thetopic of numerous investigations [79–81].

Combining numerical simulations with experiments, di Bernardo and Tse [82], for instance, have

presented a series of examples of chaotic dynamics in DC/DC converters. Aroudi and Leyva [81]

have studied quasiperiodic behavior in a pulse-width modulated DC/DC boost converter and observed

both a subcritical torus-birth process via a secondary Hopfbifurcation and the onset of chaotic

dynamics through torus destruction. Two different routes to torus destruction were described involving,

respectively, period-doubling of a resonance cycle and theloss of smoothness through torus folding.
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Among the earliest works providing a detailed numerical andanalytical investigation of

bifurcations and transitions to chaos in DC/DC converters,we should recall the paper by Baushev and

Zhusubaliyev [76]. These authors showed that such systems can display a situation where there is a

wide range of parameters with many locally stable limit cycles with different dynamic characteristics,

including regions of coexistence. These cycles arise in hard transitions, and with changing parameters

each of them can undergo either a finite or an infinite sequenceof period-doubling bifurcations, resulting

in the transition to chaos.

The purpose of this section is to present some of the characteristic synchronization phenomena

that can arise in piecewise-smooth dynamical systems whosemotion involve two (or more) oscillatory

components [39,40]. Our aim is particularly to highlight the role that border-collisions can play in the

synchronization of different oscillatory modes in a singlelevel DC/DC converter. However, we also

want to show how the converter model is developed and transformed into a time-discrete mapping. Use

of such mapping techniques makes the subsequent numerical analysis many times easier.

Figure 8. Coupling diagram for the considered DC/DC converter with pulse-width

modulation and proportional-plus-integral feedback regulation. RL is the load resistance,

E0 the input voltage, andVref the reference voltage.TC is the transistor switch that opens

and closes the connection betweenE0 andRL in response to the control pulsesKF generated

by the pulse-width modulator PWM.

3.1. Model of a DC/DC Converter

Figure 8 shows the coupling diagram for the considered DC/DC buck converter with

proportional-plus-integral (PI) feedback regulation. Here,E0 is the input voltage andVref the reference

output voltage. TC is the power transistor that functions asthe switching element, and PWM is the

modulator that regulates the switching process according to the applied algorithm.L andCf denote,

respectively, the inductance and the capacitance of the output filter. R is the series resistance of

the inductor andRL is the load resistance. The dynamic variablesx1 andx2 represent, respectively,

the current in the inductance and the output voltage. VS is the voltage sensor andβ its sensitivity.
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CORRECTOR is the feedback corrector, withα and χ being, respectively, the amplification factor

and the transfer constant of the feedback regulation. The dynamic variablex3 represents the output

signal from the integrator, andψ(X) = α(χ(Vref − βx2) + (1 − χ)x3) is the output signal from the

CORRECTOR. Finally,KF is the control signal generated by the pulse-width modulator PWM. As

determined bellow,X = (x1, x2, x3)
T represents the current state of the converter system.

Figure9 serves to explain the generation of control pulses. In the present example we shall consider an

algorithm that is often referred to as two-sided pulse-width modulation. This implies that the transistor

switch is forcedly turned on at the beginning of each clock intervala and turned off when the sawtooth

voltageVramp exceeds the value attained by the feedback signalψ(X) at the beginning of the clock

interval. The converter remains off as long as the sawtooth signal exceeds that value of the feedback

signal and then turns on again for the remaining part of the clock period.

Figure 9. Generation of control pulsesKF with the use of two-sided pulse-width

modulation. The pulse-width modulator PWM reads the value of the output signalψ(X)

from the CORRECTOR circuit at the beginning of each clock interval a and compares it

with the sawtooth signalVramp(t). The modulator generates a symmetric pair of control

pulses, one at the beginning and one at the end of the clock interval, each lasting for a period

corresponding to the period in which the sawtooth signal is smaller than the value of the error

signal as sampled at the beginning of the considered clock interval.

During the time interval[(k − 1)a, ka], k = 1, 2, 3, . . . , the expression forVramp(t) takes the form

Vramp(t) = U0 ×







2t/a− [2t/a] , (k − 1) a ≤ t < (k − 1
2
) a

1− (2t/a− [2t/a]), (k − 1
2
) a ≤ t < ka

HereU0 denotes the amplitude of the ramp signal anda its period. Square brackets indicate that one

has to take the integer part of the argument. Since only the front of the sawtooth signal is required to

determine the switching instants, we actually only need theexpressionVramp(t) = U0

(

2t/a− [2t/a]
)

.

With the assumption that the switching process is ideal, theequations of motion for our pulse-width

modulated DC/DC converter constitute a set of three ordinary differential equations with discontinuous

right hand sides:
dX

dt
= AX +B(t, X); X = (x1, x2, x3)

T (8)
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with

A =

























−
R

L
−
1

L
0

1

C
−

1

CRL
0

0 −
β

τ
−
1

τ

























; B(t, X) =













E0

L
KF(ξ)

0
Vref
τ













As mentioned above, our three state variablesx1, x2 andx3 denote, respectively, the current in the

filter inductor, the output voltage, and the output signal from the integrator.τ is the time constant for the

integrator, and the superscriptT denotes “transposed”.

Within the clock interval[(k − 1)a, ka], k = 1, 2, 3, . . . the output signal of the pulse-width modulator

KF(ξ) is given by (see Figure9):

KF(ξ) =















1, (k − 1) a < t < tk

0, tk < t < t∗k

1, t∗k < t < ka

with

ξ = ψ(X)− Vramp(t)

The modulator switching instantstk andt∗k are:

tk =















(k − 1) a, ξ
(

(k − 1) a,Xk−1

)

≤ 0

(k − 1) a+∆,
[

ξ
(

(k − 1) a,Xk−1

)

> 0
]

∨
[

ξ
(

(k − 1
2
)a,Xk−1

)

< 0
]

(k − 1
2
) a, ξ(t, Xk−1) > 0 ∀ t : (k − 1) a < t < (k − 1

2
) a

t∗k = (2k − 1) a− tk

Here,∆ = 1
2
aψ(Xk−1)/U0 is the pulse duration (0 < ∆ < a/2). Examples of the different situation

that can occur fortk are illustrated in Figure9. The generic situation with two symmetric pulses occur

both for the time interval[(k− 1)a, ka] and for the interval[(k+1)a, (k+2)a]. The case,∆ = 0 occurs

in the interval[ka, (k + 1) a], and the third case∆ = a/2 occurs in the interval[(k + 2) a, (k + 3) a].

In the following analysis we shall take the parameter valuesto be: E0 = 104 V, R = 10.6 Ω,

L = 0.1 H, C = 10−6 F,RL = 100 Ω, U0 = 10 V, Vref = 5 V, β = 0.1, a = 10−4 s, andτ = 4 · 10−4 s.

The amplification and transfer constants of the correctorα > 0 and 0 < χ < 1 are considered as

control parameters.

With the above parameter values, the eigenvaluesλ1, λ2, andλ3 of the matrixA are real and negative:

λ1 = σ1 + σ2, λ2 = σ1 − σ2, andλ3 = −1/τ

with

σ1 = −
1

2

(

R

L
+

1

CRL

)

; σ2 = −

√

1

4

(

R

L
+

1

CRL

)2

−
1

LC

(

1 +
R

RL

)
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Under this condition, we can replace system (8) by the simpler system [17,40,76]

dw1

dt
= λ1

(

w1 −KF(ξ)
)

dw2

dt
= λ2

(

w2 −KF(ξ)
)

dw3

dt
= λ3

(

w3 −KF(ξ)
)

(9)

with

ξ(t, w1, w2, w3) =

3
∑

i=1

γi

(

χ−
λ3
λi

)

wi −
Q

α

(

2t

a
−

[

2t

a

])

+ q

γ1 =
λ1

λ1 − λ3
; γ2 =

λ1
λ3 − λ2

; γ3 = −(γ1 + γ2)

Q =
U0(λ1 − λ2)(RL +R)

βE0λ2RL
≈ 6.48; and q =

Vref
U0

Q ≈ 3.24

The variables (w1, w2, w3) are related to the original variables(x1, x2, x3) through the linear

transformation

x1 =
E0/L

λ1 − λ2

(

λ2 +R/L

λ1
w1 −

λ1 +R/L

λ2
w2

)

x2 =
E0/(LC)

λ2 − λ1

(

w1

λ1
−
w2

λ2

)

x3 = −λ3

3
∑

i=1

µi

wi

λi
+ Vref

where

µ1 = −
βE0

LC(λ2 − λ1)(λ1 − λ3)
; µ2 =

βE0

LC(λ2 − λ1)(λ2 − λ3)
; µ3 = −(µ1 + µ2)

3.2. Piecewise-Smooth Map

The piecewise-linear character of the dynamical system (9) allows us to integrate the equations of

motion and thereby transform the system into the three-dimensional stroboscopic mapping

wik = eaλiwi(k−1) + eaλi(1−zk) − eaλizk + 1− eaλi (10)

wik = wi(ka); i = 1, 2, 3; k = 1, 2, . . .

with

zk =















0, ϕ(0) ≤ 0

z∗,
(

ϕ(0) > 0
)

∨
(

ϕ(1
2
) < 0

)

1
2
, ϕ(1

2
) ≥ 0

(11)
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and

ϕ(z) =

3
∑

i=1

γi

(

χ−
λ3
λi

)

wi(k−1) −
2Q

α
z + q (12)

Here,

z∗ =
α

2Q

[

3
∑

i=1

γi

(

χ−
λ3
λi

)

wi(k−1) + q

]

is the root of the equationϕ(z) = 0. wik denotes the value of the variablewi at the timet = ka.

zk = tk/a− k+1 represents the relative pulse duration for the control pulseKF(ξ) in terms of the clock

perioda, andϕ(z) represents the difference between the normalized output signal from the corrector and

ramp signal.

3.3. Methods of Bifurcation Analysis

Through the above analysis we have established a complete set of equations to determine both the

switching times and the changes of the dynamic variables from switching event to switching event. Let

us now consider how the recurrence map (10) can be used to localize periodic solutions to our converter

system and to determine the stability of such solutions.

Consider solutions with a periodT = ma, m = 1, 2, 3, . . . , in the following calledm-cycles. Using

the recurrence relations (10) and the periodicity conditionswi0 = wim, we obtain the explicit expression

wik=
1

1− emaλi

[

m
∑

i=k+1

eaλi(m+k−i)
(

eaλi(1−zi) − eaλizi
)

+
k

∑

i=1

eaλi(k−i)
(

eaλi(1−zi) − eaλizi
)

]

+1 (13)

Substitutingwi(k−1) into (12) gives

ϕk(z1, . . . , zm) =
3

∑

i=1

γi

(

χ−
λ3
λi

)

σik −
2Q

α
zk + q, k = 1, m,

where

σik=
1

1− emaλi

[

m
∑

i=k

eaλi(m+k−1−i)
(

eaλi(1−zi) − eaλizi
)

+

k−1
∑

i=1

eaλi(k−1−i)
(

eaλi(1−zi) − eaλizi
)

]

+1

Finally, using (11) provides us with a system of transcendental equations withrespect tozk,

k = 1, m [40,76]:

ϕk(zk, z1, . . . , zm) = µk(zk), k = 1, m. (14)

µk(zk) =











0, 0 < zk <
1
2

> 0, zk = 1
2

< 0, zk = 0

With this algorithm we can not only determine the stablem-cycles, but the unstable cycles as well. If

zk, k = 1, m are the solutions to Equation (14) then them-cyclewik, i = 1, 3, k = 1, m can be evaluated

in accordance with Equation (13).
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The local stability of anm-cycle is determined by the eigenvalues of the monodromic matrix Fm (also

referred to as the Poincaré multipliers of the time-continuous system). These are the roots of the equation

det(Fm − ρE) = 0

The monodromic matrix can be determined by the recurrent formula

Fk = JkFk−1, k = 1, m; F0 = E

Jk = eaΛ +



















∂Wk

∂zk

(

∂zk
∂Wk−1

)T

, 0 < zk <
1
2

O, zk = 0 or zk = 1
2

(15)

eaΛ =







eaλ1 0 0

0 eaλ2 0

0 0 eaλ3







W = (w1, w2, w3)
T

∂Wk

∂zk
=

(

∂w1k

∂zk
,
∂w2k

∂zk
,
∂w3k

∂zk

)T

∂zk
∂Wk−1

=

(

∂zk
∂w1(k−1)

,
∂zk

∂w2(k−1)

,
∂zk

∂w3(k−1)

)T

where

∂wik

∂zk
= −aλi (e

aλi(1−zk) + eaλizk)

∂zk
∂wi(k−1)

=
α

2Q
γi

(

χ−
λ3
λi

)

, i = 1, 2, 3

Herezk, k = 1, m are the solutions of Equation (14); O is the zero matrix, andE is the unit matrix.

