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Abstract: The purpose of this review is to provide a survey of some oftlest important
bifurcation phenomena that one can observe in pulse-mtdl@onverter systems when
operating with high corrector gain factors. Like other sys$ with switching control,
electronic converter systems belong to the class of pieseainooth dynamical systems.
A characteristic feature of such systems is that the trajgds “sewed” together from
subsequent discrete parts. Moreover, the transitionsdastwlifferent modes of operation
in response to a parameter variation are often qualitgtidéferent from the bifurcations
we know for smooth systems. The review starts with an intetida to the concept of
border-collision bifurcations and also demonstrates gpe@ach by which the full dynamics
of the piecewise-linear, time-continuous system can beiged to the dynamics of a
piecewise-smooth map. We describe the main bifurcatiomcstres that one observes
in three different types of converter systems: (1) a DC/D@veoter; (2) a multi-level
DC/DC converter; and (3) a DC/AC converter. Our focus will e the bifurcations
by which the regular switching dynamics becomes unstabtkisnreplaced by ergodic
or resonant periodic dynamics on the surface of a two-dimeastorus. This transition
occurs when the feedback gain is increased beyond a cehagshbld, for instance in
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order to improve the speed and accuracy of the output voltagalation. For each
of the three converter types, we discuss a number of additiofurcation phenomena,
including the formation and reconstruction of multi-lagértori and the appearance
of phase-synchronized quasiperiodicity. Our numericalusations are compared with
experimentally observed waveforms.

Keywords: power electronic converters; DC/DC converter; DC/AC cotere pulse-width
modulation; piecewise-smooth dynamical systems; bocd#ision bifurcations; torus birth;
torus reconstruction; phase-synchronized quasipeitgdic

1. Introduction

The field of power electronics has undergone a dramatic gaalduring the last few decade$]]
For many applications, the classic transformer with itsvigeiaon anchor and copper windings has
been replaced by a smaller, lighter, and often also significaheaper switch-mode operated converter
system R,3]. The use of relatively high switching frequencies has cedithe requirements on the size
of the output filter components, and together these devedopshave opened the way for a broad range
of new applications4-6], including applications in portable PCs and cellular pé®1y], as backup
systems for sensitive computer systems and hospital egumiprand as main electric power supplies
at remote locations. Today, power electronic systems witkching operation are used in practically
all sectors of our society. Examples from the industry aadgportation sector are aircraft electronics,
traction regulators in trains, and power supplies for elesehicles B]. An introduction to some of the
complex nonlinear phenomena that one can observe in poeer@hics systems may be found in the
book by Banerjee and Verghe$.|

1.1. Power Electronic Converter Systems

To characterize the various types of switch-mode operabegiester systems, let us first note that
DC/DC converters use a fixed DC power source, such as a canjatt provide a DC power output at an
adjustable voltage (or current) level. Converters of thetmay be used, for instance, as power supplies
for navigation instruments in boats, for liquid crystalmesys, or for solar-energy driven refrigeration
and cooling systems. By coupling two or more DC/DC converierseries, one can obtain an output
voltage that exceeds the available input voltage.

DC/AC converters similarly provide an AC power output ofigaite frequency and amplitude from a
fixed DC source. In this case, the reference voltage thatasrihe switching process must prescribe the
desired waveform for the output voltage, and the convertestrne fast enough to follow this waveform
with the required accuracy. This type of converter may belueeprovide AC power at the normal
utility frequency from a storage battery and thus allows Béssvacuum cleaners, and other common
household appliances to be used in summerhoese$)C/AC converters may also be used as so-called
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grid-tie inverters to convert the low voltage, high curr®@ power output from solar cell panels into
line-frequency and -voltage AC power that can be fed diyaato the public utility network 10].

The output voltage of a switch-mode converter is regulajecbimtrolling the time that the output load
Is connected to the input voltage with a properly desighédfilter acting to smooth out the ripple (or
noise) associated with the switching process. More adwbbB€ZDC converters may involve the use of
a multilevel architecture in which input voltage is provildet several different levels. A main advantage
of this design is that the output voltage can be supplied Wigier efficiency and less distortion. At
the same time one can generally reduce the cost of the indivicbmponents by accepting a lower
voltage rating.

Designing a power electronic converter system for a spguifipose involves a significant number of
mutually connected problems related to the choice of anagpjate architecture, feedback regulator,
switching frequency, and filter characteristid1[12]. One has to ensure that requirements on the
accuracy of the output voltage regulation, the level of lepgnd noise from the switching process and
the maximal tolerable losses are all m&B,[14]. One has to consider the output impedance in relation
to the expected load impedance and check that variatiomeafutput voltage with changes in the input
voltage, the ambient temperature, or the values of spedfigponents are acceptable. One also has to
investigate what happens under special operational gondjtincluding start-up, input power failure,
short circuiting of the output load, or insulation breakadowrFinally, one needs to examine how the
system behaves outside of its normal range of operationcadetermine how large the safety margin to
such other regimes needs to be.

Optimization of the efficiency is one of the main considenasi in the design of a switch-mode
modulated converter system. However, as efficiency inemeadissipation decreases, and the system
may become vulnerable to some form of instability. High etk gain is desirable in order to ensure
a fast and accurate adjustment of the output signal to v@mgin the reference signal. However, in
connection with the delay in the feedback loop (associatgidally with the charging and discharging of
the output filter capacitor), increasing the feedback ghova a certain threshold is likely to give birth to
a new oscillatory component in the system. Together witratheady existing switching dynamics, this
produces so-called torus dynamics,, a form of behavior where two oscillatory components gateea
beating dynamics (known as quasiperiodicity) interruptgaarameter space by a dense set of resonance
regions in which the two modes synchronize with one anothéifferent frequency ratios.

1.2. Bifurcations in a Piecewise-Smooth System

Like other systems with switching control, electronic certer systems belong to a class of
piecewise-smooth dynamical systeri§417]. A characteristic feature of such systems is that the phase
space is divided into regions with distinctly different @ynics. At the boundaries between these regions,
the trajectories are so to speak ‘sewed’ together from thisiinct smooth partsig,19]. Moreover, the
transitions between different dynamical states that caaria response to the variation of one or more
parameters are qualitatively different from the transisizve know from the classical bifurcation theory
for smooth dynamical system2(] .
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In general, one can distinguish between two different typlebifurcations for piecewise smooth
systems. The first type is similar to the bifurcations we krfiomsmooth systems. They include both
local bifurcations such as saddle-node, period-doublimjtarus-birth (Andronov—Hopf) bifurcations,
where a periodic orbit loses its stability as one (or two)delet multiplier(s) (eigenvalues for the
corresponding Poincaré map) crosses out of the unit dimdlee complex plane, and global bifurcations
(homoclinic and heteroclinic bifurcations), in which a oeation is established from a saddle cycle and
back to the same (or to another) saddle. However, the formesfet bifurcations is usually modified by
the piecewise-smooth character of the system. The biforcaiagram for the torus-birth bifurcation,
for instance, often deviates from the parabolic form tha observes for smooth systems.

For a periodic cycle, the second type of bifurcations, reférto as border-collision (or C-)
bifurcations p1-23], typically involve an abrupt jump of one (or a pair of) mpliers from the inside to
the outside of the unit circle. A stable focus cycle, for amte, may turn into an unstable focus cycle as
two complex conjugated multipliers under variation of agmaeter jump out of the unit circle§,25].
Border-collision bifurcations may give rise to a directisdion from period-2 to period-3 dynamic&d,
or in fact to almost any form of periodic, quasiperiodic oaotic dynamics. It is also possible that an
ergodic torus can arise directly from a stable node cy26 [Besides abrupt jumps of the multipliers
in the complex plane, one of the features that charactenizdoorder-collision bifurcations is that the
amplitude of the appearing mode tends to grow linearly whid distance to the bifurcation point as
opposed to the parabolic growth that one finds for smoothdations.

The complexity of the nonlinear dynamic phenomena we olesarvwpower electronic converter
systems partly derives from the coexistence of the two wffetypes of bifurcation and partly from
the large number of new bifurcation phenomena that bordésiom can give rise to. In this connection,
it is interesting to note that many practical problems in haics and mechanical engineering involve
collisions and/or stick-slip friction. Such systems alead to piecewise-smooth dynamics and to the
appearance of both border-collision bifurcatio@3,28] and of the related phenomena of sliding and
grazing bifurcationsd9-31]. Classic examples in this area are metal cutting procgdgsrolling
railway wheels 33|, and mooring at sea3f]. Other examples include rotating machines with finite
clearance 35| and vibration absorberf¢]. It may also be of interest to know that the same concepts
can be applied in the study of management systems wheregtistzcisions, made on the basis of current
information, from time to time will redirect the course oktbystem 37,38].

1.3. Purpose and Content of the Review

In a series of papers published over the last decade we hsmessied different forms of instabilities
and nonlinear dynamic phenomena that can arise in pulstrwitbdulated DC/DC and DC/AC
converters operating with high feedback gain fact@%$-§6]. This work has particularly focused on
the mechanisms by which border-collision bifurcations &ead to the appearance of quasiperiodic
and/or resonant periodic dynamics as a pair of complex gatgd Floquet multipliers for the regular
switching cycle jumps from the inside to the outside of th& aimcle in the complex plane4l,42].

We have demonstrated experimentally how this type of béftionn can occur in both DC/DCAB] and
DC/AC converters, and we have illustrated how the usual smtwyus-birth bifurcation (also known
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as Andronov—Hopf or secondary Hopf bifurcation) is modifled the non-smooth character of the
converter. We have also studied border-collision proceas®ng the various resonant and non-resonant
modes on the two-dimensional tor89[40] and, in a couple of recent publications, we have illusttate
the appearancd}] and reconstructiordl6] of multi-layered tori,i.e., of sets of ergodic or resonant tori,
emerged one within the other.

Different forms of instability in electronic converter $gms have also been studied by a significant
number of other authors. Aroueét al [47], for instance, have observed the nearly abrupt transition
to quasiperiodicity via a modified Andronov—Hopf bifuraati followed by a transition to chaotic
dynamics through torus breakdown. Mazumeerml. [48] have demonstrated how instabilities in a
closed loop converter system can arise on both a slow andtasdate, and Daket al [49] have
described a slow-scale instability in single-phase pdaetor-correction power supplies. More recently,
Aroudi et al [50] have determined the asymptotic slow-scale stability ey while
Rodriguezet al. [51] have applied a ripple-based approach to predict the fade $nstability in DC/DC
switching power supplies.

The purpose of the present review is to provide a survey ofesohthe most important bifurcation
phenomena that one can observe in pulse-modulated conggdgiems. With this aim we shall first
analyze a simple DC/DC converter with a single input leved #rereafter examine both a multilevel
DC/DC converter and a DC/AC converter. The focus of our pregen will be on the bifurcations
through which the regular (period-1) switching dynamicseplaced by ergodic or resonant periodic
dynamics on the surface of the torus. However, for each ottmsidered converters we shall present
examples of additional bifurcation phenomena. To providelevant background for our analysis, the
review starts with an illustration of some of the basic feasuof border-collision bifurcations. This is
supported by an illustration of the approach by which thetrontinuous dynamics of a piecewise linear
system can be replaced by the piecewise-smooth dynamicdist@te-time map.

2. Border-Collision Bifurcationsin Piecewise-Linear Systems

Many systems of practical interest are non-smooth. In@aetr, the repeated switching of the circuit
topology characteristic of pulse-modulated control systelestroys the smoothness of their temporal
dynamics. The trajectory then consists of a sequence ofeacls describing the smooth dynamics
between two switching processes. Each time a switchingrecthe topology of the circuit changes and,
with appropriate initial conditions, the system will canie the next part of its trajectory in accordance
with the equations of motion for the new topology.