The Poincaré characteristic multipliers determined in this way measure the factors by which the

distance of a trajectory to a nearby periodic orbit increases in various directions (the eigen-directions

for Fm) each time the trajectory returns to a given Poincaré section.

3.4. Subcritical Torus-Birth Bifurcation

The above analysis provides us with the tools required to determine how the dynamics of the DC/DC

converter depends on the values of the various control parameters. As an example, Figure10presents an

overview of the domains of existence for the stable cycles ofthe map (10) in the region10.0 < α < 60.0,

0 < χ < 0.5. We recall thatα denotes the amplification factor andχ the transfer constant for the

corrector circuit. As long asα is small enough, the system displays a globally stable period-1 cycle.

This is the normal mode of operation in which the dynamics of the converter precisely repeats itself

switching cycle after switching cycle. In Figure10, this domain is denotedΠ1,1.
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Figure 10. Domains of existence for the various dynamical modes of the map (10) in

the plane of the control parametersα andχ. NT andNϕ denote, respectively, curves of

torus-birth and torus-fold bifurcations. The red region isthe domain in which the regular

period-1 cycle is the only mode to exist. To the right of the curveNT, the system displays

quasiperiodic or resonant periodic dynamics and, in the white region to the very right, the

dynamics is chaotic.

With increasing feedback control, a threshold is reached atwhich the regular period-1 cycle loses its

stability. This happens in a subcritical torus-birth bifurcation at the curve denotedNϕ. (In relation to the

original continuous-time system this bifurcation may be referred to as an Andronov–Hopf bifurcation.

In relation to the time-discrete map it is a Neimark–Sacker bifurcation). Figure11shows a sketch of the

transitions that occur near this bifurcation. Here,αϕ represents the point of torus birth. The curvesfp
represents the stable fixed point (period-1 cycle) that exists before the torus-birth bifurcation, andufp is

the doubly unstable fixed point that exists after the bifurcation. αT is a point of torus-fold bifurcation.

This is a form of transition in which a stable and an unstable torus meet and annihilate.ut is the repelling

torus that takes part in this bifurcation, andst is the stable torus.st continues to exist until, for very high

values ofα, the dynamics turns chaotic.

In the interval betweenNT andNϕ (or betweenαT andαϕ), the stable period-1 solution coexists

with the stable torusst. The stable manifold of the unstable torusut demarcates the basins of attraction

for the two attracting solutions. However, althoughNϕ is the actual boundary of the domain of stable

period-1 dynamics, the basin of attraction for this cycle isfairly small, and the numerical algorithm used

to produce Figure10 generates quasiperiodic oscillations as almost the only stable solution in most of

the interval.

Coexistence of different modes (or intersection of the domains of existence) leads to the appearance

of hysteresis. Figure12 shows a couple of brute force bifurcation scans across the interval around the

subcritical torus-birth bifurcation for increasing (a) and decreasing (b), values of the corrector gain factor

α. Note how the transition from stable period-1 dynamics to quasiperiodic dynamics occurs somewhat

after the bifurcation pointαϕ. This may be considered a numerical artifact that occurs because the
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trajectory only diverges rather slowly from the fixed point even though the point is unstable. Thus the

state of the system has not moved much away from the unstable focus point by the time the state is

monitored and used to construct the bifurcation diagram. A solution to this problem could be to allow

for a longer transient before the data is collected. This would require a very long simulation time.

Alternatively, one could perhaps add a small amount of noiseto the system. One should note, however,

that the similar disagreement between the predicted and realized transition points may be observed for

the actual converter.

Figure 11. Sketch of the subcritical torus-birth bifurcation and the nearby torus-fold

bifurcation that take place atαϕ andαT, respectively.sfp represents the regular period-1

switching dynamics that occurs for gain factors belowαϕ, andst is the stable torus that

controls the dynamics at higher values for the corrector amplification constant.

Figure 12. Hysteresis in the region between the subcritical Andronov–Hopf bifurcation point

αϕ and the torus-fold bifurcation atαT. (a) Bifurcation scan in the direction of increasing

gain factorα; (b) Scan in the reverse direction. Due to numerical limitations, the transition

in the forward scan does not occur precisely at the bifurcation point.

(a) (b)
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To the right of the torus-fold bifurcation curveNT in Figure10, the converter displays torus dynamics,

i.e., a dynamics that arises through the interplay between the basic switching dynamics and a second

oscillatory mode generated by an instability in the controlloop. Interaction between these two modes

produces two-dimensional quasiperiodicity interrupted in parameter space by a dense set of resonance

zones in which there is a rational relation between the two periodicities. In Figure10, the primary

resonance modes are denotedΠn,1, n = 6, 7, ..., 13. The resonance zoneΠ6,1, for instance, is the region

in which the converter dynamics precisely repeats itself after six switching periods.

Consistent with the picture we know from synchronization insmooth systems [65–68], the primary

resonance zones follow one another in a consecutive order with an increasing number of switching

cycles per period of the overall dynamics as the corrector transfer constant is reduced. Between the

main resonance zones we observe zones of higher complexity,and between these again zones of even

higher complexity, in accordance with the Farey-tree structure known for resonance cycles in smooth

systems [83]. Between the resonance zonesΠ6,1 andΠ7,1, for instance, we find a region where the

system completes 13 switching cycles and 2 cycles of the slower oscillatory mode produced by the

control loop before repeating its dynamics, and betweenΠ6,1 and this region we find the resonance zone

where the system performs 19 switching cycles and three slowcycles before repeating itself,etc.

However, the shapes of the resonance zones do not resemble the cusp formed resonance zones

(Arnol’d tongues) for smooth systems [64,65], but are much more like the sausages-on-a-string (or

necklace) form we discussed in connection with the rotatingsawtooth map in Section 2.4. Moreover, the

resonance zones are delineated by border-collision bifurcations rather than by saddle-node bifurcations

as for smooth systems. This implies that the stable and unstable resonance modes are born with

eigenvalues that in general are clearly distinguished fromthe common eigenvalue of one characteristic

of saddle-node bifurcations. In particular, one can observe the simultaneous appearance of a saddle (with

real eigenvalues) and a stable focus cycles (with complex-conjugated eigenvalues).

3.5. Internal Structure of the Resonance Zones

Inspection of Figure10 indicates that the resonance zones may display an inner structure, and more

detailed examination reveals that the main resonance tongues can be divided into two groups depending

on whether the periodicity is even or odd. Resonance tongueswith odd periodicity display regions of

coexistence of two different resonance cycles of the same periodicity, but with different rhythms. When

crossing the borders of such regions, one observes hard transitions from one stable resonance cycle to

another. An example is shown in Figure13a where the substructure of theΠ11,s zone is presented. Here,

the second subscript serves to number the different sausages within a given resonance regime. Regions

of coexistence of two different attracting solutions are shown in ochre and denoted̂Π11,s.

Except for the torus-birth bifurcation curveNϕ, the bifurcation curves in this figure are all of

border-collision type, and distinctions only arise with respect to whether the bifurcation involves the

merger of a stable and an unstable cycle, the abrupt transition from one solution to another, or a simple

change in the form of the solution. Figure13b shows the corresponding substructure of theΠ10,s

resonance zone. As closer examination reveals, one can still observe a number of border collision
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bifurcations inside the resonance zone. However, they onlyinvolve soft transitions from one cycle to

another by adding, for instance, a new piece of trajectory.

Figure 13. Domains of stabilityΠ11,s andΠ10,s for the period-11 (a) and period-10 (b)

resonance cycles. The second indexs here refers to the different sausages within a given

synchronization regime. Resonance domains for cycles withodd periodicity display regions

of coexistence of cycles of different types (ochre areas). When crossing the boundaries of

these regions, transitions with hysteresis occur. A similar structure is not found for resonance

zones of even periodicity.

(a) (b)

As an alternative illustration of the internal structure ofthe resonance domains, Figure14a shows

a one-dimensional bifurcation diagram obtained by scanning across the period-11 resonance zoneΠ11,s

for χ = 0.1085. Reading the figure from the left to the right we first observe the torus-birth bifurcation at

α ≈ 14.4. This is the bifurcation in which the regular period-1 cycleloses its stability and the dynamics

becomes quasiperiodic with a dense set of resonance zones. At α ≈ 22.3, the system enters the regime

of period-11 synchronization. With future increase of the parameterχ the system enters the ochre zone

denotedΠ̂11,2 in Figure14a, where two different period-11 cycles coexist. The systemleaves this zone

at α ≈ 27.8, and the scan continues through a green region before atα ≈ 34.5, the system enters the

second ochre zone denotedΠ̂11,1. This is (again) a zone where two different period-11 cyclescoexist.

The converter leaves the second ochre zone atα ≈ 37.55.

Figure14b shows the results of a similar one-dimensional bifurcation analysis through the period-10

resonance zoneΠ10,s for χ = 0.153. With this value forχ the scan crosses the resonance region first in

an interval aroundα ≈ 19.31 and then again in an interval fromα ≈ 23.84 to α ≈ 40.7. This illustrates

the characteristic modulation of the width of the necklace structure. The period-10 solutions in the

two intervals are clearly different but, by contrast to the diagram in Figure14b, the present bifurcation

diagram does not show signs of coexisting solutions. In thisconnection it is worth noticing that there

is a clear distinction between the dynamics observed in the various sausages of a given resonance zone.
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Whereas the converter system when operating in theΠ10,1 regime, for instance, completes 10 switching

cycles and one cycle of the slower oscillation associated with the feedback instability per full period,

when operating in theΠ10,2 regime, the converter completes 10 switching cycles and two(slightly

different) cycles of the slow mode in each period.

Figure 14. (a) One-dimensional bifurcation diagram through theΠ11,s resonance zones for

χ = 0.1085. Note the coexistence of two period-11 resonance cycles in the intervals from

α ≈ 22.6 to α ≈ 27.86 and fromα ≈ 34.4 to α ≈ 37.47; (b) One-dimensional bifurcation

diagram through the period-10 resonance zone forχ = 0.153. By virtue of its necklace

shape, the scan crosses the resonance zone twice.

(a) (b)

This concludes our analysis of the DC/DC with pulse-width modulated PI-control. The typical

scenario we have observed in such systems proceeds, as the feedback regulation becomes stronger, via a

torus-birth bifurcation to quasiperiodicity with a dense set of different states of resonance dynamics and

regions with coexisting solutions. A detailed bifurcationanalysis shows that the resonance regions are

delineated by border-collision bifurcations. These regions also display a structure that resembles the

simple sausages-on-a-string structure discussed for the rotating sawtooth map. In the following sections

we shall consider first a multi-level DC/DC converter and subsequently a DC/AC converter. The idea is

to focus on the new and even more complicated dynamics that such systems can display.

4. Torus Bifurcations in a Multilevel DC/DC Converter

By contrast to the DC/DC converter considered in Section 3, multilevel converter systems operate with

two or more values for the input voltage. As previously noticed, this allows the desired output voltage

to be synthesized with less distortion and higher efficiency, and the presence of several input levels also

allows the converter to operate with lower voltage ratings for the components. Today multilevel DC/DC

converters are relatively common. Their main disadvantageis the added complexity that follows from

the higher number of components. This complexity manifestsin the design of the converter as well as

in its maintenance and repair. However, as one would expect,the increased complexity also affects the

dynamics that the converter can display.
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Over the years, we have performed a series of studies of bifurcation phenomena in multi-level DC/DC

converter systems. We have demonstrated how border-collision bifurcations can give rise to the birth

of an ergodic (or resonance) torus [41,42], and we have also been able to demonstrate this type of

torus-birth bifurcation experimentally [43]. More recently, we have studied a number of unusual

bifurcation phenomena that can occur in multi-level converter systems operating with corrector gain

factors beyond the threshold of torus birth bifurcation. One example is the birth of an ergodic torus

through the collision between the normal period-1 cycle anda resonant period-6 cycle of saddle type,

a collision in which the period-1 cycle is transformed from astable into an unstable focus cycle [84].

Another example is the development of heteroclinic bubblesthat connect the points of a stable resonance

cycle with a pair of saddle and focus cycles [84] and, at even higher values of the corrector gain factor,

we have been able to follow the complicated reconstruction processes that take place between coexisting

stable and unstable resonance tori.

The purpose of the present section is to provide an overview of some of the main torus-birth

and -reconstruction processes that occur in multilevel DC/DC converters operating in the regime of

high feedback gain factors. We start by illustrating the birth of different sets of resonant or ergodic

tori through non-smooth Andronov–Hopf bifurcations and border-collision torus-birth bifurcations. We

illustrate how these tori with increasing corrector gain become embedded one into the other and follow

the associated structural changes. We also describe a number of border-collision torus-fold bifurcations

in which pairs of stable and unstable tori emerge and disappear without affecting the stability of the fixed

point or of already existing tori. The fact that these bifurcations do not affect the stability of the basic

operational mode implies, of course, that their occurrencecannot be predicted from a stability analysis

for this cycle.

4.1. Power-Electronic DC/DC Converter with Multilevel Control

In order to study the dynamics of a pulse-modulated control system operating in the regime of high

feedback gain, let us consider the multilevel DC/DC converter sketched in Figure15a. Here,N is the

number of input levels for the voltage supply, andE0 denotes the highest available input voltage. In the

following calculations we shall take the number of levels tobeN = 3.

Considering the control diagram in Figure15a, Er is the output voltage,L the inductance of the

filter coil, andR the associated loss resistance.CS is the current sensor,β its sensitivity, andVref the

reference voltage.R0 andC0 are components of the corrector circuit,DA0 the corrector amplifier, and

α the corrector gain factor.S/H is a sample-and-hold unit that reads the error signalαx2 at every clock

time and maintains it for the following switching period. Finally the comparatorsDAs, s = 1, 2, ..., N

compare the output signal from the sample-and-hold unit with the sawtooth signalsV (s)
ramp, s = 1, 2, ..., N

in order to generate the control signals to the switchesS1, S2, ... ,SN .

For a three-level system, the feedback control is implemented by means of three ramp functions such

thatV (1)
ramp varies from0 toU0/3, V (2)

ramp betweenU0/3 and2U0/3, andV (3)
ramp between2U0/3 andU0. All

three ramp functions are driven by the same clock. Figure15b illustrates the generation of the switching

signals. At the beginning of each ramp cycle, the sample-and-hold unit reads the corrector output signal

αx2 and maintains this value for the entire ramp cycle. The output voltage from the sample-and-hold
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unit is denotedvcon. As long as the value ofvcon (the control signal) falls in the interval from0 to U0/3

(the first zone), it is compared withV (1)
ramp. If vcon exceedsV (1)

ramp, the switchS1 is connected to the input

voltageE0/3, and the connection is broken as soon asV
(1)
ramp becomes larger thanvcon. A similar scheme

is applied ifvcon falls in one of the other zones.

Figure 15. (a) Schematic diagram of the considered DC/DC converter.E0 is the maximum

available input voltage andN the number of input levels.Er is the output voltage andVref
the reference voltage.CS is the current sensor,R0, C0 andDA0 are components of the

feedback control, andS/H a sample-and-hold unit that generates the control signal tothe

comparatorsDA1, DA2, ...,DAN ; (b) Temporal variation of the control signal to illustrate

the generation of the switching signals.vcon is the output signal from the sample-and-hold

unit andV (s)
ramp, s = 1, 2, ..., N are the ramp signals for the three different zones.

(a)

(b)

The dynamics of the three-level converter system may be represented by the following set of

two-coupled non-autonomous differential equations with discontinuous right hand sides:

ẋ = λ1x+ γ(ΩmKF − Ωr) and ẏ = −x+ λ2y + 1 (16)

where the (dimensionless) dynamic variablesx andy represent, respectively, the normalized load current

x1 and the error signalx2 of the integrating feedback corrector.Ωm andΩr are the normalized input and

output voltages, andλ1 andλ2 are the normalized eigenvalues for the linear dynamics thattake place

between the switching events. Note, that bothλ1 andλ2 are negative.

KF =

N
∑

s=1

K
(s)
F
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with

K
(s)
F =

1

2N
(1 + sign ξs) , ξs = y(τ) + ηs(t)

ηs(t) =
Vramp

αλ2Vref
=

q

Nαλ2
(s− 1 + t− τ)

is the switching signal. As before,N denotes the number of zones andα the corrector amplification

factor. The parameterq controls the amplitude of the sawtooth functions. Finally,the applied

normalization conditions are

x =
βx1
Vref

, y = −
x2

λ2Vref
, λ1 = −

aR

L
, λ2 = −

a

C0R0

γ =
aβ

L
, Ωm =

E0

Vref
, Ωr =

Er

Vref
, and q =

U0

Vref

wherea is the period of the ramp signal andVref the reference voltage.

The dimensionless time variablet is also normalized in the terms of the period of the ramp signal. The

sawtooth functionsηs(t), s = 1, 2, ..., N are periodically repeated normalized ramp functions with the

ramp period 1,i.e., ηs(t+ 1) ≡ ηs(t). The parameterq controls the amplitude of the sawtooth functions.

τ = [t] = k − 1, k = 1, 2, ... is the discrete time variable,[t] being defined as a function that is equal

to the integer value of its argument. The functiony(τ) thus represents the error signal of the integrating

feedback corrector at the beginning of each ramp cycle.

In the following bifurcation analysis we shall consider thecorrector gain factorα and normalized

output voltageΩr as a control parameters. The remaining parameters have beenchosen to beE0 = 100V,

R = 0.083 Ω, L = 0.0106 H, U0 = 10 V, Vref = 5 V, β = 0.1 Ω, a = 2 · 10−3 s,C0R0 = 10−2 s,N = 3.

During a given ramp periodk − 1 < t < k, k = 1, 2, . . . , all switching events take place within the

same zone. In the intervalsk − 1 < t < tk and tk < t < k between the switching timesk − 1, tk
andk, the system is linear. By integrating the equations of motion for the continuous-time system (16)

from switching event to switching event, our investigationcan thus be reduced to an analysis of the

two-dimensional piecewise-smooth map:

xk = eλ1(xk−1 + ϑ+k ) + λ2µe
λ1(1−zk) − ϑ−k (17)

yk =
eλ1 − eλ2

λ2 − λ1
(xk−1 + ϑ+k ) + eλ2(yk−1 + θ+k ) + µ

λ2e
λ1(1−zk) − λ1e

λ2(1−zk)

λ2 − λ1
− θ−k

Here,xk andyk denote the value of the dynamic variablesx andy at the switching timek and

ϑ+k =
γ

λ1

(sk
N
Ωm − Ωr

)

ϑ−k =
γ

λ1

(

sk − 1

N
Ωm − Ωr

)

θ±k =
ϑ±k + 1

λ2
; µ =

γΩm

Nλ1λ2
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The integersk represents the zone in which the switching in thekth ramp cycle takes places, and the

variablezk represents the relative pulse duration in thekth ramp cycle:zk = tk − k + 1, 0 ≤ zk ≤ 1.

These variables are determined by:

zk =



























0, yk−1 < 0

1, yk−1 > −
q

αλ2

−
Nαλ2
q

yk−1 − sk + 1, 0 ≤ yk−1 ≤ −
q

αλ2

and

sk =



























1, yk−1 < 0

N, yk−1 > −
q

αλ2
[

−
Nαλ2
q

yk−1

]

+ 1, 0 ≤ yk−1 ≤ −
q

αλ2

where

[

−
Nαλ2
q

yk−1

]

again is defined as a function that is equal to the integer value of its argument.

Expressed in terms of the value of the normalized error signal, the boundaries between the various zones

are given byy = −
qs

Nαλ2
, s = 0, N .

4.2. Chart of Dynamical Modes

Figure16 provides an overview of the distribution of dynamical modes(i.e., steady state solutions to

the equations of motion) in the(α,Ωr)-plane. We recall thatα is the corrector gain factor andΩr the

normalized output voltage. As mentioned above, the figure considers a part of parameter space where

the corrector gain factor is relatively high (α > 5.0). This implies that the converter is operating in a

regime where instabilities are likely to arise. The purposeof our investigation is to examine a number of

new transitions that lead to the formation of resonant or ergodic tori. We will only consider situations in

which the required output voltage falls below the maximum available voltage. In the opposite case, the

switching process will be abolished, and the converter willdisplay a stable equilibrium point.

The light blue domains denotedΠ1,1, Π1,2 andΠ1,3 represent operational regimes where the converter

displays stable, regular switching cycles. These are the normal operational modes, and for sufficiently

low values of the corrector gain factor, they are stable nodecycles. However, in the part of parameter

space we consider here they are of stable focus type. This implies that they have damped oscillatory

transients controlled by complex conjugate eigenvalues with numerical values less than1. The three

domains correspond to the three levels of input voltage.

In the domainΠ1,1, the normalized output voltageΩr is relatively small and the converter can provide

the required voltage through operation in the first zone,vcon < U0/3. In the domainΠ1,2, the system

operates in the second zone, and for higher load voltages (inthe domainΠ1,3), the converter operates in

the third zone. The transition from one zone to the next involves a border-collision bifurcation, either at

the curveNC
ϕ,1 or atNC

ϕ,2. At low values of the corrector gain factor (to the left of thepointsP1 andP2),

this bifurcation takes form of a transition from one stable focus cycle to another. To the right of these
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points, the bifurcation involves the transition from a stable focus cycle (in the light blue region) to an

ergodic or resonant torus (in the dark blue regions).

Figure 16. Chart of dynamical modes in the(α,Ωr) parameter plane.α is the corrector

gain factor andΩr is the normalized output voltage. The light blue regions represent stable

periodic switching dynamics associated with operation at each of the three levels for the

input voltage. The dark blue regions represent2D torus dynamics with their characteristic

necklace formed resonance zones. For gain factors exceeding α ≈ 11, this relatively simple

structure is overshadowed by a more complex structure of coexisting modes. This is the

region of concern to the present discussion.

The curvesN1
ϕ, N2

ϕ andN3
ϕ are Andronov–Hopf (or Neimark–Sacker) bifurcation curvesin which

the stable period-1 solutions lose their stability and transform into closed invariant curves as the pair

of complex conjugate eigenvalues continuously cross out through the unit circle in the complex plane.