For mechanical systems, lack of smoothness is charaateok{problems involving impacts or
stick-slip motion. As listed in the introduction, clasdiexamples include metal cutting processes
and rotating machines with finite clearances. Other exasrguie die tossingbP?] and the operation of
mechanical randomizers such as, for instance, the pimimthine (or Galton apparatu$d. In view
of improving the resistance to earthquakes for new constmg (as well as for historic monuments),
attempts are presently being made to use concepts fromeabeytbf non-smooth dynamical systems to
analyze the dynamics and collapse of buildings.
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In information processing, lack of smoothness arisesfstiaince, from the use of signal limite&]
and from the process of digitalization. As mentioned abdke, discrete decisions characteristic of
managerial systems produce non-smooth dynamics, and e isatrue for macroeconomic systems
that operate with specific intervention thresholds in otddmmit the variation of certain exchange rates
or to control the price fluctuations of particular commasiti This wide range of applicability obviously
contributes to the rapidly growing interest in the dynanutpiecewise-smooth systems.

The purpose of this section is to use a few simple exampleggai@ how and why the dynamics
of piecewise-linear systems differs qualitatively frone tlynamics we observe in smooth systems.
Period-doubling and Hopf bifurcations, for instance, a@ified such that the emerging mode is born
with a finite amplitude. At the same time, the period-doudpltascade is truncated, and border-collision
bifurcations are found to allow direct transitions fromipdr1l dynamics to almost any form of behavior.

2.1. The Sewing Approach

The dynamics of a mooring buoy connected via a cable to a @ktgnker and subjected to the regular
forcing from the waves of the ocean may be considered as anpe&af a piecewise-linear mechanical
system B4]. The buoy can be pictured as an inverted pendulum that,ryevof its buoyancy, displays a
state of equilibrium in the upright position. For small esgions around this state, the one-dimensional
dynamics of the forced system may then be represented by

2

%+a2—f+F(x):Bcost (1)
where« represents the viscous frictioh;(z) the restoring force, ané the amplitude of the periodic
forcing. The restoring force has a contributibyx: from the buoyancy, and there is also a contribution
to F'(x) from the force exerted by the mooring cable. In the crudessibte approximation we may
assume this second force to vanish when the cable is slatkboeto contribute an elastic termx
when, forx < 0, the cable is stretched. Together these contributionselaffiecewise linear restoring
force of the form

Fla) = (h1 +ho)z, <0

hix, x>0

whereh, andh, are constant parameters.

On both sides of the stretching point= 0, the system is linear and in these regions, the equation of
motion can be solved analyticallg%]. However, to obtain the total solution we must connect theial
solutions across the sewing borderat 0. For our simple mechanical oscillator, the sewing condgio
are that both the positionand the velocitylz/dt must vary continuously across this border.

Figure 1 shows the results of such a sewing procedure for differeinegeof the model parameters.
For certain parameter values, the solutions can be comhéttsuch a way that the total dynamics
is periodic (Figurela). For other values, however, the individual pieces caf@otonnected into
a trajectory that closes to itself, and our simple piecewiszar system displays chaotic dynamics
(Figurelb). In reality, the cable force may not vary as abruptly as axetassumed in the above model.
However, this is not an essential objection to our discusdibany realistic mechanical systems involve
forces that, at least within a reasonable modeling framkewcan be considered to change abruptly.
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This is the case, for instance, for the above mentioned twiralampers36] and rolling railway wheel
sets B3| that involve collisions between hard bodies. In a similagyour discussion of different power
electronic converter systems will assume that the switchnocess is instantaneous and ideal.

Figure 1. Phase space projections of the motion of a simplified modyuray. The mooring
cable is stretched faor < 0 and loose forr > 0. On both sides of the stretching point, the
trajectory can be determined analytically, but connectiieges of the trajectory across the
sewing line in many cases does not lead to a periodic oditP¢riodic solution fory = 2,

hi1 = 40, hy = 360 and B = 100; (b) Chaotic solution forx = 0.1, hy = 40, hy = 360, and

B = 50.

4

(@ (b)

2.2. Modification of the Period-Doubling Bifurcations

It is well-known that the simple logistic map
T = f(xk—l) = )\l‘k_l(l - l‘k_l), k= 1,2, 3.... (2)

for increasing values oA gives rise to a cascade of period-doubling bifurcationstiath with the
first period doubling ath = 3.0 and accumulating in a transition to chaos at the Feigenbaaint p
Ar = 3.571.... Itis also known that this transition is generic to a classmiboth one-dimensional
maps with a quadratic extremum and that it is characteriged/b universal scaling paramete&6[57).
The first period doubling takes place when the sléfje, ) of the map, evaluated at the fixed pairit
becomes equal te 1. However, it is the second and third derivatives of the nfédpy*) and /" (z*), that
determine the form of the solution close to the bifurcatibthe so-called Schwarzian derivatived

NN
S = TFy 73 (f’(:c))

is negative, the period doubling will be supercritical, @nstable period-2 solution will be born.
In the opposite case whefgf () is positive, the bifurcation is subcritical, and an unstgiériod-2
cycle that has existed together with the stable fixed poititdisappear in the bifurcation. For the

3)
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logistic map, f”'(z) vanishes and”(x) = —2X # 0 for all values ofz. Hence,Sf(z*) is negative,
and the bifurcation leads to a stable period-2 solution. e@dwer, the Schwarzian derivative has the
interesting property that if it is negative for the m#fr), then it is negative for all iterationg”(x),
n = 1,2,3... of that map. Therefore, once started, the period-doublasga&de will also continue to
display supercritical bifurcations.

If the logistic map is replaced by the piecewise linear skent thap $9

o1 +c, 0<zp1<d
wp = T p(wp-1) = 4)
p(rr—1—1), d<mz;1 <1
with [ > 0 andp < 0 denoting the slopes of the two line segments, the transitiaanaos takes a very
different form. To reduce the number of parameters let upkiiyrthe situation by choosing

c=1-1(1+1) and d=1+1
p p
such that the map becomes continuous, and its top poinirfialts, 1, x;) = (d, 1).

With these conditions, the fixed point of the skew tent mapeienined by the intersection between
the main diagonat, = z,_; and the downwards sloping line element of the skew tent maploAg
as|p| < 1, the fixed point will be stable. At the bifurcation point= —1 an expanding period-2 type
dynamics is initiated. However, because the map has nottueyastabilization does not occur, and the
oscillation continues to expand until the amplitude beceiaege enough for points of the itinerary to
reach the line segment to the left. Provided thpét < 1, the dynamics will then stabilize in a period-2
cycle. We conclude that the stabilization process is noat/dhat both slopeg(@ndi) are involved, and
that the stable period-2 cycle is born with a finite amplitutieis transition is illustrated in Figur2

Figure 2. First period-doubling transition in the skew tent map.is the slope of the
descending line segmenta)(Stable fixed point foip| < 1; (b) Stable period-2 cycle for
Ip| > 1 and|pl| < 1; (c) Sketch of the bifurcation diagram illustrating the birttageriod-2

cycle of finite amplitudel = 0.67.

1 1
p p
l l
) & x
0 0
0 Th_1 1 0 Tr_1 1 —1 p
(@ (b) (©

Let us now change the role pfand! such thatl becomes the bifurcation parameter an kept
constant and equal te4. With one point on each line element, the Floquet multiplegenvalue) for
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the period-2 cycle is the produgt of the two slopes. As the value bincreases, the period-2 cycle will
therefore lose its stability dt= 0.25 when|pl| starts to exceed 1. However, the period-4 solution that
one might immediately expect to take over has two points ch &ae segment and, jpl| > 1, then the
multiplier p?I> > 1. The period-4 cycle is therefore born to be unstable, andealhother cycles in
the period-doubling cascade. As illustrated in FigByrthe result is that the system jumps directly into a
4-band chaotic attractor.

Figure 3. Stationary solutions to the skew tent map for different galof the slope of the
ascending line segmenta)(period-2 cycle forl = 0.15; (b) chaotic attractor fot = 0.30;
and €) period-3 cycle fori = 0.45. p = —4.

1 —__— 1\ 1
< <
S S
0 0
0 Th—1 1 0 Th—1 1 0 Tr_1 1
(@) (b) (©)

As the slopéd continues to increase, the bands of the chaotic attract@den and merge with one
another via two subsequent crises (or homoclinic bifuoce), first a collision with the unstable period-2
cycle and then a collision with the unstable fixed point. Wittther increase of the slogethe system
reaches a new stable periodic solution, namely the perisalk8ion. This solution has a multiplier of
pl? and, forp = —4, this eigenvalue will be numerically less than 1 all the waytail = 0.5.

The bifurcation diagram in Figuré allows us to follow some of the transitions in more detail.eTh
slopel of the ascending line element continues to serve as biforcgaarameter, ang = —4. To the
left in the bifurcation diagram we first observe the periodefution, followed by the 4-band, 2-band
and fully mixed chaotic attractors. This is succeeded byradawv with stable period-3 dynamics. For
[ = 0.5, the period-3 solution destabilizes into a 6-band chadtiaetor and, through a couple of global
bifurcations, this attractor again merges into a singleebzhaotic attractor.

The two-dimensional bifurcation diagram in Figuseprovides a more complete overview of the
dynamics of the skew tent map when bé#ndp are varied. Note that the vertical axis displays on
a logarithmic scale. The large white region is the regioninfle band chaotic dynamicsy,, denotes
a region with stable period-dynamics andt,, is a region withm-band chaotic dynamics. Along the
horizontal linelog,(—p) = 2 we recover the one-dimensional bifurcation sequence iorEig In the
vertical direction we can follow a sequence of regions wighiqud-2, period-3, period-4&tc, dynamics.
This sequence can be related to the so-called period-addongence for the logistic mag(, i.e., the
sequence of the last, stable appearance for cycles of ggueniodicity.
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Figure 4. Bifurcation scenario for the skew tent map. As the periodRtson destabilizes
so do all other solutions in the period-doubling cascade the system jumps into a 4-band
chaotic state. The four bands of the chaotic attractor m@agevo subsequent homoclinic
bifurcations. Note that the characteristic periodic wivdan the chaotic regime are missing
until, finally, a stable period-3 solution emerges.

1.1

015 ] 0.65

Figure 5. Two-dimensional bifurcation diagram for the skew tent map, n = 2,3,4...
denote regions of stable perieddynamics, and:,, are regions withm-band chaotic
dynamics. The multiband chaotic regimes with= 8 and4 adjacent to they, domain
are quite narrow and, therefore, not explicitly marked.

0.6

0.15 I 0.8

From this we can deduce, for instance, that the single baadtichattractor formed by merging of
the bands of the 6-band attractor may lead to the opening ahdow for the period-4 solution that
has a multiplier ofpl® (i.e., three points fall on the ascending line element and onet fails on the
descending line element). It is interesting to note, howeahat many of the periodic windows that one
can observe for smooth maps are missing in the bifurcatiagrdm for the piecewise-linear map. This
includes, for instance, the first of the three period-5 wimsithat for smooth maps exists between the
period-2 and the period-3 cycles.
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2.3. Border-Collision Bifurcations

The study of border-collision bifurcations has a long higtio the Russian literaturelB,61]. Here,
they are commonly referred to as C-bifurcations, derivedhfthe Russian word “shivanije” meaning
“sewing”. Feigin obtained analytical conditions for petidoubling transitions to occur in piecewise
continuous systemslf] and also developed conditions for the emergence of comgléharmonic
oscillations and of families of unstable periodic orbid][ In the Western literature, one of the first
explicit studies of border-collision bifurcations appe&m be the paper by Nusse and Yorke on direct
transitions from period-2 to period-3 for piecewise smogybtems 21]. Based primarily on studies
of low-dimensional piecewise-linear maps, Nusse and Yainahstrated bifurcation diagrams with
period-2 to period-3, period-2 to period-&tc, transitions. This analysis was extended in a couple of
subsequent paper23,23] in which more detailed explanations of the observed pherawere given
and applications to physical and economic systems disdugiéurcation studies for piecewise-linear
maps have also been performed, for instance by Banetjeé [24,25], by Zhusubaliyewet al. [62],
and by Gardiniet al. [63]. The above discussion of the modifications imposed to th®gealoubling
bifurcations in piecewise-linear maps is mostly based entbrk of Maistrenkeet al.[59].