Above these curves the converter displays ergodic dynamics(i.e., quasiperiodicity) intervened by an

infinite number of domains where resonant dynamics occurs. The transition to torus dynamics may

be explained by the fact that the increasing feedback gain generates additional oscillatory modes in

the system [85]. In Figure16, the quasiperiodic (or non-resonant) dynamics is found in the dark blue

areas ofΠ1
∞

, Π2
∞

, Π3
∞

, and the two-mode resonant dynamics is observed in the colored structures that

run across these domains. As discussed in Sections 2 and 3, the sausages-on-a-string shape of these

structures is a characteristic feature of non-smooth systems where the resonance zones are delineated by

border-collision fold bifurcations.

Forα > 11, the chart of dynamical modes display an even more complicated structure. The corrector

gain is now so high that new tori begin to appear both around the stable focus point and around the

already existing torus, and a variety of new bifurcation phenomena start to take place. Description of

some of these phenomena will be the subject of the following sections.

4.3. Embedded Tori

In order to provide a clearer picture of what happens as the corrector gain factor crosses the critical

value of aboutα ≈ 10.86, Figure17 displays a series of three one-dimensional bifurcation diagrams
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obtained as vertical scans through the bifurcation structure in Figure16 for different values ofα. In

Figure17a, α = 10.6 and the scan is performed in the relatively quiet regime below the appearance

of coexisting structures. We recognize the two regions of torus dynamics extending, respectively from

the point of Neimark–Sacker bifurcation atΩ1
ϕ to the point of border-collision torus birth bifurcation

ΩC
ϕ,1 and fromΩ2

ϕ to ΩC
ϕ,2. All four torus birth bifurcations are supercritical, and we can observe

both the relative abrupt transition in the growth of the torus amplitude associated with the modified

Neimark–Sacker bifurcation and the nearly linear growth ofthe torus amplitude associated with the

border-collision torus birth bifurcation.

Figure 17. (a) Bifurcation diagram forα = 10.6 illustrating the primary torus birth

processes.Ω1
ϕ andΩ2

ϕ denote modified Neimark–Sacker bifurcations andΩC
ϕ,1 andΩC

ϕ,2

denote border-collision torus birth processes. Horizontal lines represent zone boundaries,

and the green line represents the stable fixed point; (b) Formation of a large amplitude torus

in the region between the primary tori,α = 11.0; (c) Formation of a new large amplitude

torus around the primary torus,α = 11.6.

(a) (b)

(c)

In Figure 17b, α = 11.0 and a new interval of torus dynamics has appeared between the

border-collision bifurcation atΩC
ϕ,1 and the Neimark–Sacker bifurcation atΩ2

ϕ. We notice, however,

that the period-1 focus cycle (fixed point of the map (19)) remains stable in this interval. This implies

that the new torus cannot have been born through any of the above torus-birth processes. A further

possibility is that the new torus has been born through a torus fold bifurcation,i.e., that a pair of stable
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and unstable tori of finite amplitude has been formed. As a first approach to examine this possibility, we

have determined the basins of attraction for the coexistingstable solutions and found that the stable fixed

point retains a relatively large basin of attraction throughout the entire interval of coexistence.

Finally, for α = 11.6 (see Figure17c), a new torus structure has also appeared around the original

torus in part of the interval betweenΩ2
ϕ andΩC

ϕ,2. This new torus displays resonant period-10 oscillations

over a relatively large range ofΩr-values. We also note that the emergence of this new torus does not

affect the stability of the original torus.

Figure 18. (a) The large amplitude toriT2 andT3, born in torus fold bifurcations, coexist,

respectively, with the stable fixed point and with the original small amplitude torusT4.

α = 11.83; (b) and (c) Expanding regions of existence for the various tori leads to

merging processes.

(a) (b)

(c)

Figure18 illustrates the changes in the bifurcation diagram that occurs as the corrector gain is further

increased. In Figure18a, α = 11.83 and the two large amplitude tori have spread along theΩr-axis

such that they almost touch both at the border-collision bifurcationΩC
ϕ,1 and near the Neimark–Sacker

bifurcation pointΩ2
ϕ. Inspection of the figure also shows that a similar large amplitude torus exists in the

interval above the border-collision bifurcation pointΩC
ϕ,2.

In Figure18b, α = 11.85 and a merger has occurred among the two large-amplitude torinear the

Neimark–Sacker bifurcation pointΩ2
ϕ. In Figure18c, α = 11.885 and an overlap has also developed

between the large amplitude torus and original torus at the border-collision bifurcation pointΩC
ϕ,1.
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We shall discuss the bifurcations associated with these processes in the next section. First, however,

let us consider the torus cross sections depicted in Figure19. In Figure19a,α = 11.885,Ωr = 10.7, and

the system operates in the region of period-10 resonance forthe large amplitude torus. Here we observe

an unstable fixed point of focus typesF surrounded by an attracting ergodic torusT representing the

small amplitude torus that exists between the Neimark–Sacker bifurcation atΩ2
ϕ and the border-collision

torus-birth bifurcation atΩC
ϕ,2. The ergodic torusT is again surrounded by the repelling torusT 1

U and,

with an even larger amplitude we find the period-10 resonancetorusT10 with its saddle cycleS0 and

stable focus cycleF0. T 1
U represents the border between the basins of attraction forT andT10.

In Figure19b, α = 12.36 andΩr = 10.77. Here, the system has moved into a region of resonance

dynamics for the small amplitude torus, and we can observe the coexistence of stable period-10 and

period-19 dynamics. The repelling torusT 1
U still serves as boundary between the two basins of attraction.

Figure 19. (a) Coexistence of a stable period-10 resonance torusT10 and an attracting

ergodic torusT . α = 11.885 andΩr = 10.7; (b) Coexistence of stable period-10 and

period-19 resonance dynamics.α = 12.36 andΩr = 10.77. In both figures, the unstable

torusT 1
U separates the basins of attraction of the coexisting stablemotions.

(a) (b)

4.4. Torus Merging Processes

The purpose of this section is to provide an overview of some of the torus merging and reconstruction

processes that occur as the output voltage is further increased. Figure20a shows a bifurcation diagram

for the transitions that occur near the Neimark–Sacker bifurcation pointΩ2
ϕ for α = 11.885, i.e.,

within the rectangle denotedA in Figure18c. We first notice that the size of the large amplitude torus

passes smoothly acrossΩ2
ϕ. The merger between the two parts of this torus that exist forα = 11.825

(Figure18a) has already occurred in Figure18b. This merger has involved the collision of a pair of stable

and unstable tori from both sides and the reconstruction of the torus fold structures into an outer stable

torus that connects smoothly across the Neimark–Sacker bifurcation point. The inner unstable tori are

broken up intoT 1
U andT 2

U .
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Figure 20. (a) Close-up of the bifurcations that take place near the Neimark–Sacker

bifurcation pointΩ2
ϕ (outlined by the rectangleA in Figure 18c). Note particularly the

border-collision torus-fold bifurcation atΩC
F in whichT0 andT 2

U collide; (b) Phase diagram

illustrating the different tori that exist forΩr = 9.322. The colored regions here represent

the basins of attraction for the three coexisting stable tori.

(a) (b)

At the point of Neimark–Sacker bifurcationΩ2
ϕ we observe the birth of the small amplitude torus

T0 and the associated destabilization of the fixed point. For increasing values ofΩr, the amplitude

of T0 increases in a parabolic manner until atΩC
F , the torus collides with the zone boundaries at

y = −
q

3αλ2
andy = −

2q

3αλ2
. In this collision the torus undergoes a border-collision fold bifurcation,

i.e., it disappears at the zone boundary after collision with the repelling torusT 2
U that spreads in from

the neighboring zones. At the pointΩF , slightly to the right of the Neimark–Sacker bifurcation point

we observe the formation of a third torusT of intermediate amplitude corresponding to the torus called

T4 in Figure18a. This again involves a torus-fold bifurcation, although not of border-collision type. In

the range between the torus-fold bifurcation atΩF and the border-collision torus-fold bifurcationΩC
F ,

the system thus displays three coexisting stable tori, withtheir basins of attraction separated by the two

unstable tori. Figure20b shows a phase diagram for theΩr = 9.322. Starting with the focus pointF

that represents the, now unstable, basic operational mode,we first observe the stable ergodic torusT0.

Thereafter follow the unstable torusT 2
U that delineates the basin of attraction forT0, the stable ergodic

torusT , the unstable torusT 1
U and, finally, the large amplitude resonance torusTS represented by its

stable period-97 node solution.

Figure 21 provides an overview of the total bifurcation structure fora valueα = 11.885 of the

corrector gain factor. To the left in the figure, the large amplitude torusTS already exists together with

the unstable torusT 2
U . These tori have been formed at lower output voltages through processes similar

to those we observe to the left in Figure21. As the required output voltageΩr increases, the structural

change to first occur is the birth of the small amplitude torusT0 in a supercritical Neimark–Sacker

bifurcation atΩ2
ϕ. This bifurcation leaves the fixed point,i.e., the basic operational mode, unstable. In

the left hand side of the picture, the small amplitude torusT0 again disappears through collision withT 2
U

in a border-collision torus-fold bifurcation atΩC
F . In the mean time, the stable torusT of intermediate
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amplitude has been born together with the unstable torusT 1
U in a torus fold bifurcation atΩF (still to the

left in the figure). This pair of tori continues to exist untilthey finally disappear in the border-collision

torus-fold bifurcationΩC
F to the far right in the figure. At this voltage, the original large amplitude torus

TS has been destroyed in a homoclinic bifurcation atΩH , producing the stable period-10 focus cycleF0,

and a new large amplitude stable torusTS has been born at the homoclinic bifurcationΩH to the right in

the diagram. The basins of attraction forF0 and the large amplitude stable torusTS are delineated by the

stable manifolds of the period-10 saddle cycle.

Figure 21. Sketch of the overall bifurcation structure forα = 11.885. The diagram illustrates

the formation and termination of coexisting stable and unstable tori in the dynamics of the

converter system. The observed bifurcations include modified (non-smooth) torus-birth and

torus-fold bifurcations (denotedΩ2
ϕ andΩF , respectively), homoclinic bifurcations (ΩH ),

as well as border-collision torus-fold (ΩC
F ) and supercritical border-collision torus-birth

bifurcations (ΩC
ϕ,2).

Moreover, a new pair of stable and unstable tori,T 2
S andT 2

U , has been born in the torus fold bifurcation

ΩF . As the parameterΩr passes the valueΩC
ϕ,2, the unstable focus fixed pointF undergoes a reverse

supercritical border-collision torus-birth bifurcation. As result, a stable ergodic torusT 2
S merges with the

fixed pointF . When this happens, the unstable focus fixed pointF turns into the stable focusF (i.e., the

fixed pointF is stable to the right of the bifurcation pointΩC
ϕ,2 in Figure21).

4.5. Behavioral Complexity of the Multilevel DC/DC Converter

This section has presented an overview of the main torus formation and reconstruction processes that

one can observe in a typical DC/DC converter with multilevelcontrol when operating in a regime of high

corrector feedback gain. As previously noted, the advantage of using relatively high gain factors is that

a specified variation in the output voltage can be followed faster and more precisely. However, as our

investigations have shown, this happens at the risk not onlyof destabilizing the basic modes of operation,

but also of introducing new quasiperiodic and resonant periodic modes to the system, including modes

whose formation cannot be predicted from a stability analysis of the basic modes.
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With multilevel control, the converter displays differentzones of operation corresponding to the

different levels of input voltage. At normal corrector feedback gains, the basic operational modes

are of stable node or focus type, and transitions from one mode to another in response to variations

in the required output voltage take place via border-collision bifurcations at the zone boundaries. As

the feedback gain is increased regions of parameter space starts to arise where the normal operational

modes have lost their stability and been replaced by quasiperiodic or resonant periodic dynamics on

invariant tori. At each of the zone boundaries, this transition takes place through a border collision

torus-birth bifurcation in which a pair of complex conjugated eigenvalues jumps across the unit circle

in the complex plane. In this way, regions of torus dynamics arise at the upper end of each of the

operational regions. For lower values of the output voltage, these ranges of torus dynamics terminate in

non-smooth Neimark–Sacker bifurcations. Such non-smoothNeimark–Sacker bifurcations distinguish

themselves from normal Neimark–Sacker bifurcations by notshowing a parabolic growth in amplitude

for the emerging mode.

As the feedback gain is further increased, a multitude of newmodes arise and coexist with the already

described modes. This has lead us to examine a number of unusual bifurcation phenomena, including

(i) subcritical border-collision torus birth processes inwhich an unstable torus collapses onto a stable

periodic orbit and transforms it into an unstable cycle; (ii) border-collision torus-fold bifurcations in

which a pair of stable and unstable tori meet and annihilate at the boundary of two operational zones;

and (iii) torus reconstruction processes in which pairs of stable and unstable tori from either side of

a zone boundary collide and the stable and the unstable tori hereafter continue smoothly across the

zone boundaries.

It is unlikely that DC/DC converters deliberately will be designed to operate in the regime of torus

dynamics. However, as experience shows, the parameters andworking conditions of a given converter

may gradually shift with time, and the converter may start tooperate in regions that have not be

considered in its design. Considering the rapid growth thatthe use of converter systems has undergone

during the last few decades, and the enormous significance that converters are destined to have in the

realization of a so-called “smart” power distribution system, it is obviously in line with usual engineering

practice to carefully investigate what happens outside thenormal operational regime. Experimentally,

operation outside the normal regimen is also realizable [43]. Such operation is found first of all to

reduce the efficiency of the conversion process. However, the loss of energy associated with this loss of

efficiency might cause the temperature of the converter to rise and thereby influence a large number of

other parameters of significance for the functioning of the system.

5. Single-Phase Pulse-Width Modulated H-Bridge Inverter

We have already listed several important applications for the inverter (or DC/AC converter). Industrial

uses of this type of converter also include its application to supply AC power of variable frequency

and voltage to induction furnaces. By virtue of their clean operation, easy regulation and high energy

efficiency, induction furnaces have gradually penetrated the metal-melting industry from the melting of

gold, copper and aluminum to the melting of steel and iron. Via the skin depth of the material, the optimal
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frequency depends on the type of metal to be melted and the size of the load. Operational frequencies

for the power supply may thus vary from 50 Hz to hundreds of kHz.

The purpose of this section is to illustrate the transitionsfrom regular periodic operation to

quasiperiodicity and high-periodic resonance dynamics that one can observe in pulse-width modulated

inverter systems. As in the previous sections, the focus will be on inverters that operate with high

corrector gain. We will demonstrate how the transition to quasiperiodicity may occur either via a

modified Andronov–Hopf bifurcation or via a border-collision torus-birth bifurcation. Phase portraits

will be presented in order to demonstrate the phenomenon of phase-synchronized quasiperiodicity, and

the numerically calculated waveforms will be compared withexperimental results for an inverter with

similar parameter values.

Phase-synchronized quasiperiodicity denotes an interesting form of synchronization in which a

quasiperiodic system adjusts its dynamics in response to anexternal periodic forcing, the appearance of a

new oscillatory mode in the system, or the interaction with another quasiperiodic oscillator. This type of

dynamics appears first to have been described by Postnovet al.[86] and by Anishchenkoet al. [87] who

identified the phenomenon as winding number locking on a two-dimensional torus. Similar phenomena

have been described by Looseet al. [88] who performed experimental studies of quasiperiodic

synchronization for a system of interacting semiconductorlasers, and by Giaouriset al. [89] who

examined torus-torus interaction and the onset of three-frequency quasiperiodicity in a current mode

controlled boost converter.

Phase synchronized quasiperiodicity manifests itself in the form, for instance, of stable quasiperiodic

motions with three independent frequencies of which two remain unsynchronized while the third

component synchronizes with one of the former. For our DC/ACconverter we shall demonstrate

numerically as well as experimentally how the amplitude of the quasiperiodic oscillations that arise

through a torus-birth bifurcation from the main switching cycle is modulated by the period of the

reference signal. In this case, the switching cycle is synchronized with the reference signal, but the

oscillatory component produced in the torus-birth bifurcation may remain unsynchronized.

5.1. Model of the Single Phase PWM H-Bridge Inverter

Figure22 presents the outlay of the considered single phase PWM H-bridge inverter and Figure23

shows the corresponding schematic circuit diagram. Inspection of Figure 22 allows us to identify

the input filter (1), the four switches (2), and the components of theLC-filter (3). We can also

locate the sample-and-hold unitS/H (4), the error amplifierDA2 (5), and the sine-wave generator

(6). The remaining components are the current protection circuit (7), the MOSFET drivers (8), the

inverterDD (9), and the comparatorDA1 (10). Finally (11) and (12) are the ramp and clock pulse

generators, respectively.
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Figure 22. Experimental setup of a single phase PWM H-bridge inverter.(1) is the input

filter; and (2) locates the four switches realized by means ofmetal-oxide-semiconductor

field-effect transistors; (3) is the outputLC filter; (4) and (5) are the sample-and-hold unit

S/H and the error amplifierDA2; (6) is the DDS (Direct Digital Synthesis) sine waveVref(t)

generator; (7) the current protection circuit; (8) the MOSFET drivers; and (9) the logic

inverterDD.

The switchesS1, S2, S3 andS4 play an essential role for the operation of the converter. They may

be realized, for instance, by means of metal-oxide-semiconductor field-effect transistors (MOSFET).

The four switches operate in pairs such thatS1 andS4 switch synchronously andS2 andS3 switch

together, but in anti-phase withS1 andS4. The states of the switches define two distinct topologies of

the inverter:T1 (S1, S4 on andS2, S3 off) andT2 (S1, S4 off andS2, S3 on). These topologies provide

opposite voltages to the load. When the switchesS2 andS3 are on andS1, S4 are off, a positive voltage

E0 will be applied to theLC filter. WhenS2, S3 are off andS1, S4 are on, this voltage is reversed.

The switches are operated by the sinusoidal PWM modulator. In this way the switching process is

controlled through a feedback mechanism. A simple method, called voltage-mode control, implies that

a voltage proportional to theAC output voltage is compared with a reference sinusoidal voltageVref(t)

of frequencyfref = 1/T , T = ma, to generate a control voltagevcon (modulating signal). Here,a

denotes the ramp period andm is referred to as the frequency modulation ratio. The control signal is

then compared with a sawtooth waveformVramp to generate the switching signal. The switchesS1, S4

are tuned on andS2, S3 are turned off at the beginning of each ramp perioda, and switchesS1, S4 are

tuned off andS2, S3 are turned on when the ramp voltage exceeds the value of the control voltage at the

beginning of the ramp cycle.
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Figure 23. Schematic diagram of the PWM H-bridge single phase inverter. E0 is the external

supply voltage andx2 the output voltage.Vref(t) is the sinusoidal reference voltage with the

periodT = ma andξ = α(Vref(t)−βx2) is the error signal. The sample-and-hold unitS/H

detects the error signalξ at the beginning of each clock time. This produces the signalvcon

that together with the ramp functionVramp generates the switching signals to the switchesS1,

S4, andS2, S3; (b) As long asvcon > Vramp, switchesS1, S4 are on andS2, S3 are off, while

S1, S4 are off andS2, S3 on forvcon < Vramp.

(a)
(b)

Considering again the schematic diagram in Figure23, L andC denote, respectively, the inductance

and the capacitance, of theLC filter, RL is the load resistance, andR is a parasitic resistance

characterizing the dissipation in the inductance coil.x1 represents the current in the filter inductance

L andx2 the output voltage.V S is the voltage sensor,β its sensitivity, andVref(t) the reference voltage

at frequencyfref. DA2 is the corrector amplifier,α the corrector gain factor, andS/H a sample-and-hold

unit that reads the error signalα(Vref(t) − βx2) at every clock time and maintains it for the following

switching period. Finally the comparatorDA1 compares the output signal from the sample-and-hold

unit with the sawtooth ramp signalVramp(t), in order to generate the control signals to the switchesS1,

S2, S3, S4. For a PWM H-bridge single phase inverter, the feedback control is implemented by the ramp

function such thatVramp(t) varies from−U0 to+U0.

The dynamics of the single phase PWM H-bridge inverter may berepresented by the following set of

two-coupled non-autonomous differential equations with discontinuous right hand sides:

ẋ = µx− ωy − (µ− ω)KF; ẏ = ωx+ µy − (µ+ ω)KF (18)

Here
KF = sign(ψ − η), ψ =

q

Ω
sin

(

2πτ

m

)

− ϑx(τ)− y(τ)

η =
2P

αΩ
[ t∗ − τ − 1/2]; t∗ = t/a; τ = [t∗]

ϑ =
µ+ ω

µ− ω
; P =

U0

βE∗

(1− ϑ)(1 +R/RL)

q =
Vm
U0

P ; Ω = E0/E∗
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with

µ = −
a

2

(

R

L
+

1

CRL

)

and ω = a

√

1

LC

(

1 +
R

RL

)

−
1

4

(

R

L
+

1

CRL

)2

> 0

The (dimensionless) dynamic variablesx andy are linear combinations of the currentx1 and output

voltagex2:

x1 = −(R/L+ µ/a)w1 − ωw2/a; x2 = w1/C

w1 = −
a2E0

2ωL(µ2 + ω2)
{(µ+ ω)x− (µ− ω)y}

w2 = −
a2E0

2ωL(µ2 + ω2)
{(µ− ω)x+ (µ+ ω)y}

Together the two variablesx and y represent the smooth dynamics of the system, and all other

processes are assumed to be instantaneous. In particular, the switches in the H-bridge are assumed

to function ideally.µ andω are the real and imaginary parts of the eigenvalues of the system matrix,

normalized relative to the perioda of the ramp signal. The sawtooth functionη is periodically repeated

ramp function with the ramp period 1,i.e., η(t∗+1) ≡ η(t∗) with t∗ = t/a. τ = [t∗] = k−1, k = 1, 2, ...

being the normalized discrete time variable. As in the previous section,[t∗] denotes the integer value of

t∗. The parameterP controls the amplitude of the ramp functions andq represents the amplitude of the

reference voltage.

In our numerical calculations we have usedR = 1.0 Ω; L = 4.0·10−3 H;C = 3.5·10−6 F;RL = 45 Ω;

Vm = 4 V; U0 = 10 V; α > 0 andE0 > 20 V. These parameter values correspond to the values of the

experimental converter system.Ω = E0/E∗ with E∗ = 1 V is the normalized input voltage. The gain

factorα and the normalized input voltageΩ will be used as the main control parameters. However, other

parameters such as the sensitivityβ of the voltage sensor, the frequency modulation ratiom and the

ramp perioda may also vary from figure to figure. The values of these parameters will be specified in

the captions of the various figures.

By integrating the equations of motion for the continuous-time system (18) ramp period by ramp

period, our investigation is reduced to the analysis of the periodically forced piecewise-smooth map:

xk = eµ (cosω · xk−1 − sinω · yk−1) + 2eµ(1−zk) (cos θk − sin θk)− 1 (19)

yk = eµ (sinω · xk−1 + cosω · yk−1) + 2eµ(1−zk) (sin θk + cos θk)− 1

k = 1, 2, . . . .

Hereθk = ω(1− zk) and

zk =































0, ϕk−1 < −
P

αΩ

αΩ

2P
ϕk−1 +

1

2
, |ϕk−1| ≤

P

αΩ

1, ϕk−1 >
P

αΩ
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with

ϕk−1 =
q

Ω
sin

(

2π(k − 1)

m

)

− ϑxk−1 − yk−1

As in the previous section, the variablezk denotes the relative pulse duration in thekth ramp cycle.

Besides quasiperiodic motion, the map (19) is found to generate a variety of resonance modes, including

cycles of periodT0 = nT , n = 1, 2, ... Here,T = ma denotes the period of the reference signal

(the intended period of the output signal). We will refer to above type of resonance modes as a

period-n cycles.