To start our discussion of border-collision bifurcatiolet,us consider a slightly different version of
the skew tent map examined by Nusse and Yad:[

2 = To(ny) = arp—1+p, Tp-1 <0 5)
brp—1+p, xp—1 >0

Here, we shall assume that the slepie kept constantd = 0.5). The slopé < 0 and the value: of
the top point are considered as control parametersu. <o, the map displays a stable fixed point with
x* = 2u. For values ofb| < 1, the map also displays a stable fixed point for positive \&@hfe., the
coordinate of which is* = 1/(1 — b).

For 1 = 0, the fixed point crosses from the ascending to the descerdirigof the map. When
this happens, the system undergoes a border-collisionchiion in which the eigenvalue of the fixed
point abruptly changes fromto b. Forb < —1, the fixed point in the right hand side of the map is
no longer stable. Figuré shows a series of one-dimensional bifurcation diagramaioéd by varying
u for different values ob. In Figure6a, b = —1.5, and the map displays a transition from period-1
to period-2 dynamics for increasing valuesiof Forb = —3.5 (b), the border-collision bifurcation at
1 = 0 produces a transition to stable period-3 dynamicspfer —4.15 (c) it produces 6-band chaotic
dynamics, fob = —4.4 (d) 3-band chaotic dynamics, and, finally, fo= —5.5 (e) a single band chaotic
attractor. These results are obviously in full agreemetit Wie scenarios described for the skew tent
map in Section 2.2.

The important conclusion to be drawn from the above disonsts that the stable fixed point in a
piecewise linear system can bifurcate directly into marfigcent forms of periodic or chaotic solutions.
As long as the system only operates on one side of a discatytiwa cannot know what will happen
when it starts to cross into another region of phase spaewtirth noticing how the emerging periodic
or chaotic solutions grow linearly with the distance to tlfedgation point. We should also stress that,
besides stable periodic (and chaotic) solutions, the aralésion bifurcation ajx = 0 produces a great
variety of unstable periodic solution7].
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Figure 6. Border-collision bifurcations in the skew tent map. Thepsl@f the descending
part of the map i9 = —1.5@); b = =35 (b); b = —4.15(¢c); b = —4.4 (d); and
b = —5.5 (€). Note the direct transition from stable period-1 dynamiffsxed point) to
period-2, period-3, and different forms of chaotic dynasnic

0.2 0.2 0.2
x T x
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2.4. Synchronization Phenomena in Piecewise-Linear Bigste

Let us finally provide a simple analyses that explains somthefcharacteristic structure of the
resonance zones (or Arnol’d tongues) that one observesepwise linear systems. Discussions of
synchronization phenomena for systems of two interactmgath oscillators are usually based on the
so-called sine-circle mas4,65]:

ﬁk = f(’l?kfl) = 191{—1 +Q — 25 sin 27'('19]{,1 mod 1 (6)
m

wherev,, k = 1,2,... measures the phase of one of the oscillators each time tee askillator has
completed a full cyclef2 represents the mean phase advance per cycle (or the mstoetiween the
two oscillators), andK is a measure of the coupling strength. FormalB), ¢an be considered as a
mapping of a point,_; on the periphery of a circle into a subsequent pointDue to the presence of
the coupling term, the phase advange— 9;_; in a given iteration depends on the initial phage; .
Broadly speaking, this implies that there are phase relatietween the two oscillators that the system
tends to pass quickly and other values of the phase reldtairiiie system tries to maintain.

A more detailed analysis shows that if the coupling is strengugh compared with the mistuning
(K > 27/9Q), the sine-circle map will display two points of intersectiwith the main diagonal. One
point in which the slope of the map is numerically less thas & stable fixed point (a node), and the
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other fixed point is a saddle. The stable fixed point repredtmtstate of stable 1:1 synchronization, and
the region in {2, K) parameter space in which this fixed point exists is the 1ntksgonization regime.

The range of mistuning for which synchronization can be exad increases with the coupling
strength. Moreover, similar synchronization regimes tefas other rational ratios of the frequencies
of the two interacting oscillators. A broader introductimnthe theory of synchronization in smooth
systems may be found in the books by Pikoveksgl.[66], by Balanowet al. [67], and by Mosekilde§8].
The question is now how the structure of synchronizatiomneg changes if we replace the interacting
smooth oscillators with a system of interacting pieceveiseoth oscillators. As a simplified approach
to this problem we may consider the so-called rotating sathitoap

ﬁk = R(ﬁkfl) mod 1 (7)
with
219/4:—17 0 S 'lgk_l <b
1—4b)Vp_1+b
R(’lgk_l):Q+ ( 1)2kb1+ , bgﬁk_1<1—b
219]?,1—1, 1—b§79k,1<1

first suggested by Uherk&9).

Here (), the average phase advance per iteration, again reprakenisistuning between the two
interacting oscillators. As for the sine-circle map, anr@asing value of) manifests as a vertical shift
of the map. As a measure of the coupling strengttlescribes how the phase advance depends on the
present phase. In particular, the valué @bntrols the slopél — 4b) /(1 — 2b) of the intermediate line
section and, hence, the stability of the various resonaslcéiens.

Figure 7a presents the rotating sawtooth map for= 0 andb = 0.27. The point of intersection
between the map and the main diagonal in the middle of theahagepresents the 1:1 resonance cycle.
Since the slope of the map in this point is numerically lessth the fixed point is stable. The point of
intersection between the map and the main diagonal, 8) (epresents a 1:1 resonance cycle of saddle
type.

The phase diagram in Figui#® provides an overview some of the main resonance regiornsein t
(€2,0) plane. It is interesting to notice how the resonance regfonthe piecewise-linear map display
a so-called sausages-on-a-string (or necklace) struetitindts characteristic shrinking point3(,71]
where the edges of a resonance zone intersect one anothehalleneet this phenomenon repeatedly
in our discussion of resonance behavior in power electroomyerter systems. Moreover, rather than by
the saddle-node bifurcations as for smooth systems, theseafghe resonance zones are now made up
by border-collision bifurcations.

As illustrated in Figurerc, the border-collision bifurcation that delineates thgioa of stable 1:1
synchronization will occur when one of the corner pointshad thap in Figurera falls on the main
diagonal. With the assumed slope Dfor the left and right hand line segments of the map, this is
the case foh = 0.27 and2 = b. The lineQ? = b thus delineates the region with: 1 (or 1:1)
synchronization in Figur&b. This type of border-collision bifurcation is analogonsbme sense to the
tangent (or saddle-node) bifurcation in a smooth sys&#6}].
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Figure 7. (a) Rotating sawtooth map fa2 = 0 andb = 0.27; (b) Resonance tongue
diagram delineating the regions in parameter space in whighle 1:1,1 : 5, 1 : 4,

1 : 3, etc, synchronization occurs. Note the characteristic sassag-a-string structure;
(c) Border-collision bifurcation at the edge of 1:1 synchaation regimeb = 0.27, Q = b;
(d) Stable1 : 2 synchronization.b = 0.1, Q = 0.5; (e) 2 : 4 synchronized state.
b =0.299995, 2 = 0.5.
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Figure7d illustrates thd : 2 resonance cycle that exists in the Uherka mag¥et 0.5 andb = 0.1,
i.e., in the lower part of thé : 2 resonance region. The periodic solution now involves twaaiions
before returning to itself, and both iterations fall on théeermediate line element. The eigenvalue for
this cycle is(1 — 4b)?/(1 — 2b)* or approximately).56 for b = 0.1. Hence, the cycle is stable. Finally,
Figure7e illustrates the : 4 synchronized state that exists far= 0.5 andb = 0.299995, i.e., in the
upper part of the : 2 regime. This resonance cycle involves four iterations feefostarts to repeat
itself. With two points that fall on the intermediate linecien and two points that fall on the outer line
sections, the eigenvalue 4§1 — 4b)?/(1 — 2b)? or approximately0.29. This cycle is also stable, and
for increasing values df, thel : 2 regime continues to exist until the eigenvalue numeridadgomes
equal to one. This happens fab — 1)/(1 — 2b) = 1 orb = 0.3.



Electronics2013, 2 127

A more detailed description of border-collision bifurcats in piecewise-smooth systems may be
found in our book 17]. However, let us now turn the attention to the use of theseepts in the study
of bifurcation phenomena in power electronic convertetesys.

3. DC/DC Converter System

DC/DC converter systems represent some of the most comnuselg systems in modern power
electronics. Such systems may function as power supplesdagation instruments in space- and
aircrafts, for solar energy driven refrigerators at remotations, for liquid crystal displays, and for a
broad range of other systems that require a well-regulaie@at or voltage source. While the primary
power source,e., the input voltage to the converter, may vary over timegcthaverter is built to adjust its
switching cycle to compensate for this variation. Moreottee converter operates with a relatively high
efficiency (typically 80—-90%), and the individual convertéan supply power to different subsystems,
each requiring their own specific voltage leveé?].

The purpose of this section is to examine the role that besdiision bifurcations may play in
connection with operation of a DC/DC converter with pulsettvmodulation. As previously described,
the repeated switching of the circuit topology characters pulse-width modulated converters destroys
the smoothness of the temporal dynamics. Each time a swgabtcurs, the topology of the circuit
changes and, with appropriate sewing conditions, the systdl continue its trajectory in accordance
with the equations of motion for the new topologig[74]. We shall assume that the switching processes
are ideal, that is, that the switching occurs instantangaarsd without time delays, and that it does
not cause any high frequency transients. In this way, theoimdynamics of the system is related to
the characteristics of the output filter, and to the smogtlmhthe control signal that may occur in the
corrector circuit.

Our analysis starts by illustrating how the time-continsimaiodel of the converter can be reduced
to a time-discrete mapping by integrating the system frontcking event to switching even?b-77).
Since the system may be considered as linear in the timevaitebetween the switching processes,
a main requirement to this approach is a procedure for datation of the switching times. It is
worth noticing that whereas the time-continuous systemasgwise linear, the time-discrete map is
piecewise smooth. As one might expect, this implies thattbdifications of the bifurcations we know
from smooth systems will be somewhat less dramatic than tdifroations described in Section 2 for
piecewise-linear maps.

Since first reported by Hamill and Jefferiesqd], instabilities and chaotic oscillations in DC/DC
converters with pulse-width modulation (PWM) have beertdipéc of numerous investigationg$-81].
Combining numerical simulations with experiments, di Bedo and Tsed2], for instance, have
presented a series of examples of chaotic dynamics in DC/@®ecters. Aroudi and LeyvaBl]
have studied quasiperiodic behavior in a pulse-width mateidl DC/DC boost converter and observed
both a subcritical torus-birth process via a secondary Hafifrcation and the onset of chaotic
dynamics through torus destruction. Two different routetus destruction were described involving,
respectively, period-doubling of a resonance cycle anditbeof smoothness through torus folding.
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Among the earliest works providing a detailed numerical aahlytical investigation of
bifurcations and transitions to chaos in DC/DC convertexs should recall the paper by Baushev and
Zhusubaliyev 76]. These authors showed that such systems can display ai@itwehere there is a
wide range of parameters with many locally stable limit egcWith different dynamic characteristics,
including regions of coexistence. These cycles arise id lransitions, and with changing parameters
each of them can undergo either a finite or an infinite sequein@eriod-doubling bifurcations, resulting
in the transition to chaos.

The purpose of this section is to present some of the chaistatesynchronization phenomena
that can arise in piecewise-smooth dynamical systems wmasen involve two (or more) oscillatory
components39,40]. Our aim is particularly to highlight the role that bordssHisions can play in the
synchronization of different oscillatory modes in a singgeel DC/DC converter. However, we also
want to show how the converter model is developed and tramsfd into a time-discrete mapping. Use
of such mapping techniques makes the subsequent numeratgses many times easier.

Figure 8. Coupling diagram for the considered DC/DC converter witHsewwidth
modulation and proportional-plus-integral feedback tagon. Ry, is the load resistance,
Ey the input voltage, andl;.; the reference voltagel'C' is the transistor switch that opens
and closes the connection betwdénand Ry, in response to the control pulsEs generated
by the pulse-width modulator PWM.
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3.1. Model of a DC/DC Converter

Figure 8 shows the coupling diagram for the considered DC/DC buckveder with
proportional-plus-integral (PI) feedback regulation.réje, is the input voltage antf;.; the reference
output voltage. TC is the power transistor that functionsh&sswitching element, and PWM is the
modulator that regulates the switching process accordirtye applied algorithm.L and C denote,
respectively, the inductance and the capacitance of theubdilter. R is the series resistance of
the inductor andRy, is the load resistance. The dynamic variablesand x, represent, respectively,
the current in the inductance and the output voltage. VSasvtiitage sensor and its sensitivity.
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CORRECTOR is the feedback corrector, withand x being, respectively, the amplification factor
and the transfer constant of the feedback regulation. Timamjc variabler; represents the output
signal from the integrator, and(X) = a(x(Vie — Bx2) + (1 — x)x3) is the output signal from the
CORRECTOR. Finally K is the control signal generated by the pulse-width modulRMYM. As
determined bellowX = (z1, 75, z3)T represents the current state of the converter system.

Figure9 serves to explain the generation of control pulses. In taegmt example we shall consider an
algorithm that is often referred to as two-sided pulse-idibdulation. This implies that the transistor
switch is forcedly turned on at the beginning of each clodknval « and turned off when the sawtooth
voltage Vi..mp €xceeds the value attained by the feedback signal) at the beginning of the clock
interval. The converter remains off as long as the sawtoigtias exceeds that value of the feedback
signal and then turns on again for the remaining part of thekcperiod.

Figure 9. Generation of control pulse& with the use of two-sided pulse-width
modulation. The pulse-width modulator PWM reads the valuthe output signat)(.X)
from the CORRECTOR circuit at the beginning of each cloclerival « and compares it
with the sawtooth signal;...,(t). The modulator generates a symmetric pair of control
pulses, one at the beginning and one at the end of the cloaikait each lasting for a period
corresponding to the period in which the sawtooth signahialker than the value of the error
signal as sampled at the beginning of the considered cldekvial.
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During the time interval(k — 1)a, ka], k = 1,2, 3,. .., the expression foV;..,, () takes the form

2t/a — [2t/a], (k—=1l)a<t<(k—3)a
1—(2t/a —[2t/a)]), (k—Ya<t<ka

Here U, denotes the amplitude of the ramp signal anits period. Square brackets indicate that one
has to take the integer part of the argument. Since only thd ©f the sawtooth signal is required to
determine the switching instants, we actually only needepression;.m,(t) = Uy (2t/a — [2t/d]).

With the assumption that the switching process is idealetheations of motion for our pulse-width
modulated DC/DC converter constitute a set of three orglidéferential equations with discontinuous

right hand sides:
dd_)t( — AX + B(t’ X)7 X = (,’L‘l,xQ,xg)T (8)
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with
R 1 0
-7 T E
LI 23
C CRL ‘/;ef
1 T
o B _1
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As mentioned above, our three state variahlgsr, andz; denote, respectively, the current in the
filter inductor, the output voltage, and the output signaifrfrthe integratorr is the time constant for the
integrator, and the superscriptdenotes “transposed”.

Within the clock interval(k — 1)a, kal, k = 1,2, 3, ... the output signal of the pulse-width modulator
Kr(§) is given by (see Figur8):

L, (k—=1a<t<ty
Kp(§) =40, tp<t<t;
1, tp <t<ka
with
& =(X) = Viamp(t)

The modulator switching instants andt;, are:

(k=1a,  &((k—1)a,X) <0
tk= (k—=1Da+A, [¢((k—1)a,Xs—1)>0]V[{((k—3)a,X1) <0
(k—3)a, Et, Xp1) >0Vi:(k—1a<t<(k—3)a

1

2
ty=2k—1)a—ty
Here,A = %a@b(Xk_l)/Uo is the pulse duration)(< A < a/2). Examples of the different situation
that can occur fot,, are illustrated in Figur®. The generic situation with two symmetric pulses occur
both for the time interval(k — 1)a, ka| and for the interval(k + 1)a, (k + 2)a]. The caseA = 0 occurs

in the intervalka, (k + 1) a], and the third casA = a/2 occurs in the intervdl(k + 2) a, (k + 3) a].

In the following analysis we shall take the parameter valaoebe: £y, = 104 V, R = 10.6 €2,
L=01H,C=10%F R, =100Q,Uy =10V, V,s =5V, 3=0.1,a =10"*s,andr =4-107*s.
The amplification and transfer constants of the correatar 0 and0 < x < 1 are considered as
control parameters.

With the above parameter values, the eigenvalyes,, and\; of the matrixA are real and negative:

Al =01 + 09, Ao = 0] — 09, and)\3 = —1/7'

1 R+ 1 1 R+ 1 \? 1 1+R
b L(R N N _ L A
! o\L "CR,) "? 4\L " CRy LC Ry

with
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Under this condition, we can replace systé&8nly the simpler systemi[7,40,76]

dw1

I - M (w1 —Kr(€))

dws

= el K@) ©
dw

with

3
N (o) @ (2 [
g(t,wl,w2,w3)—;%(>< )\i)wz a(a [GDJFQ

_ A1 . _ A1 . __( + )
_)\1_)\3772_>\3_>\2773_ 4! V2

7

Uo()\l - )\2)(RL + R) ~ 6.48: and q= ‘/ref Q ~ 3.24

©= BEo\ Ry, Us

The variables ), ws, ws) are related to the original variablgs:, xs,z3) through the linear
transformation

Ey/L Ao+ R/L M+ R/L
I = Wy — ———— Wy
)\1 — )\2 )\1 )\2
o= Bo/(LO) (wi  w,
S VD W N VW
3
W
T3 = —A3 Z Mz'x + Viet
i=1 v
where
BEy . BEq

3.2. Piecewise-Smooth Map

The piecewise-linear character of the dynamical syst@nal{fows us to integrate the equations of
motion and thereby transform the system into the three-dsm@al stroboscopic mapping

Wip = ea)\iwi(k—l) + ea)\i(l—zk,) . ea)\izk +1— ea)\i (10)

wi, = w;i(ka); 1=1,2,3;k=1,2,...

with
0, ©(0)<0
=192 (p(0)>0)V(o(3) <0) (11)
5 9(3)>0
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and

3

A 2Q

p(z) = v (X - A—?’) Wige-1) = =2+ ¢ (12)
i=1 v

Here,

3
O )\3
z = 20 [; Vi (X )\i) Wik—1) T ¢

is the root of the equatiop(z) = 0. w; denotes the value of the variable at the timet = ka.
2, = ty/a — k + 1 represents the relative pulse duration for the controlgokilg &) in terms of the clock
perioda, andy(z) represents the difference between the normalized outguakirom the corrector and
ramp signal.

3.3. Methods of Bifurcation Analysis

Through the above analysis we have established a complketé squations to determine both the
switching times and the changes of the dynamic variables Bwitching event to switching event. Let
us now consider how the recurrence mag) (can be used to localize periodic solutions to our converter
system and to determine the stability of such solutions.

Consider solutions with a peridd = ma, m = 1, 2, 3, ..., in the following called:-cycles. Using
the recurrence relation&@) and the periodicity conditions;, = w;,,, we obtain the explicit expression

m k
1 . .
Wip = o [Z 6@)\i(m+k—z) (6a)\i(1—zi) o ea)\izi) + Z ea)\i(k—z) (6a)\i(1—zi) _ ea)\izi) +1 (13)
i=k+1 =1
Substitutingw; .1 into (12) gives
> A 20 —
or(z1, 0oy Zm) :Z% (X— TB) Oik — sz+q, kE=1,m,
i=1 ¢
where
1 m k—1
gik:—l o [; ea)\i(m—i—k—l—i) (ea)\i(l—zi) o eaAizi) + Zzl eaki(k—l—i) (ea)\i(l—zi) o ea)\izi) +1

Finally, using @1) provides us with a system of transcendental equations vagipect toz,
k=1, m [40,76]:

Ok (Zry 21, - oy 2m) = p(zk), k=1, m. (14)
0, O0<z<i

pi(ze) =4 >0, 2z =3
<0, z=0

With this algorithm we can not only determine the stableycles, but the unstable cycles as well. If
2k, k = 1, m are the solutions to Equatiof4) then them-cyclew;,, i = 1,3, k = 1, m can be evaluated
in accordance with Equatiod ).
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The local stability of amn-cycle is determined by the eigenvalues of the monodromicixn&,, (also
referred to as the Poincaré multipliers of the time-camtims system). These are the roots of the equation

det(F,, —pE) =0
The monodromic matrix can be determined by the recurremdita

Fk = Jka_l, k= l,m; FO =F

8Wk< 0z )T’ 0<z <L
Jp = e 4 Oz, \OWi_q 2 (15)
0, zkzoorzk:%
eM 0
ed=1 0 e 0
0 0 e

W - (w17w27 w3>T
oWy [ Owy, dwy, Swsy )"
&zk &zk ’ 8zk ’ 8zk

0z, _< 0z Oz, Oz )T
)

OWg—1 6w1(k71)’ 3102(1@71)’ 6103(1971
where
6w'k; \; .
ik _a)\i e i(1—zk) + eaAsz
9or ( )

02 o ( )\3) .
= 5 Vi -5 |, 1= 17 27 3
6wi(k71) 20Q) T Ai

Herez,, k = 1, m are the solutions of Equatiod4); O is the zero matrix, and’ is the unit matrix.

The Poincaré characteristic multipliers determined iis thay measure the factors by which the
distance of a trajectory to a nearby periodic orbit increasevarious directions (the eigen-directions
for F,,,) each time the trajectory returns to a given Poincaré secti

3.4. Subcritical Torus-Birth Bifurcation

The above analysis provides us with the tools required terdehe how the dynamics of the DC/DC
converter depends on the values of the various control peteas As an example, Figui® presents an
overview of the domains of existence for the stable cyclee@map 10) in the regionl 0.0 < « < 60.0,

0 < x < 0.5. We recall thato denotes the amplification factor andthe transfer constant for the
corrector circuit. As long as is small enough, the system displays a globally stable getrigycle.
This is the normal mode of operation in which the dynamicshef ¢converter precisely repeats itself
switching cycle after switching cycle. In Figui®, this domain is denotef, ;.



Electronics2013, 2 134

Figure 10. Domains of existence for the various dynamical modes of tlag 1@0) in
the plane of the control parametersand y. Nt and N, denote, respectively, curves of
torus-birth and torus-fold bifurcations. The red regiorthe domain in which the regular
period-1 cycle is the only mode to exist. To the right of theveuN, the system displays
guasiperiodic or resonant periodic dynamics and, in thaentg@gion to the very right, the
dynamics is chaotic.

10.0 o 60.0

With increasing feedback control, a threshold is reachadhiath the regular period-1 cycle loses its
stability. This happens in a subcritical torus-birth btfation at the curve denoted,. (In relation to the
original continuous-time system this bifurcation may biemed to as an Andronov—Hopf bifurcation.
In relation to the time-discrete map it is a Neimark—Sackirrtation). Figurell shows a sketch of the
transitions that occur near this bifurcation. Hetg,represents the point of torus birth. The cusfp
represents the stable fixed point (period-1 cycle) thatgkisfore the torus-birth bifurcation, antp is
the doubly unstable fixed point that exists after the biftioca o is a point of torus-fold bifurcation.
This is a form of transition in which a stable and an unstatries meet and annihilatat is the repelling
torus that takes part in this bifurcation, asids the stable torusst continues to exist until, for very high
values ofa, the dynamics turns chaotic.