5.2. Torus-Birth Bifurcations

As long as the corrector gain factorα and the normalized input voltageΩ are sufficiently small, the

inverter displays stable regular switching dynamics. The bifurcation diagram in Figure24a illustrates the

transition from this dynamics to quasiperiodicity (and various forms of high order resonance dynamics)

that occurs as the gain factor (for relatively large values of the input voltage) increases beyond the

normal operational regime. This transition takes place viaan Andronov–Hopf bifurcation. As previously

noted, this implies that a pair of complex-conjugated multipliers for the fixed point (period-1 cycle)

smoothly crosses out of the unit circle. However, the form ofthe bifurcation diagram, particularly the

non-parabolic growth of the quasiperiodic amplitude, reveals that the process takes place in a non-smooth

system. Figure24b shows the variation of the module of the two complex-conjugated multipliers across

the bifurcation point.

Figure 24. Birth of a quasiperiodic orbit from a stable period-1 cycle in a Neimark–Sacker

bifurcation; (b) Variation of the absolute value|ρ| of the complex-conjugate multipliers

ρ1,2 = ρr ± jρj of the period-1 cycle.αϕ is the bifurcation point for the Neimark–Sacker

bifurcation.Ω = 44.0, β = 0.075,m = 10 anda = 10−4 s.

(a) (b)

Figure25 shows the transition from stable period-1 dynamics to quasiperiodicity across a curve of

border-collision torus-birth bifurcation. This transition is observed when the input voltageΩ (for relative

large values of the corrector gain factor) exceeds the border of the normal regime of operation. The

bifurcation diagram (Figure25a) illustrates the linear growth of the quasiperiodic amplitude with the

distance to the bifurcation point characteristic of border-collision bifurcations. As shown in Figure 25b,
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the complex-conjugated multipliers for the period-1 cycleundergo an abrupt jump as the system crosses

the bifurcation pointΩϕ.

Figure 25. (a) Birth of a quasiperiodic orbit from a stable period-1 cyclein a border-collision

bifurcation; (b) Variation of the absolute value|ρ| of the complex-conjugate multipliers

ρ1,2 = ρr ± jρj of the period-1 cycle.ΩC
ϕ is the bifurcation point for the border-collision

bifurcation.α = 7.82, β = 0.075,m = 10 anda = 10−4 s.

(a) (b)

The two different torus-birth processes are both related tothe same underlying mechanisms, namely

to the instability associated with the fact that the system operates with a relatively high corrector gain

factor. However, the form of the transition depends on whichbranch of the bifurcation curve the system

crosses, and so does the organization of the resonance regions in the quasiperiodic domain.

Figures26 and 27 illustrate the accordance we achieve between the experimentally observed and

numerically calculated wave forms both for the region of stable period-1 dynamics (a) and for the

quasiperiodic regime (b).

Figure 26. (a) Experimental observed wave form for the output voltagex2 of the PWM

H-bridge single phase inverter under regular periodic operation with an input voltage of

E0 = 44.0 V and withα = 7.0, β = 0.075, m = 10 anda = 10−4 s. Experimentally

observed waveform for the output voltagex2 after the transition to quasiperiodicity. The

input voltage is nowE0 = 47.0 V, α = 7.6, β = 0.075,m = 10 anda = 10−4 s.

(a)
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Figure 26. Cont.

(b)

Figure 27. (a) Numerical observed wave form for the output voltagex2 of the single

phase PWM H-bridge inverter under regular periodic operation with an input voltage of

E0 = 44 V, α = 7.0, β = 0.075, m = 10 anda = 10−4 s. Numerical observed waveform

for the output voltagex2 after the transition to quasiperiodicity. The input voltage is now

E0 = 47.0 V, α = 7.6, β = 0.075,m = 10 anda = 10−4 s.

(a)

(b)

5.3. Phase Synchronized Quasiperiodicity

Figure 28 illustrates the transition from simple periodic dynamics to phase-synchronized

quasiperiodicity. Figure28a,b first shows the phase space trajectory and the waveform for the stable

period-1 cycle that exists in the region with relatively lowvalues of the corrector gain factor. The
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variablesx and y are the state variables in our original time-continuous description of the inverter

system Equation (18). The two curves have been calculated by iterating the periodically forced map

in Equation (19) with a ramp period ofa = 2 × 10−5 s and a frequency modulation ratio ofm = 200.

The curves in Figure28a,b thus contain200 points per full cycle of the reference voltageVref(t).

Figure 28. (a), (b) Stable synchronous period-1 cycle.m = 200, α = 20, a = 2 × 10−5 s,

andΩ = 60. The phase portrait (a) is calculated by iterating the periodically forced map (19)

and, corresponding to the value of frequency modulation ratio m, contains 200 points. The

arrow indicates the direction of rotation. (c) The stable period-1 cycle undergoes a torus

bifurcation at the pointα = αϕ (αϕ ≈ 21.509), producing a quasiperiodic dynamics that

pulsates in synchrony with the reference voltage (d).

(a)
(b)

(c) (d)

Figure28c shows the variation of the real and imaginary parts of the complex conjugated multipliers

for the period-1 cycle with the corrector gain factorα. This variation displays an unusual oscillatory

character that seems to continue with decreasing amplitudeto the left of the figure as the corrector

gain factor is reduced. However, asα reaches the Hopf bifurcation thresholdαϕ, the stable period-1

solution loses its stability and undergoes a torus-birth bifurcation (of modified Andronov–Hopf type).

In Figure28d this transformation manifests itself as a broadening of the original period-1 orbit as each

point in Figure28a is replaced by a small elliptic curve. Particularly interesting in the present context

is the fact that this broadening is inhomogeneous and especially pronounced in the down strokes of the

temporal variation ofx (see Figure28d).
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Inspection of Figure29 provides a clearer picture of the structure of the quasiperiodic phase

space trajectory. Figure29a shows the overall structure of this trajectory, and Figure29a,b shows

magnifications of, respectively, the broad down stroke and the much thinner upstroke. This is an example

of phase-synchronized quasiperiodicity,i.e., a quasiperiodic attractor that is modulated by the presence

of a third frequency, the frequency of the reference voltageVref(t).

Figure 29. (a) The phase portrait for the phase synchronized quasiperiodic mode that is

calculated by the iterating of the periodically forced map (19). α = 21.523, Ω = 60 and

a = 2 × 10−5 s. This phase portrait containsm = 200 closed invariant curves, associated

with the quasiperiodic solution. As illustrated in (b) and (c), the diameters of these closed

curves vary periodically with the periodT of the sinusoidal reference voltageVref(t), i.e.,

T = ma.

(a) (b) (c)

5.4. Signal Distortion

The normal operational regime for the DC/AC converter discussed in this section is the regime of

stable period-1 dynamics. In this regime, the quality of theoutput signal can be characterized by means

of its Total Harmonic Distortion (THD). This measure is defined as the ratio of the square root of the

sum of the squares of all harmonic voltage components relative to the root mean square (RMS) voltage

of the fundamental frequency,i.e.,

THD =

√

V 2
2 + V 2

3 + · · ·+ V 2
∞

V1
· 100%

whereVi, i = 2, .... is the root mean square (RMS) value of thei-th harmonic, andV1 is theRMS

value of the fundamental cycle. Total harmonic distortion will obviously vanish if there are no parasite

harmonics. On the other hand, if the form of the output voltage differs significantly from the sine wave

specified by the reference signal,THD will be high.

We have determined the total harmonic distortion for the DC/AC converter model to be

THD = 2.83% when the converter operates in its normal period-1 regime (m = 200, E0 = 50 V,

α = 6.0, β = 0.075, anda = 10−4 s). Note, however, that due to the assumption of ideal switching

dynamics, only the ripple left unsmoothed by the output filter is included in the calculated value of

THD. Possible contributions from imperfect switching are neglected.
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When the corrector feedback gain starts to exceed one of the torus bifurcation curves, the period-1

cycle loses its stability and variety of complex dynamical modes appear, including resonance cycles

of different periodicity, quasiperiodicity, and phase synchronized quasiperiodicity. When such modes

appear, the converter produces forms of distortion that canno longer be accounted for by the above

index of total harmonic distortion.

To characterize the distortion of a complex output voltage with both anharmonic components and

contributions with nearly continuous spectra, we have usedan index of Complex Mode Distortion

CMD =

√

V 2
total − V 2

1

V1
· 100%

with

Vtotal = lim
Ts→∞

√

√

√

√

√

1

Ts

Ts
∫

0

x22(t)dt

Here,V1 is theRMS-voltage of the fundamental mode andVtotal is theRMS-value of the output

voltage with its harmonic, subharmonic, resonant, and/or ergodic spectral components.Ts is the

averaging time. For a periodic output voltage,Ts may be restricted to one period. For a quasiperiodic

or chaotic output voltage,Ts must be large enough to include low-frequency components inthe output

signal with sufficient accuracy. The index for complex mode distortionCMD reduces to theTHD

if only harmonic distortion is present. Numerical calculations show that the distortion in the output

signal from our H-bridge inverter system increases to aboutCMD = 17.0% when the system displays

phase-synchronized quasiperiodic motion (e.g., form = 200, E0 = 50 V, β = 0.075, a = 10−4 s,

andα = 6.5).

The frequency modulation ratiom obviously has a major impact on the quality of the output signal

(or on the requirements to the output filter). If the frequency modulation ratio is small, the parasite

harmonics of the output voltage may interact with the fundamental frequency and destroy the linear

relation between reference and output signals.

6. Conclusions and Perspectives

Pulse-width modulated converter systems have a broad and rapidly growing area of application. Over

a few decades the use of DC/DC converters and other types of converter systems has spread from their

initial application in space- and aircrafts [72] to the widespread use as power supplies in the industry and

transportation sectors as well as in common household appliances.

By virtue of the complex set of requirements to their operation, it is not always easy to optimize the

architecture of a converter system or to determine the best choice of parameters for a given application.

Computer simulations therefore play an important role in the design of these systems. Besides its

size, weight and cost, the most important performance parameters for a pulse-modulated power supply

system are the conversion efficiency, the speed and accuracyof its regulation, and the noise (or signal

distortion) it produces through its switching dynamics. A fourth important parameter is the safety

margin in parameter space between the desired mode of operation and other modes that would reduce

the performance significantly.
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In the present review we have focused on the instabilities that can arise in DC/DC and DC/AC

converter systems that operate with high feedback gain factors. Significant feedback gain is necessary

to ensure a fast and precise regulation. However, for both types of converter systems we have shown

experimentally as well as through computer simulation how atransition from stable regular switching

dynamics to various forms of ergodic or resonant torus dynamics occurs if the feedback gain becomes

too large. We have demonstrated that this transition can take place either via a modified Hopf bifurcation

(in which a pair of complex conjugated eigenvalues smoothlymove out of the unit circle in the

complex plane) or through a border-collision torus-birth bifurcation (in which the eigenvalues jumps

out of the unit circle). We have also shown that the torus-birth bifurcations may be subcritical. This

usually implies that a pair of stable and unstable tori is born in a torus-fold bifurcation and that these

tori coexist with the stable period-1 cycle over a certain parameter range. By further increasing the

feedback gain we have observed a number of additional complex dynamical phenomena, including the

formation of structures of embedded tori, torus-torus reconstruction, and the emergence of so-called

phase synchronized quasiperiodicity.

Our analysis is based on the assumption that the switching processes are instantaneous and that the

smooth dynamics of the converter systems is generated by thelinear output filter. This has allowed us to

analytically integrate the equations of motion from switching event to switching event and thereby reduce

the mathematical model to a low-dimensional map. This approach provides an enormous simplification

to the problem. At the same time, transformation of the system into a low-dimensional nonlinear map

clearly emphasizes the role of border-collision bifurcations and other nonlinear dynamic phenomena.