In the interval betweemNy and N,, (or betweenny anday,), the stable period-1 solution coexists
with the stable torust. The stable manifold of the unstable toutsdemarcates the basins of attraction
for the two attracting solutions. However, althoudyh is the actual boundary of the domain of stable
period-1 dynamics, the basin of attraction for this cycliaidy small, and the numerical algorithm used
to produce Figurd 0 generates quasiperiodic oscillations as almost the oalylessolution in most of
the interval.

Coexistence of different modes (or intersection of the domaf existence) leads to the appearance
of hysteresis. Figur&2 shows a couple of brute force bifurcation scans across tkeeval around the
subcritical torus-birth bifurcation for increasing (a)dahecreasing (b), values of the corrector gain factor
«. Note how the transition from stable period-1 dynamics tasjperiodic dynamics occurs somewhat
after the bifurcation pointv,. This may be considered a numerical artifact that occurswm the
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trajectory only diverges rather slowly from the fixed poimee though the point is unstable. Thus the
state of the system has not moved much away from the unstatiles fpoint by the time the state is
monitored and used to construct the bifurcation diagramol&tsn to this problem could be to allow
for a longer transient before the data is collected. Thisld/eequire a very long simulation time.
Alternatively, one could perhaps add a small amount of nimigke system. One should note, however,
that the similar disagreement between the predicted atideddransition points may be observed for
the actual converter.

Figure 11. Sketch of the subcritical torus-birth bifurcation and thearby torus-fold
bifurcation that take place at, andar, respectively.sfp represents the regular period-1
switching dynamics that occurs for gain factors below andst is the stable torus that
controls the dynamics at higher values for the correctorldicgtion constant.

Figure12. Hysteresis in the region between the subcritical Androitpf bifurcation point
a, and the torus-fold bifurcation aitr. (a) Bifurcation scan in the direction of increasing
gain factora; (b) Scan in the reverse direction. Due to numerical limitatidhe transition
in the forward scan does not occur precisely at the bifuogtoint.
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To the right of the torus-fold bifurcation curvér in Figurel0, the converter displays torus dynamics,
i.e., a dynamics that arises through the interplay between aé lswitching dynamics and a second
oscillatory mode generated by an instability in the confwolp. Interaction between these two modes
produces two-dimensional quasiperiodicity interruptegarameter space by a dense set of resonance
zones in which there is a rational relation between the twiogkities. In FigurelO, the primary
resonance modes are denolgg,, n = 6,7, ..., 13. The resonance zoiié; ;, for instance, is the region
in which the converter dynamics precisely repeats itsédfradix switching periods.

Consistent with the picture we know from synchronizatiorsinooth system$p-68|, the primary
resonance zones follow one another in a consecutive ordérami increasing number of switching
cycles per period of the overall dynamics as the correctorsfier constant is reduced. Between the
main resonance zones we observe zones of higher complardybetween these again zones of even
higher complexity, in accordance with the Farey-tree stmgcknown for resonance cycles in smooth
systems 83]. Between the resonance zonds; andll;,, for instance, we find a region where the
system completes 13 switching cycles and 2 cycles of theesl@scillatory mode produced by the
control loop before repeating its dynamics, and betwiégnand this region we find the resonance zone
where the system performs 19 switching cycles and three gjoles before repeating itseéftc

However, the shapes of the resonance zones do not resengbt@ish formed resonance zones
(Arnol'd tongues) for smooth system64,65], but are much more like the sausages-on-a-string (or
necklace) form we discussed in connection with the rotagagtooth map in Section 2.4. Moreover, the
resonance zones are delineated by border-collision lafiores rather than by saddle-node bifurcations
as for smooth systems. This implies that the stable and biestasonance modes are born with
eigenvalues that in general are clearly distinguished fileencommon eigenvalue of one characteristic
of saddle-node bifurcations. In particular, one can olestdre simultaneous appearance of a saddle (with
real eigenvalues) and a stable focus cycles (with compbeyugated eigenvalues).

3.5. Internal Structure of the Resonance Zones

Inspection of Figurd.0 indicates that the resonance zones may display an innetwstey and more
detailed examination reveals that the main resonance &sntan be divided into two groups depending
on whether the periodicity is even or odd. Resonance tongitesodd periodicity display regions of
coexistence of two different resonance cycles of the samedeity, but with different rhythms. When
crossing the borders of such regions, one observes hagltiosws from one stable resonance cycle to
another. An example is shown in Figuk8a where the substructure of thie, ; zone is presented. Here,
the second subscript serves to number the different sasisatien a given resonance regime. Regions
of coexistence of two different attracting solutions arevsh in ochre and denotdfﬂn,s.

Except for the torus-birth bifurcation curv®,, the bifurcation curves in this figure are all of
border-collision type, and distinctions only arise witlspect to whether the bifurcation involves the
merger of a stable and an unstable cycle, the abrupt trangrom one solution to another, or a simple
change in the form of the solution. Figulleb shows the corresponding substructure of khe
resonance zone. As closer examination reveals, one camlssiirve a number of border collision
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bifurcations inside the resonance zone. However, they ionlylve soft transitions from one cycle to
another by adding, for instance, a new piece of trajectory.

Figure 13. Domains of stabilityll,; , and Il ; for the period-11 &) and period-10 k)
resonance cycles. The second indeixere refers to the different sausages within a given
synchronization regime. Resonance domains for cyclesadthperiodicity display regions
of coexistence of cycles of different types (ochre areashekicrossing the boundaries of
these regions, transitions with hysteresis occur. A simsttaicture is not found for resonance
zones of even periodicity.
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As an alternative illustration of the internal structuretioé resonance domains, Figukda shows
a one-dimensional bifurcation diagram obtained by scanaaross the period-11 resonance zbing,
for x = 0.1085. Reading the figure from the left to the right we first obseheetbrus-birth bifurcation at
«a ~ 14.4. This is the bifurcation in which the regular period-1 cyldses its stability and the dynamics
becomes quasiperiodic with a dense set of resonance zohes~A2.3, the system enters the regime
of period-11 synchronization. With future increase of tlaegmetery the system enters the ochre zone
denotedﬁll,z in Figurel14a, where two different period-11 cycles coexist. The sydawes this zone
at o ~ 27.8, and the scan continues through a green region befatezat34.5, the system enters the
second ochre zone denotﬁqm. This is (again) a zone where two different period-11 cyclesxist.
The converter leaves the second ochre zoreat37.55.

Figure14b shows the results of a similar one-dimensional bifureaesinalysis through the period-10
resonance zonH, , for y = 0.153. With this value fory the scan crosses the resonance region first in
an interval aroundr ~ 19.31 and then again in an interval from~: 23.84 to a =~ 40.7. This illustrates
the characteristic modulation of the width of the necklatacture. The period-10 solutions in the
two intervals are clearly different but, by contrast to thagdam in Figurel4b, the present bifurcation
diagram does not show signs of coexisting solutions. Indbmection it is worth noticing that there
is a clear distinction between the dynamics observed in @news sausages of a given resonance zone.
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Whereas the converter system when operating illthe regime, for instance, completes 10 switching
cycles and one cycle of the slower oscillation associated thie feedback instability per full period,
when operating in thél,,, regime, the converter completes 10 switching cycles and (skightly
different) cycles of the slow mode in each period.

Figure 14. (a) One-dimensional bifurcation diagram through ilig ; resonance zones for
x = 0.1085. Note the coexistence of two period-11 resonance cycldsaenntervals from
a ~ 22.610a ~ 27.86 and froma ~ 34.4 to o ~ 37.47; (b) One-dimensional bifurcation
diagram through the period-10 resonance zonexfer 0.153. By virtue of its necklace
shape, the scan crosses the resonance zone twice.
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This concludes our analysis of the DC/DC with pulse-widthduated Pl-control. The typical
scenario we have observed in such systems proceeds, asdhad& regulation becomes stronger, via a
torus-birth bifurcation to quasiperiodicity with a dens¢ of different states of resonance dynamics and
regions with coexisting solutions. A detailed bifurcatimmalysis shows that the resonance regions are
delineated by border-collision bifurcations. These ragialso display a structure that resembles the
simple sausages-on-a-string structure discussed footaegng sawtooth map. In the following sections
we shall consider first a multi-level DC/DC converter andssaduently a DC/AC converter. The idea is
to focus on the new and even more complicated dynamics tbhtsistems can display.

4. Torus Bifurcationsin a Multilevel DC/DC Converter

By contrast to the DC/DC converter considered in Sectiontilavel converter systems operate with
two or more values for the input voltage. As previously nedicthis allows the desired output voltage
to be synthesized with less distortion and higher efficieang the presence of several input levels also
allows the converter to operate with lower voltage ratirggelie components. Today multilevel DC/DC
converters are relatively common. Their main disadvanisgiee added complexity that follows from
the higher number of components. This complexity manifestie design of the converter as well as
in its maintenance and repair. However, as one would expiexincreased complexity also affects the
dynamics that the converter can display.
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Over the years, we have performed a series of studies othtion phenomena in multi-level DC/DC
converter systems. We have demonstrated how borderioallsfurcations can give rise to the birth
of an ergodic (or resonance) toruélj42], and we have also been able to demonstrate this type of
torus-birth bifurcation experimentally48]. More recently, we have studied a number of unusual
bifurcation phenomena that can occur in multi-level coteresystems operating with corrector gain
factors beyond the threshold of torus birth bifurcation. eGaxxample is the birth of an ergodic torus
through the collision between the normal period-1 cycle amdsonant period-6 cycle of saddle type,
a collision in which the period-1 cycle is transformed frorstable into an unstable focus cyck].
Another example is the development of heteroclinic bubthlasconnect the points of a stable resonance
cycle with a pair of saddle and focus cycl&l]and, at even higher values of the corrector gain factor,
we have been able to follow the complicated reconstructiongsses that take place between coexisting
stable and unstable resonance tori.

The purpose of the present section is to provide an overviewome of the main torus-birth
and -reconstruction processes that occur in multilevel@Itonverters operating in the regime of
high feedback gain factors. We start by illustrating thehbof different sets of resonant or ergodic
tori through non-smooth Andronov—Hopf bifurcations anddaw-collision torus-birth bifurcations. We
illustrate how these tori with increasing corrector gaiodm®e embedded one into the other and follow
the associated structural changes. We also describe a noiirbarder-collision torus-fold bifurcations
in which pairs of stable and unstable tori emerge and disappithout affecting the stability of the fixed
point or of already existing tori. The fact that these biitrens do not affect the stability of the basic
operational mode implies, of course, that their occurreraenot be predicted from a stability analysis
for this cycle.

4.1. Power-Electronic DC/DC Converter with Multilevel Gaooi

In order to study the dynamics of a pulse-modulated conyrstiesn operating in the regime of high
feedback gain, let us consider the multilevel DC/DC coreresketched in Figuré5a. Here,N is the
number of input levels for the voltage supply, aBigldenotes the highest available input voltage. In the
following calculations we shall take the number of levelb&V = 3.

Considering the control diagram in Figui®a, F, is the output voltagel. the inductance of the
filter coil, and R the associated loss resistances$ is the current sensof its sensitivity, and/,.¢ the
reference voltageR, andC|, are components of the corrector circuitA, the corrector amplifier, and
a the corrector gain factotS/ H is a sample-and-hold unit that reads the error signalat every clock
time and maintains it for the following switching period.nglly the comparator® A,, s = 1,2,..., N
compare the output signal from the sample-and-hold unit thie sawtooth signalsigﬁlp, s=1,2,...N
in order to generate the control signals to the switches,, ... , Sy.

For a three-level system, the feedback control is impleetehy means of three ramp functions such
thatwglﬁlp varies from0 to Uy /3, Vrﬁp between,/3 and2U,/3, and%fi%p betweer2U,/3 andUj,. All
three ramp functions are driven by the same clock. Figabeillustrates the generation of the switching
signals. At the beginning of each ramp cycle, the samplekandd unit reads the corrector output signal
ax, and maintains this value for the entire ramp cycle. The duipliage from the sample-and-hold
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unit is denoted.,,. As long as the value af.,, (the control signal) falls in the interval fromto U, /3
(the first zone), it is compared wiﬁl’igﬁp. If Veon exceedsl/}glrfqp, the switchS; is connected to the input
voltageF) /3, and the connection is broken as soor\féﬁp becomes larger than,,,. A similar scheme
is applied ifv.,, falls in one of the other zones.

Figure 15. (a) Schematic diagram of the considered DC/DC convefiglis the maximum
available input voltage and the number of input levelsE, is the output voltage and..;
the reference voltageC'S is the current sensoiR,, Cy and DA, are components of the
feedback control, and/H a sample-and-hold unit that generates the control signileto
comparatord A, DA,, ..., DAy; (b) Temporal variation of the control signal to illustrate
the generation of the switching signals,,, is the output signal from the sample-and-hold
unit andmg‘i?lp, s =1,2,..., N are the ramp signals for the three different zones.
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The dynamics of the three-level converter system may beesepted by the following set of
two-coupled non-autonomous differential equations wiitoantinuous right hand sides:

T=Mx+v(Q,Kr—Q,) and y=—-z+ \y+1 (16)

where the (dimensionless) dynamic variabtesdy represent, respectively, the normalized load current
x1 and the error signal, of the integrating feedback correctér,, ands?, are the normalized input and
output voltages, and; and )\, are the normalized eigenvalues for the linear dynamicsttiea place
between the switching events. Note, that bbttand )\, are negative.

N

Kp =Y K

s=1
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with

KE = = (1+signé), & =y(r) +m()

2
Viam q
nS(t) = =
Oé)\z‘/;ef NO[)\Q

(s—1+t—1)

is the switching signal. As beforéy denotes the number of zones amdhe corrector amplification
factor. The parameteg controls the amplitude of the sawtooth functions. Finatlye applied
normalization conditions are

By M) aR a
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wherea is the period of the ramp signal angl; the reference voltage.

The dimensionless time variablés also normalized in the terms of the period of the ramp digitse
sawtooth functionsg(t), s = 1,2, ..., N are periodically repeated normalized ramp functions whith t
ramp period 1i.e., ns(t + 1) = n4(¢). The parametey controls the amplitude of the sawtooth functions.
T=[t] =k—1,k = 1,2,...is the discrete time variabl&,] being defined as a function that is equal
to the integer value of its argument. The functigm) thus represents the error signal of the integrating
feedback corrector at the beginning of each ramp cycle.

In the following bifurcation analysis we shall consider #terector gain factorr and normalized
output voltage?, as a control parameters. The remaining parameters havebesan to bé/, = 100V,
R=0.0839Q,L=0.0106H,Uy=10V, Vi =5V, 3=01Q,a=2-10"2s,CoRy = 1072 s,N = 3.

During a given ramp periofl — 1 <t < k, k = 1,2,..., all switching events take place within the
same zone. In the intervals— 1 < t < t, andt, < t < k between the switching timés— 1, ¢,
andk, the system is linear. By integrating the equations of nmota the continuous-time systerh)
from switching event to switching event, our investigatman thus be reduced to an analysis of the
two-dimensional piecewise-smooth map:

z, = eM(xp_1 +0F) + Agpue ) — - (17)

6)\1 _ e)\Q )\ eAl(lfzk) — >\ 6)‘2(17'216)
e (@ ) (g 60) :
)\2 - )\1 >\2 - >\1
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Here,x; andy; denote the value of the dynamic variabieandy at the switching time&: and
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The integers, represents the zone in which the switching in ttfe ramp cycle takes places, and the
variablez; represents the relative pulse duration in kitle ramp cycle:z, = t, — k+ 1,0 < z, < 1.
These variables are determined by:

0, Ye—1 <0
q
—= 1 _ > —
2L ) Yk—1 Oé)\z
NOz/\Q q
- Y1 — Sk t1l, 0<yp 1 <———
\ q Oz/\g
and
(
L, Y1 <0
q
_J N 1>
S = ) Yr—1 Oé)\g
Na
[— 2yk1} +1, 0<y 1 < 7
\ Qg
NO[)\Q - . . . . .
where | — yr—1| again is defined as a function that is equal to the integervaluts argument.
Expressed in terms of the value of the normalized error sigm@aboundaries between the various zones
. qs
are givenby = ————,s =0, V.
g yy NO[)\Q iy

4.2. Chart of Dynamical Modes

Figure16 provides an overview of the distribution of dynamical mo@es, steady state solutions to
the equations of motion) in they, 2,.)-plane. We recall that is the corrector gain factor arid, the
normalized output voltage. As mentioned above, the figuresicers a part of parameter space where
the corrector gain factor is relatively high (> 5.0). This implies that the converter is operating in a
regime where instabilities are likely to arise. The purpofseur investigation is to examine a number of
new transitions that lead to the formation of resonant oo@igtori. We will only consider situations in
which the required output voltage falls below the maximurailable voltage. In the opposite case, the
switching process will be abolished, and the converterdiiplay a stable equilibrium point.

The light blue domains denotéd ,, I1; , andIl, 5 represent operational regimes where the converter
displays stable, regular switching cycles. These are thealcoperational modes, and for sufficiently
low values of the corrector gain factor, they are stable roya#es. However, in the part of parameter
space we consider here they are of stable focus type. Thiksesnhat they have damped oscillatory
transients controlled by complex conjugate eigenvalugs mimerical values less than The three
domains correspond to the three levels of input voltage.

In the domairl, ;, the normalized output voltage. is relatively small and the converter can provide
the required voltage through operation in the first zang, < Uy/3. In the domairll, -, the system
operates in the second zone, and for higher load voltagesg€idomainl, 3), the converter operates in
the third zone. The transition from one zone to the next ve®k border-collision bifurcation, either at
the curveNg1 or atNgQ. At low values of the corrector gain factor (to the left of {h@nts P, and P),
this bifurcation takes form of a transition from one staldeus cycle to another. To the right of these
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points, the bifurcation involves the transition from a $atocus cycle (in the light blue region) to an
ergodic or resonant torus (in the dark blue regions).

Figure 16. Chart of dynamical modes in they, €2,.) parameter plane« is the corrector
gain factor and?, is the normalized output voltage. The light blue regiongesent stable
periodic switching dynamics associated with operationaatheof the three levels for the
input voltage. The dark blue regions represehttorus dynamics with their characteristic
necklace formed resonance zones. For gain factors exagedinl1, this relatively simple
structure is overshadowed by a more complex structure ofistiey modes. This is the
region of concern to the present discussion.
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The curvesN}, N2 and N? are Andronov—Hopf (or Neimark—Sacker) bifurcation curiresvhich
the stable period-1 solutions lose their stability and gfarm into closed invariant curves as the pair
of complex conjugate eigenvalues continuously cross aoutyh the unit circle in the complex plane.
Above these curves the converter displays ergodic dynafnhecs quasiperiodicity) intervened by an
infinite number of domains where resonant dynamics occufge tfansition to torus dynamics may
be explained by the fact that the increasing feedback gamergées additional oscillatory modes in
the system§5]. In Figure 16, the quasiperiodic (or non-resonant) dynamics is foundhéndark blue
areas oflI' , I12 , I13_, and the two-mode resonant dynamics is observed in theembkiructures that
run across these domains. As discussed in Sections 2 and 3atisages-on-a-string shape of these
structures is a characteristic feature of non-smooth systehere the resonance zones are delineated by
border-collision fold bifurcations.

Fora > 11, the chart of dynamical modes display an even more complicsttucture. The corrector
gain is now so high that new tori begin to appear both arouedsthble focus point and around the
already existing torus, and a variety of new bifurcationrgireena start to take place. Description of
some of these phenomena will be the subject of the followangiens.

4.3. Embedded Tori

In order to provide a clearer picture of what happens as thecwor gain factor crosses the critical
value of aboutv ~ 10.86, Figurel17 displays a series of three one-dimensional bifurcatiogrdias
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obtained as vertical scans through the bifurcation strediu Figurel6 for different values ofv. In
Figure1l7a, « = 10.6 and the scan is performed in the relatively quiet regimeédlte appearance
of coexisting structures. We recognize the two regions nfgalynamics extending, respectively from
the point of Neimark—Sacker bifurcation Q@D to the point of border-collision torus birth bifurcation
Qf, and from Q2 to QF,. All four torus birth bifurcations are supercritical, andewean observe
both the relative abrupt transition in the growth of the toamplitude associated with the modified
Neimark—Sacker bifurcation and the nearly linear growthha torus amplitude associated with the
border-collision torus birth bifurcation.

Figure 17. (a) Bifurcation diagram fora = 10.6 illustrating the primary torus birth
processes.(2;, and ()’ denote modified Neimark—Sacker bifurcations @@1 and Qg,Q
denote border-collision torus birth processes. Horiddimas represent zone boundaries,
and the green line represents the stable fixed pdnhf-@rmation of a large amplitude torus
in the region between the primary tori, = 11.0; (c) Formation of a new large amplitude
torus around the primary torus,= 11.6.
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In Figure 17b, « = 11.0 and a new interval of torus dynamics has appeared between the

border-collision bifurcation aﬂg1 and the Neimark—Sacker bifurcation @¢. We notice, however,
that the period-1 focus cycle (fixed point of the mag)j remains stable in this interval. This implies
that the new torus cannot have been born through any of theeabous-birth processes. A further
possibility is that the new torus has been born through asttmdl bifurcation,i.e., that a pair of stable
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and unstable tori of finite amplitude has been formed. As adpproach to examine this possibility, we
have determined the basins of attraction for the coexistialgle solutions and found that the stable fixed
point retains a relatively large basin of attraction throogt the entire interval of coexistence.

Finally, for « = 11.6 (see Figurel7c), a new torus structure has also appeared around the arigin
torus in part of the interval betweét anngz. This new torus displays resonant period-10 oscillations
over a relatively large range 6i.-values. We also note that the emergence of this new torus ruaie
affect the stability of the original torus.

Figure 18. (a) The large amplitude tofl;, and T3, born in torus fold bifurcations, coexist,
respectively, with the stable fixed point and with the oragismall amplitude torug’.

a = 11.83; (b) and €) Expanding regions of existence for the various tori leaals t
merging processes.
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Figurel8illustrates the changes in the bifurcation diagram thaticxas the corrector gain is further
increased. In Figuré&8a, o = 11.83 and the two large amplitude tori have spread along{ih@xis
such that they almost touch both at the border-colIisioreriitioan1 and near the Neimark—Sacker
bifurcation poimﬂfa. Inspection of the figure also shows that a similar large &og# torus exists in the
interval above the border-collision bifurcation pofiff ,.

In Figure18b, o = 11.85 and a merger has occurred among the two large-amplitudeeari the
Neimark—Sacker bifurcation poimfo. In Figure18c, « = 11.885 and an overlap has also developed
between the large amplitude torus and original torus at tinddy-collision bifurcation poirﬁ)fj,l.
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We shall discuss the bifurcations associated with theseegees in the next section. First, however,
let us consider the torus cross sections depicted in Fit@irkn Figurel9a,a = 11.885, €2, = 10.7, and
the system operates in the region of period-10 resonant¢kddarge amplitude torus. Here we observe
an unstable fixed point of focus typéssurrounded by an attracting ergodic toflisepresenting the
small amplitude torus that exists between the Neimark-@amkurcation af2?, and the border-collision
torus-birth bifurcation aﬂg’Q. The ergodic toru§” is again surrounded by the repelling tofi}s and,
with an even larger amplitude we find the period-10 resonamaes 77, with its saddle cycle5, and
stable focus cycléy. T} represents the border between the basins of attractich &ord 7.