An obvious way to reduce the noise in the output signal would be to adjust the parameters of the

output filter,i.e., increase the capacitanceC and/or the inductanceL. However, this would in most cases

add to the size and weight of the converter. An alternative approach would obviously be to increase the

switching frequency, but it is also possible to experiment with the overall architecture of the converter,

e.g., by introducing additional levels for the input voltage. A larger number of input levels generally

allow the output voltage to be delivered with higher efficiency and less distortion. At the same time, a

multi-level architecture reduces the requirements to the individual components.

The review has already mentioned a significant number of applications of power electronic converter

systems ranging from power supplies in mobile phones, household appliances and navigation equipment

for boats, cars, and airplanes, over back-up systems for sensitive computers and hospital equipment

to power supplies for electric cars and induction furnaces.A characteristic feature of many of these

applications is that the use of power electronic convertersso to speak “unties” us from the main power

distribution network and allows us to use electric power at places and under conditions where the main

power lines are not directly accessible.

At the same time, power electronic converters (so-called grid-tie converters) have made it possible

to feed electric power into the main distribution system from sources that do not operate with normal

line voltage and frequency or cannot satisfy standard conditions with respect to regularity and stability.

Solar cell panels, for instance, produce DC power at low voltages and high currents, and the availability

often involve random variations at many different time scales. Similarly, the electric power output from a

wind mill park lacks the regularity of voltage, frequency and phase required by the net. Realization of the

so-called “smart grid” power distribution system that willallow us to replace contributions from major
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coal- and oil-fired power stations by inputs from large numbers of smaller and diffuse sources (beside

solar cells and wind mills also local co-generation plants and plants operating on biogas, secondary

biomaterials, waste, geothermal energy,etc.) will require an intelligent and closely supervised system.

The smart grid system will also require a broad spectrum of different power electronic converters.

Conversion between AC and DC high voltage power already playan important role in the optimization

and stabilization of the main distribution network. The need for this type of conversion arises, for

instance, in connection with the transmission of high voltage power over long distances where the

Ohmic losses in the transmission line become significant. Due to the skin effect, an AC current does

not distribute itself uniformly across the conductor, thuscausing increased losses. For transmission

in underground or undersea cables, the capacitive current required to repeatedly charge the cable

capacitance contribute additional losses not encounteredwith DC transmission. Finally, in relation to the

dielectric breakdown of the insulation, DC-transmission also offers an advantage over AC transmission

when compared at the sameRMS-voltage.

Another important use of DC transmission is associated withthe stabilization of the main distribution

system. One way of achieving such stabilization involves a partial decoupling of different parts of the

network such that they can operate at different phases and slightly different voltages and frequencies,

but still exchange power in a controlled manner. This form ofseparation can be achieved by inserting

DC transmission lines between the different parts of the networks with AC/DC and DC/AC converters

in either end. Beside the costs of such high-power high-voltage converters, a main problem with this

approach is clearly the additional structural complexity it introduces, and the associated need for new

control approaches.

We hope that the analysis presented in this review can contribute to a better understanding of the

relation between the architecture of a power electronic converter and the dynamics it will display under

different operational conditions. Such understanding clearly represents an essential background for the

design of new and improved converter systems.

During the last decades, development of the converter technology has to a significant extent been

driven by improvements of the physical/electronic properties of the various components such as to

allow for operation at higher voltages, powers, frequencies and/or efficiencies while at the same time

minimizing size, failure rates, and costs. During the last few years, improvements in the converter

technology have increasingly become dependent on an effective and intelligent, digital control of the

way of operation. The appearance of microcomputers with sufficient computational capacity has lead

to the development of new types of so-called predictive controllers. These controllers are capable of

following variations in currents, voltages, on-times, efficiencies,etc., evaluate this information within

a clock period, and trigger the next switching process to occur with an optimal timing [90–92]. The

scope of this approach is even broader as it can be used to detect for reactive power [93], ground

leakage [94], unusual temperature variations, and a broad range of other indications of inappropriate or

non-optimal functioning. The digital control approaches will also come to play an extremely important

role in connection with a realization of the smart-grid construct.
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Pérez, M.A.; Leon, J.I. Recent advances in industrial applications of multilevel converters.IEEE

Trans. Ind. Electron.2010, 57, 2553–2580.

7. Xiao, J.; Peterchev, A.V.; Zhang, J.; Sanders, S. A 4-µA quiescent-current dual-mode digitally

controlled buck converter IC for cellular phone applications. IEEE J. Solid-State Circ.2004,

39, 2342–2348.

8. Lee, Y.J.; Khaligh, A.; Emadi, A. Advanced integrated bidirectional AC-DC and DC-DC converter

for plug-in hybrid electrical vehicles.IEEE Trans. Veh. Technol.2009, 58, 3970–3980.

9. Banerjee, S.; Verghese, G.C.Nonlinear Phenomena in Power Electronics; IEEE Press: New York,

NY, USA, 2001.

10. Villanueva, E.; Correa, P.; Rodriguez, J.; Pacas, M. Control of a single-phase cascaded H-bridge

multilevel inverter for grid-connected photovoltaic systems. IEEE Trans. Ind. Electron.2009,

56, 4399–4406.

11. Rodriguez, J.; Lai, J.S.; Peng, F.Z. Multilevel inverters: A survey of topologies, controls, and

applications.IEEE Trans. Ind. Electron.2002, 49, 724–737.

12. Xinbo, R.; Bin, L.; Qianhong, C.; Siew-Chong, T.; Tse, C.K. Fundamental considerations of

three-level DC-DC converters: Topologies, Analyses, and Control. IEEE Trans. Circ. Syst. I2008,

55, 3733–3743.

13. Moreno-Font, V.; Aroudi, A.E.; Calvente, J.; Giral, R.;Benadero, L. Dynamics and stability issues

of a single-inductor dual-switching DC-DC converter.IEEE Trans. Circ. Syst. I2010, 57, 415–426.

14. Kazmierkowski, M.P.; Jasinski, M.; Wrona, G. DSP-basedcontrol of grid-connected power

converters operating under grid distortions.IEEE Trans. Ind. Inform.2011, 7, 204–211.



Electronics2013, 2 163

15. Kousaka, T.; Ueta, T.; Kawakami, H. Bifurcation of switched nonlinear dynamical systems.IEEE

Trans. Circ. Syst. II1999, 46, 878–885.

16. Tse, C.K.Complex Behavior of Switching Power Converters; CRC Press: Boca Raton, FL, USA,

2003.

17. Zhusubaliyev, Z.T.; Mosekilde, E.Bifurcations and Chaos in Piecewise-Smooth Dynamical

Systems; World Scientific: Singapore, 2003.

18. Feigin, M.I. Doubling of the oscillation period with C-bifurcations in piecewise continuous

systems.PMM J. Appl. Math. Mech.1970, 34, 861–869.

19. Di Bernardo, M.; Feigin, M.I.; Hogan, S.J.; Homer, M.E. Local analysis of C-bifurcations in

n-dimensional piecewise-smooth dynamical systems.Chaos Solitons Fractals1999, 10,

1881–1908.

20. Kuznetsov, Y.A. Elements of Applied Bifurcation Theory; Springer-Verlag: New York, NY,

USA, 2004.

21. Nusse, H.E.; Yorke, J.A. Border-collision bifurcations including “period two to period three” for

piecewise smooth systems.Physica D1992, 57, 39–57.

22. Nusse, H.E.; Ott, E.; Yorke, J.A. Border-collision bifurcations: An explanation for observed

bifurcation phenomena.Phys. Rev. E1994, 49, 1073–1076.

23. Nusse, H.E.; Yorke, J.A. Border-collision bifurcationfor piecewise smooth one-dimensional maps.

Int. J. Bifurcat. Chaos1995, 5, 189–207.

24. Banerjee, S.; Grebogi, C. Border collision bifurcations in two-dimensional piecewise smooth maps.

Phys. Rev. E1999, 59, 4052–4061.

25. Banerjee, S.; Ranjan, P.; Grebogi, C. Bifurcations in two-dimensional piecewise smooth

maps—Theory and applications in switching circuits.IEEE Trans. Circ. Syst. I2000, 47, 633–643.

26. Zhusubaliyev, Z.T.; Mosekilde, E. Direct transition from a stable equilibrium to quasiperiodicity in

non-smooth systems.Phys. Lett. A2008, 372, 2237–2246.

27. Brogliato, B.Nonsmooth Mechanics—Models, Dynamics and Control; Springer-Verlag: New York,

NY, USA, 1999.

28. Leine, R.I.; Nijmeijer, H. Dynamics and Bifurcations of Non-Smooth Mechanical Systems;

Springer-Verlag: Berlin, Germany, 2004.

29. Nordmark, A. Nonperiodic motion caused by grazing incidence in an impact oscillator.J. Sound

Vib. 1991, 145, 279–297.

30. Di Bernardo, M.; Budd, C.J.; Champneys, A.R. Grazing andborder-collision in piecewise-smooth

systems: A unified analytical framework.Phys. Rev. Lett.2001, 86, 2553–2556.

31. Nordmark, A.B.; Kowalczyk, P. A codimension-two scenario of sliding solutions in grazing-sliding

bifurcations.Nonlinearity2006, 19, 1–26.

32. Wiercigroch, M. Chaotic vibration of a simple model of the machine tool-cutting process system.

ASME J. Vib. Acoust.1997, 119, 468–475.

33. Knudsen, C.; Feldberg, R.; True, H. Bifurcations and chaos in a model of a rolling railway wheelset.

Phil. Trans. R. Soc. Lond. A1992, 338, 455–469.

34. Thompson, J.M.T. Complex dynamics of compliant off-shore structures.Proc. Roy. Soc. Lond. A

1983, 387, 407–428.



Electronics2013, 2 164

35. Choi, S.K.; Noah, S. Mode locking and chaos in a Jeffcott rotor with bearing clearances.J. Appl.

Mech.1994, 61, 131–138.

36. Natsiavas, S. Regular and chaotic response of vibrationabsorbers with elastic stops.Nonl. Vib.

1992, 144, 15–20.

37. Thomsen, J.S.; Mosekilde, E.; Sterman, J.D. Hyperchaotic phenomena in dynamic decision

making. J. Syst. Anal. Mod. Sim.1992, 9, 137–156.

38. Mosekilde, E.; Laugesen, J.L. Nonlinear dynamic phenomena in the beer model.Syst. Dyn. Rev.

2007, 23, 229–252.

39. Zhusubaliyev, Z.T.; Soukhoterin, E.A.; Mosekilde, E. Border-collision bifurcations on a

two-dimensional torus.Chaos Solitons Fractals2002, 13, 1889–1915.

40. Zhusubaliyev, Z.T.; Soukhoterin, E.A.; Mosekilde, E. Quasi-periodicity and border-collision

bifurcations in a DC/DC converter with pulsewidth modulation. IEEE Trans. Circ. Syst. I2003,

50, 1047–1057.

41. Zhusubaliyev, Z.T.; Mosekilde, E. Torus birth bifurcation in a DC/DC converter.IEEE Trans. Circ.

Syst. I2006, 53, 1839–1850.

42. Zhusubaliyev, Z.T.; Mosekilde, E. Birth of bilayered torus and torus breakdown in a

piecewise-smooth dynamical system.Phys. Lett. A2006, 351, 167–174.

43. Zhusubaliyev, Z.T.; Mosekilde, E.; Maity, S.M.; Mohanan, S.; Banerjee, S. Border collision

route to quasiperiodicity: Numerical investigation and experimental confirmation.Chaos2006,

16, doi:http://dx.doi.org/10.1063/1.2208565.

44. Zhusubaliyev, Z.T.; Mosekilde, E.; Yanochkina, O.O. Torus-bifurcation mechanisms in a DC/DC

converter with pulse-width modulated control.IEEE Trans. Power Electron.2011, 26, 1270–1279.