In Figure19%, o = 12.36 and(), = 10.77. Here, the system has moved into a region of resonance
dynamics for the small amplitude torus, and we can obsemedexistence of stable period-10 and
period-19 dynamics. The repelling torii$ still serves as boundary between the two basins of attractio

Figure 19. (a) Coexistence of a stable period-10 resonance t@igsand an attracting
ergodic torusl’. a = 11.885 and(), = 10.7; (b) Coexistence of stable period-10 and
period-19 resonance dynamics.= 12.36 and(), = 10.77. In both figures, the unstable
torusT} separates the basins of attraction of the coexisting stabt®ns.
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4.4. Torus Merging Processes

The purpose of this section is to provide an overview of sofitkeetorus merging and reconstruction
processes that occur as the output voltage is further iseceaFigure20a shows a bifurcation diagram
for the transitions that occur near the Neimark—Sackerrtsfion pointh’O for « = 11.885, i.e,
within the rectangle denoted in Figure18c. We first notice that the size of the large amplitude torus
passes smoothly acro%. The merger between the two parts of this torus that existfer 11.825
(Figurel8a) has already occurred in Figur8b. This merger has involved the collision of a pair of stable
and unstable tori from both sides and the reconstructiohetdrus fold structures into an outer stable
torus that connects smoothly across the Neimark—Sackearchifon point. The inner unstable tori are
broken up intdl}} andT?.
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Figure 20. (a) Close-up of the bifurcations that take place near the Neirfacker
bifurcation pointhO (outlined by the rectanglel in Figure 18c). Note particularly the
border-collision torus-fold bifurcation &< in which 7, and7? collide; (b) Phase diagram
illustrating the different tori that exist fdr, = 9.322. The colored regions here represent
the basins of attraction for the three coexisting stablie tor

1.0 1.0
y y
—0.1
—0.1
0.56 T 1.30
a
(a) (b)

At the point of Neimark—Sacker bifurcatidn’, we observe the birth of the small amplitude torus
Ty, and the associated destabilization of the fixed point. Foremsing values of),., the amplitude
of T, increases in a parabolic manner until @f, the torus collides with the zone boundaries at

q 2q

y=— andy = — . In this collision the torus undergoes a border-collisiol fbifurcation,
30[)\2 30[)\2

i.e., it disappears at the zone boundary after collision withrétpelling torus/? that spreads in from
the neighboring zones. At the poifti-, slightly to the right of the Neimark—Sacker bifurcationiqto
we observe the formation of a third toriisof intermediate amplitude corresponding to the torus dalle
T, in Figurel8a. This again involves a torus-fold bifurcation, althougt af border-collision type. In
the range between the torus-fold bifurcatiorfat and the border-collision torus-fold bifurcaticif;,
the system thus displays three coexisting stable tori, thigh basins of attraction separated by the two
unstable tori. Figur@0b shows a phase diagram for the = 9.322. Starting with the focus poink’
that represents the, now unstable, basic operational maeléirst observe the stable ergodic toflis
Thereafter follow the unstable tord% that delineates the basin of attraction g the stable ergodic
torus 7', the unstable torug}. and, finally, the large amplitude resonance tofysrepresented by its
stable period-97 node solution.

Figure 21 provides an overview of the total bifurcation structure #éowvaluea = 11.885 of the
corrector gain factor. To the left in the figure, the large atage torusT’s already exists together with
the unstable torug?. These tori have been formed at lower output voltages thrgugcesses similar
to those we observe to the left in Figu2& As the required output voltadge. increases, the structural
change to first occur is the birth of the small amplitude tdfysn a supercritical Neimark—Sacker
bifurcation at(?. This bifurcation leaves the fixed poiritg., the basic operational mode, unstable. In
the left hand side of the picture, the small amplitude tdruagain disappears through collision with
in a border-collision torus-fold bifurcation &%. In the mean time, the stable toriiisof intermediate
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amplitude has been born together with the unstable tBtus a torus fold bifurcation a2 (still to the
left in the figure). This pair of tori continues to exist urttiey finally disappear in the border-collision
torus-fold bifurcatior2%. to the far right in the figure. At this voltage, the originalda amplitude torus
Ts has been destroyed in a homoclinic bifurcatiofgt producing the stable period-10 focus cyélg
and a new large amplitude stable tofiishas been born at the homoclinic bifurcati@p to the right in
the diagram. The basins of attraction fdgyand the large amplitude stable toflisare delineated by the
stable manifolds of the period-10 saddle cycle.

Figure21. Sketch of the overall bifurcation structure for= 11.885. The diagram illustrates
the formation and termination of coexisting stable and ainisttori in the dynamics of the
converter system. The observed bifurcations include nmemti{fnon-smooth) torus-birth and
torus-fold bifurcations (denotet? and 2y, respectively), homoclinic bifurcation$2g),
as well as border-collision torus-fold2f) and supercritical border-collision torus-birth
bifurcations Q¢ ,).

Moreover, a new pair of stable and unstable t6¢iand7}?, has been born in the torus fold bifurcation
Qp. As the parametef, passes the vaIu@SQ, the unstable focus fixed poift undergoes a reverse
supercritical border-collision torus-birth bifurcatiofs result, a stable ergodic torii§ merges with the
fixed pointF'. When this happens, the unstable focus fixed pbitiurns into the stable focus (i.e., the
fixed pointF is stable to the right of the bifurcation poiﬁg2 in Figure21).

4.5. Behavioral Complexity of the Multilevel DC/DC Coneert

This section has presented an overview of the main torusaomand reconstruction processes that
one can observe in a typical DC/DC converter with multilegaitrol when operating in a regime of high
corrector feedback gain. As previously noted, the advantdgising relatively high gain factors is that
a specified variation in the output voltage can be followesdldiaand more precisely. However, as our
investigations have shown, this happens at the risk notafrdgstabilizing the basic modes of operation,
but also of introducing new quasiperiodic and resonanogéimodes to the system, including modes
whose formation cannot be predicted from a stability anslgbthe basic modes.
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With multilevel control, the converter displays differendnes of operation corresponding to the
different levels of input voltage. At normal corrector féadk gains, the basic operational modes
are of stable node or focus type, and transitions from oneemodchnother in response to variations
in the required output voltage take place via border-dotisifurcations at the zone boundaries. As
the feedback gain is increased regions of parameter spate &t arise where the normal operational
modes have lost their stability and been replaced by quasgie or resonant periodic dynamics on
invariant tori. At each of the zone boundaries, this traositakes place through a border collision
torus-birth bifurcation in which a pair of complex conjugdteigenvalues jumps across the unit circle
in the complex plane. In this way, regions of torus dynamigseaat the upper end of each of the
operational regions. For lower values of the output voliéigese ranges of torus dynamics terminate in
non-smooth Neimark—Sacker bifurcations. Such non-smiNeimark—Sacker bifurcations distinguish
themselves from normal Neimark—Sacker bifurcations byshotving a parabolic growth in amplitude
for the emerging mode.

As the feedback gain is further increased, a multitude of medes arise and coexist with the already
described modes. This has lead us to examine a number ofalrircation phenomena, including
(i) subcritical border-collision torus birth processesanhich an unstable torus collapses onto a stable
periodic orbit and transforms it into an unstable cycle) lforder-collision torus-fold bifurcations in
which a pair of stable and unstable tori meet and annihilateeaboundary of two operational zones;
and (iii) torus reconstruction processes in which pairstable and unstable tori from either side of
a zone boundary collide and the stable and the unstable ¢ogafter continue smoothly across the
zone boundaries.

It is unlikely that DC/DC converters deliberately will begigned to operate in the regime of torus
dynamics. However, as experience shows, the parametems@kihg conditions of a given converter
may gradually shift with time, and the converter may staroperate in regions that have not be
considered in its design. Considering the rapid growth tikatuse of converter systems has undergone
during the last few decades, and the enormous significatetimverters are destined to have in the
realization of a so-called “smart” power distribution st it is obviously in line with usual engineering
practice to carefully investigate what happens outsidentirenal operational regime. Experimentally,
operation outside the normal regimen is also realiza#8. [ Such operation is found first of all to
reduce the efficiency of the conversion process. Howeveilgs of energy associated with this loss of
efficiency might cause the temperature of the convertersmand thereby influence a large number of
other parameters of significance for the functioning of tystem.

5. Single-Phase Pulse-Width Modulated H-Bridge I nverter

We have already listed several important applicationdfeirnverter (or DC/AC converter). Industrial
uses of this type of converter also include its applicatorsupply AC power of variable frequency
and voltage to induction furnaces. By virtue of their cle@emtion, easy regulation and high energy
efficiency, induction furnaces have gradually penetratedhetal-melting industry from the melting of
gold, copper and aluminum to the melting of steel and iroma.the skin depth of the material, the optimal
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frequency depends on the type of metal to be melted and theobthe load. Operational frequencies
for the power supply may thus vary from 50 Hz to hundreds of.kHz

The purpose of this section is to illustrate the transitidresn regular periodic operation to
quasiperiodicity and high-periodic resonance dynamias dime can observe in pulse-width modulated
inverter systems. As in the previous sections, the focukheilon inverters that operate with high
corrector gain. We will demonstrate how the transition t@agjperiodicity may occur either via a
modified Andronov—Hopf bifurcation or via a border-coltisi torus-birth bifurcation. Phase portraits
will be presented in order to demonstrate the phenomenohadggsynchronized quasiperiodicity, and
the numerically calculated waveforms will be compared veiiperimental results for an inverter with
similar parameter values.

Phase-synchronized quasiperiodicity denotes an integesbrm of synchronization in which a
guasiperiodic system adjusts its dynamics in responsedatamal periodic forcing, the appearance of a
new oscillatory mode in the system, or the interaction withtaer quasiperiodic oscillator. This type of
dynamics appears first to have been described by Postrad\[86] and by Anishchenket al.[87] who
identified the phenomenon as winding number locking on admzensional torus. Similar phenomena
have been described by Loost al [88] who performed experimental studies of quasiperiodic
synchronization for a system of interacting semicondutdsers, and by Giaourist al. [89 who
examined torus-torus interaction and the onset of threguigncy quasiperiodicity in a current mode
controlled boost converter.

Phase synchronized quasiperiodicity manifests itsetienform, for instance, of stable quasiperiodic
motions with three independent frequencies of which twoa@nunsynchronized while the third
component synchronizes with one of the former. For our DC&Dverter we shall demonstrate
numerically as well as experimentally how the amplitude hed guasiperiodic oscillations that arise
through a torus-birth bifurcation from the main switchingcle is modulated by the period of the
reference signal. In this case, the switching cycle is syordbed with the reference signal, but the
oscillatory component produced in the torus-birth bifti@amay remain unsynchronized.

5.1. Model of the Single Phase PWM H-Bridge Inverter

Figure 22 presents the outlay of the considered single phase PWM difipiinverter and Figur23
shows the corresponding schematic circuit diagram. Irngpeof Figure 22 allows us to identify
the input filter (1), the four switches (2), and the composeuit the LC-filter (3). We can also
locate the sample-and-hold urfif H (4), the error amplifierD A2 (5), and the sine-wave generator
(6). The remaining components are the current protecticouiti(7), the MOSFET drivers (8), the
inverter DD (9), and the comparatabp A1 (10). Finally (11) and (12) are the ramp and clock pulse
generators, respectively.
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Figure 22. Experimental setup of a single phase PWM H-bridge invelg).is the input
filter; and (2) locates the four switches realized by meanmefal-oxide-semiconductor
field-effect transistors; (3) is the outpt” filter; (4) and (5) are the sample-and-hold unit
S/ H and the error amplifieb A2; (6) is the DDS (Direct Digital Synthesis) sine waljg; (t)
generator; (7) the current protection circuit; (8) the M@&SFdrivers; and (9) the logic
inverterDD.

The switchesSy, Ss, S3 andS, play an essential role for the operation of the converteeyTinay
be realized, for instance, by means of metal-oxide-sendigctor field-effect transistors (MOSFET).
The four switches operate in pairs such thatand S, switch synchronously and, and S; switch
together, but in anti-phase withy and.S,. The states of the switches define two distinct topologies of
the inverter:T; (51, .S, on andSs, Ss off) and 75 (S, S, off and S;, S5 on). These topologies provide
opposite voltages to the load. When the switchgandS; are on andsy, S, are off, a positive voltage
Eq will be applied to thel.C filter. WhenSs, S; are off andS,, S, are on, this voltage is reversed.