45. Zhusubaliyev, Z.T.; Mosekilde, E.; Yanochkina, O.O. Torus bifurcations in multilevel converter

systems.Int. J. Bifurcat. Chaos2011, 21, 2343–2356.

46. Zhusubaliyev, Z.T.; Mosekilde, E.; Pavlova, E.V. Multistability and torus reconstruction in a

DC/DC converter with multilevel control.IEEE Trans. Ind. Inform.2012, doi: 10.1109/TII.2012.

2228872.

47. Aroudi, A.E.; Benadero, L.; Toribio, E.; Olivar, G. Hopfbifurcation and chaos from torus

breakdown in a PWM voltage-controlled DC-DC boost converter. IEEE Trans. Circ. Syst. I

1999, 46, 1374–1382.

48. Mazumder, S.K.; Nayfeh, A.H.; Boroyevich, D. An investigation into the fast- and slow-scale

instabilities of a single phase bidirectional boost converter. IEEE Trans. Power Electron.2003,

18, 1063–1069.

49. Dai, D.; Li, S.; Ma, X.; Tse, C. Slow-scale instability ofsingle-stage power-factor-correction power

supplies.IEEE Trans. Circ. Syst. I2007, 54, 1724–1735.

50. Aroudi, A.E.; Orabi, M.; Haroun, R.; Martinez-Salamero, L. Asymptotic slow-scale stability

boundary of PFC AC-DC power converters: Theoretical prediction and experimental validation.

IEEE Trans. Ind. Electron.2011, 58, 3448–3460.

51. Rodriguez, E.; Aroudi, A.E.; Guinjoan, F.; Alarcon, E. Aripple-based design-oriented approach

for predicting fast-scale instability in DC-DC switching power supplies.IEEE Trans. Circ. Syst. I

2012, 59, 215–227.



Electronics2013, 2 165

52. Feldberg, R.; Szymkat, M.; Knudsen, C.; Mosekilde, E. Iterated-map approach to die tossing.

Phys. Rev. A1990, 42, 4493–4502.

53. Hansen, L.U.W.; Christensen, M.; Mosekilde, E. Deterministic analysis of the probability machine.

Phys. Scr.1995, 51, 35–45.

54. Galiaz, Z.; Ogorzalek, M.J. Bifurcation phenomena in second order digital filters with

saturation-type adder overflow characteristics.IEEE Trans. Circ. Syst.1990, 37, 1068–1070.

55. Thompson, J.M.T.; Stewart, H.B.Nonlinear Dynamics and Chaos; Wiley: Chichester, UK, 1986.

56. Feigenbaum, M.J. The universal metric properties of nonlinear transformations.J. Stat. Phys.

1979, 21, 669–706.

57. Landford, O.E. A computer-assisted proof of the Feigenbaum conjectures.Am. Math. Soc.1982,

6, 427–434.

58. Devany, R.L. An Introduction to Chaotic Systems; Addison-Wesley: Redwood City, CA, USA,

1989.

59. Maistrenko, Y.L.; Maistrenko, V.L.; Vikul, S.I.; Chua,L.O. Bifurcations of attracting cycles from

time-delayed Chua’s circuit.Int. J. Bifurcat. Chaos1995, 5, 653–671.

60. Metropolis, N.; Stein, M.L.; Stein, P.R. On finite limit sets for transformations on the unit interval.

J. Combin. Theor. A1973, 15, 25–44.

61. Feigin, M.I. On the generation of sets of subharmonic modes in piecewise continuous systems.

Prikl. Mat. Mekh.1974, 38, 810–818. in Russian.

62. Zhusubaliyev, Z.T.; Mosekilde, E.; Banerjee, S. Multiple-attractor bifurcations and quasiperiodicity

in piecewise-smooth maps.Int. J. Bifurcat. Chaos2008, 18, 1775–1789.

63. Gardini, L.; Tramontana, F. Snap-back repellers and chaotic attractors. Phys. Rev. E2010,

81, doi:10.1103/PhysRevE.81.046202.

64. Arnol’d, V.I. Small denominators, I: Mappings of the circumference into itself.AMS Trans. Series

2 1965, 46, 213–284.

65. Rand, D.; Ostlund, S.; Sethna, J.; Siggia, E. Universal transition from quasiperiodicity to chaos in

dissipative systems.Phys. Rev. Lett.1982, 49, 132–135.

66. Pikovsky, A.; Rosenblum, M.; Kurths, J.Synchronization: A Universal Concept in Nonlinear

Sciences; Cambridge University Press: Cambridge, UK, 2001.

67. Balanov, A.; Janson, N.; Postnov, D.; Sosnovtseva, O.Synchronization: From Simple to Complex;

Springer: Berlin, Germany, 2009.

68. Mosekilde, E.Topics in Nonlinear Dynamics: Applications to Physics, Biology and Economic;

World Scientific: Singapore, 1996.

69. Uherka, D. Tongue art.CNLS Newsl.1992, 78, 1–23.

70. Yang, W.M.; Hao, B.L. How the Arnol’d tongues become sausages in a piecewise linear circle

map. Commun. Theor. Phys.1987, 8, 1–15.

71. Simpson, D.J.W.; Meiss, J.D. Shrinking point bifurcations of resonance tongues for

piecewise-smooth, continuous maps.Nonlinearity2009, 22, 1123–1144.



Electronics2013, 2 166

72. Plante, J.; Shue, J.; Liu, D.; Wang, B.; Shaw, H.Advanced DC/DC Converters towards

Higher Volumetric Efficiencies for Space Applications; NASA Goddard Space Flight Center, USA,

2005. NASA Technical Reports Server (NTRS). Available online: http://ntrs.nasa.gov/search.jsp

(accessed 25 July 2009).

73. Zhusubaliyev, Z.T.; Soukhoterin, E.A.; Rudakov, V.; Mosekilde, E.; Kolokolov, Y.V. Bifurcations

and chaotic oscillations in an automatic control relay system with hysteresis. Int. J. Bifurcat.

Chaos2001, 11, 1193–1231.

74. Zhusubaliyev, Z.T.; Soukhoterin, E.A.; Mosekilde, E. Border-collision bifurcations and chaotic

oscillations in a piecewise-smooth dynamical system.Int. J. Bifurcat. Chaos2001, 11, 2977–3001.

75. Hamill, D.C.; Deane, J.H.B.; Jefferies, D.J. Modeling of chaotic DC-DC converters by iterated

nonlinear mappings.IEEE Trans. Power Eletron.1992, 7, 25–36.

76. Baushev, V.S.; Zhusubaliyev, Z.T. Indeterminable states of a voltage regulator with pulsewidth

control. Electr. Technol.1992, 3, 85–88.

77. di Bernardo, M.; Vasca, F. Discrete-time maps for the analysis of bifurcations in dc-dc converters.

IEEE Trans. Circ. Syst. I2000, 47, 130–143.

78. Hamill, D.C.; Jeffries, D.J. Subharmonics and chaos in acontrolled switched-mode power

converter.IEEE Trans. Circ. Syst.1988, 35, 1059–1061.

79. Yuan, G.H.; Banerjee, S.; Ott, E.; Yorke, J.A. Border-collision bifurcations in the buck converter.

IEEE Trans. Circ. Syst. I Fund. Theory Appl.1998, 45, 707–716.

80. Aroudi, A.E.; Benadero, L.; Toribio, E.; Machiche, S. Quasiperiodicity and chaos in DC-DC

buck-boost converter.Int. J. Bifurcat. Chaos2000, 10, 359–371.

81. Aroudi, A.; Leyva, R. Quasiperiodic route to chaos in a PWM voltage-controlled DC-DC boost

converter.IEEE Trans. Circ. Syst. I2001, 48, 967–978.

82. Di Bernardo, M.; Tse, C. Chaos in Power Electronics: An Overview. InChaos in Circuits and

Systems; Chen, G., Ueta, T., Eds.; World Scientific: Singapore, 2002; pp. 317–340.

83. Hao, B.L. Elementary Symbolic Dynamics and Chaos in Dissipative Systems; World Scientific:

Singapore, 1989.

84. Zhusubaliyev, Z.T.; Yanochkina, O.O.; Mosekilde, E. Coexisting tori and torus bubbling in

non-smooth systems.Physica D2011, 240, 397–405.

85. Zhusubaliyev, Z.T.; Yanochkina, O.O.; Mosekilde, E.; Banerjee, S. Two-mode dynamics in

pulse-modulated control systems.Ann. Rev. Control2010, 34, 60–70.

86. Postnov, D; Balanov, A; Sosnovtseva O; Mosekilde, E. Chaotic hierarchy in high dimensions.Int.

J. Mod. Phys. B2000, 14, 2511–2527.

87. Anishchenko, V.; Nikolaev, S.; Kurths, J. Winding number locking on a two-

dimensional torus: Synchronization of quasiperiodic motions. Phys. Rev. E2006,

73, doi:10.1103/PhysRevE.73.056202.

88. Loose, A.; Wuensche, H.J.; Henneberger, F. Synchronization of quasiperiodic oscilla-

tions to a periodic force studied with semiconductor lasers. Phys. Rev. E2010,

82, doi:10.1103/PhysRevE.82.035201.



Electronics2013, 2 167

89. Giaouris, D.; Banerjee, S.; Imrayed, O.; Mandal, K.; Zahawi, B.; Pickert, V. Complex interaction

between tori and onset of three-frequency quasi-periodicity in a current mode controlled boost

converter.IEEE Trans. Circ. Syst. I2012, 59, 207–214.

90. Buccella, C.; Cecati, C.; Latafat, H. Digital control ofpower converters-A survey.IEEE Trans.

Ind. Inform.2012, 8, 437–447.

91. Xia, C.; Wang, M.; Song, Z.; Liu, T. Robust model predictive current control of three-phase

voltage source PWM rectifier with online disturbance observation. IEEE Trans. Ind. Inform.2012,

8, 459–471.

92. Li, B.; Lin-Shi, X.; Allard, B.; Rétif, J.M. A digital dual-state-variable predictive controller for

high switching frequency buck converter with improvedΣ−∆ DPWM. IEEE Trans. Ind. Inform.

2012, 8, 472–481.

93. Rivera, M.; Rodriguez, J.; Espinoza, J.R.; Abu-Rub, H. Instantaneous reactive power minimization

and current control for an indirect matrix converter under adistorted AC supply.IEEE Trans. Ind.

Inform. 2012, 8, 482–490.

94. Buticchi, G.; Barater, D.; Lorenzani, E.; Franceshini,G. Digital control of actual grid-connected

converters for ground leakage current reduction in PV transformerless systems.IEEE Trans. Ind.

Inform. 2012, 8, 563–572.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).


	Introduction
	Power Electronic Converter Systems
	Bifurcations in a Piecewise-Smooth System
	Purpose and Content of the Review

	Border-Collision Bifurcations in Piecewise-Linear Systems
	The Sewing Approach 
	Modification of the Period-Doubling Bifurcations
	Border-Collision Bifurcations
	Synchronization Phenomena in Piecewise-Linear Systems

	DC/DC Converter System
	Model of a DC/DC Converter
	Piecewise-Smooth Map
	Methods of Bifurcation Analysis
	Subcritical Torus-Birth Bifurcation
	Internal Structure of the Resonance Zones

	Torus Bifurcations in a Multilevel DC/DC Converter
	Power-Electronic DC/DC Converter with Multilevel Control 
	Chart of Dynamical Modes
	Embedded Tori
	Torus Merging Processes
	Behavioral Complexity of the Multilevel DC/DC Converter

	Single-Phase Pulse-Width Modulated H-Bridge Inverter
	Model of the Single Phase PWM H-Bridge Inverter 
	Torus-Birth Bifurcations
	Phase Synchronized Quasiperiodicity
	Signal Distortion

	Conclusions and Perspectives
	Acknowledgements