The switches are operated by the sinusoidal PWM modulatothis way the switching process is
controlled through a feedback mechanism. A simple methaltea voltage-mode control, implies that
a voltage proportional to thaC' output voltage is compared with a reference sinusoidabgelt/e(t)
of frequencyfes = 1/7, T = ma, to generate a control voltage,, (modulating signal). Hereg
denotes the ramp period andis referred to as the frequency modulation ratio. The coisignal is
then compared with a sawtooth wavefoimm, to generate the switching signal. The switclsgss,
are tuned on and,, S; are turned off at the beginning of each ramp pewodnd switches, S, are
tuned off andS,, S3 are turned on when the ramp voltage exceeds the value of thituooltage at the
beginning of the ramp cycle.
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Figure 23. Schematic diagram of the PWM H-bridge single phase inveHgis the external
supply voltage and, the output voltageV..(t) is the sinusoidal reference voltage with the
periodT = ma and¢ = a(V,(t) — fx2) is the error signal. The sample-and-hold W)it{
detects the error signdlat the beginning of each clock time. This produces the sigial
that together with the ramp functidf.mp generates the switching signals to the switchigs
Sy, andSs, Ss; (b) As long asveon > Viamp, SWitchesS,, S, are on andb,, Ss are off, while
S1, Sy are off andSs, Ss on for veon < Viamp
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Considering again the schematic diagram in Fig2Bel. andC' denote, respectively, the inductance
and the capacitance, of theC filter, R; is the load resistance, an@ is a parasitic resistance
characterizing the dissipation in the inductance coil.represents the current in the filter inductance
L andz, the output voltagel’ S is the voltage sensop, its sensitivity, and/,.¢(¢) the reference voltage
at frequencyfier. DA is the corrector amplifiery the corrector gain factor, ar§y H a sample-and-hold
unit that reads the error signal(V,.¢(t) — fz) at every clock time and maintains it for the following
switching period. Finally the comparat@rA,; compares the output signal from the sample-and-hold
unit with the sawtooth ramp sign#l...,(t), in order to generate the control signals to the switchies
S,, 53, S4. For a PWM H-bridge single phase inverter, the feedbackrobistimplemented by the ramp
function such that/..,,,(t) varies from—U, to +U.

The dynamics of the single phase PWM H-bridge inverter maegpeesented by the following set of
two-coupled non-autonomous differential equations wiitantinuous right hand sides:

&= pr—wy— (p—w)Kr §=wr+py— (n+w)Ke (18)
Here 9rr
Ke=signy —n), ¢ = %Sin (W) — Ja(r) —y(7)
2P
n=—glt—7=1/2; t.=t/a;7=[t]
n+w U(]
9 = . P= 1-9)(1
p— BE*( )1+ R/R.)
4= P = y/F

Uo
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with

a4 R+ 1 and ! 1+R L R+ ! 2>0
=—— | = w=a\| —— — | —= (=
H="5\7T " CR, LC R.) 4a\L " CR,

The (dimensionless) dynamic variablesandy are linear combinations of the currentand output
voltagewr;:

r1=—(R/L+ p/a)wy —wws/a; x5 =w/C

a’Ey
wy = —m{(wrw)x — (p—w)y}
wy =~ w)r+ (p+ w)y)

C2wL(p? + w?)

Together the two variables and y represent the smooth dynamics of the system, and all other
processes are assumed to be instantaneous. In partitidaswitches in the H-bridge are assumed
to function ideally. » andw are the real and imaginary parts of the eigenvalues of theesymatrix,
normalized relative to the periadof the ramp signal. The sawtooth functigns periodically repeated
ramp function with the ramp period ile., n(t. + 1) = n(t.) witht, = t/a. T = [t.] = k—1,k = 1,2, ...
being the normalized discrete time variable. As in the mmesisection|t.] denotes the integer value of
t.. The parameteP controls the amplitude of the ramp functions anetpresents the amplitude of the
reference voltage.

In our numerical calculations we have uged= 1.0Q; L =4.0-102H; C =3.5-107°F; R, = 45;
Vi.=4V, Uy =10V, a > 0 andE, > 20 V. These parameter values correspond to the values of the
experimental converter systef. = E,/FE, with E, = 1V is the normalized input voltage. The gain
factora and the normalized input voltagewill be used as the main control parameters. However, other
parameters such as the sensitivityf the voltage sensor, the frequency modulation rati@and the
ramp periodz may also vary from figure to figure. The values of these pararsetill be specified in
the captions of the various figures.

By integrating the equations of motion for the continuomset system 18) ramp period by ramp
period, our investigation is reduced to the analysis of #mgoglically forced piecewise-smooth map:

xp =€ (cosw - T —sinw - yp_1) + 2eH(1=2k) (cosO —sinby) — 1 (19)

yp = € (sinw - Tx_1 + cosw - yr_1) + 2eM(1=2k) (sinfy, + cosby) — 1

k=1,2,....
Heref, = w(1 — z,) and
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with

. 2k — 1
Or—1 = %Sm (%) — V1 — Yr—1

As in the previous section, the variablg denotes the relative pulse duration in #té ramp cycle.
Besides quasiperiodic motion, the m&9)is found to generate a variety of resonance modes, inaudin
cycles of periodly = nT, n = 1,2,... Here,T = ma denotes the period of the reference signal
(the intended period of the output signal). We will refer fooge type of resonance modes as a
period+ cycles.

5.2. Torus-Birth Bifurcations

As long as the corrector gain factarand the normalized input voltage are sufficiently small, the
inverter displays stable regular switching dynamics. Tifertation diagram in Figur@4a illustrates the
transition from this dynamics to quasiperiodicity (andioas forms of high order resonance dynamics)
that occurs as the gain factor (for relatively large valueshe input voltage) increases beyond the
normal operational regime. This transition takes placawi&ndronov—Hopf bifurcation. As previously
noted, this implies that a pair of complex-conjugated rpliirs for the fixed point (period-1 cycle)
smoothly crosses out of the unit circle. However, the fornthef bifurcation diagram, particularly the
non-parabolic growth of the quasiperiodic amplitude, eds¢hat the process takes place in a non-smooth
system. Figur@4b shows the variation of the module of the two complex-coafad multipliers across
the bifurcation point.

Figure 24. Birth of a quasiperiodic orbit from a stable period-1 cyeieai Neimark—Sacker

bifurcation; p) Variation of the absolute valup| of the complex-conjugate multipliers
p12 = pr £ jp; of the period-1 cycleo,, is the bifurcation point for the Neimark—Sacker
bifurcation.Q = 44.0, 3 = 0.075, m = 10 anda = 10~* s.
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Figure 25 shows the transition from stable period-1 dynamics to gueasidicity across a curve of
border-collision torus-birth bifurcation. This transitiis observed when the input volta@€for relative
large values of the corrector gain factor) exceeds the bafithe normal regime of operation. The
bifurcation diagram (Figur@5a) illustrates the linear growth of the quasiperiodic atople with the
distance to the bifurcation point characteristic of borc@tision bifurcations. As shown in Figure 25b,
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the complex-conjugated multipliers for the period-1 cyahelergo an abrupt jump as the system crosses
the bifurcation poinf2,,.

Figure?25. (a) Birth of a quasiperiodic orbit from a stable period-1 cyid@ border-collision
bifurcation; p) Variation of the absolute valup| of the complex-conjugate multipliers
p12 = pr = jp; of the period-1 cycle.Qg is the bifurcation point for the border-collision
bifurcation.a = 7.82, 5 = 0.075, m = 10 anda = 10~* s.
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The two different torus-birth processes are both relatgtiécsame underlying mechanisms, namely
to the instability associated with the fact that the syst@arates with a relatively high corrector gain
factor. However, the form of the transition depends on wibicnch of the bifurcation curve the system
crosses, and so does the organization of the resonancasegithe quasiperiodic domain.

Figures26 and 27 illustrate the accordance we achieve between the expetathenbserved and
numerically calculated wave forms both for the region obkaperiod-1 dynamics (a) and for the
quasiperiodic regime (b).

Figure 26. (a) Experimental observed wave form for the output voltageof the PWM
H-bridge single phase inverter under regular periodic aj@n with an input voltage of
Ey = 44.0 V and witha = 7.0, § = 0.075, m = 10 anda = 10~* s. Experimentally
observed waveform for the output voltage after the transition to quasiperiodicity. The
input voltage is nows, = 47.0V, a = 7.6, 3 = 0.075, m = 10 anda = 10~ s.
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Figure 26. Cont
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Figure 27. (a) Numerical observed wave form for the output voltageof the single
phase PWM H-bridge inverter under regular periodic operatvith an input voltage of

Ey=44V, o =17.0,8 = 0.075, m = 10 anda = 10~* s. Numerical observed waveform
for the output voltager, after the transition to quasiperiodicity. The input voktag now
Ey =470V, a=17.6,58=0.075,m =10 anda = 10~*s.
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5.3. Phase Synchronized Quasiperiodicity

Figure 28 Iillustrates the transition from simple periodic dynamias phase-synchronized
quasiperiodicity. Figure8a,b first shows the phase space trajectory and the wavefarthdostable
period-1 cycle that exists in the region with relatively le&lues of the corrector gain factor. The
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variablesz and y are the state variables in our original time-continuouscdeson of the inverter
system Equationl@®). The two curves have been calculated by iterating the gisadly forced map
in Equation (9) with a ramp period of. = 2 x 10~ s and a frequency modulation ratio«f = 200.
The curves in Figur@8a,b thus contai00 points per full cycle of the reference voltabg;(¢).

Figure 28. (a), (b) Stable synchronous period-1 cycle. = 200, o = 20,a = 2 x 107° s,
and(? = 60. The phase portraitj is calculated by iterating the periodically forced mag)(
and, corresponding to the value of frequency modulatian rat contains 200 points. The
arrow indicates the direction of rotationc) (The stable period-1 cycle undergoes a torus
bifurcation at the pointv = a,, (o, ~ 21.509), producing a quasiperiodic dynamics that
pulsates in synchrony with the reference voltadje (
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Figure28c shows the variation of the real and imaginary parts of theplex conjugated multipliers
for the period-1 cycle with the corrector gain facter This variation displays an unusual oscillatory
character that seems to continue with decreasing amplitudiee left of the figure as the corrector
gain factor is reduced. However, asreaches the Hopf bifurcation threshald, the stable period-1
solution loses its stability and undergoes a torus-birthrbation (of modified Andronov—Hopf type).
In Figure28d this transformation manifests itself as a broadening efatiginal period-1 orbit as each
point in Figure28a is replaced by a small elliptic curve. Particularly intgneg in the present context
is the fact that this broadening is inhomogeneous and edfyepronounced in the down strokes of the
temporal variation of (see Figur&8d).
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Inspection of Figure29 provides a clearer picture of the structure of the quasipéri phase
space trajectory. Figur29a shows the overall structure of this trajectory, and Fige®a,b shows
magnifications of, respectively, the broad down stroke aeariuch thinner upstroke. This is an example
of phase-synchronized quasiperiodicitg,, a quasiperiodic attractor that is modulated by the prasen
of a third frequency, the frequency of the reference volfdget).

Figure 29. (a) The phase portrait for the phase synchronized quasiperiodde that is
calculated by the iterating of the periodically forced map)( o = 21.523, 2 = 60 and

a = 2 x 107° s. This phase portrait contains = 200 closed invariant curves, associated
with the quasiperiodic solution. As illustrated in)(and €), the diameters of these closed
curves vary periodically with the peridfl of the sinusoidal reference voltag&«(t), i.e.,

T = ma.
1.55 0.54 0.0026
S
Y Y Y =
S
R
—1.25 —0.2 —0.016
—1.6 T 1.5 0.075 T 0.18
(@ (b) (©)

5.4. Signal Distortion

The normal operational regime for the DC/AC converter dssed in this section is the regime of
stable period-1 dynamics. In this regime, the quality ofdh&put signal can be characterized by means
of its Total Harmonic Distortion H D). This measure is defined as the ratio of the square root of the
sum of the squares of all harmonic voltage componentsvelaithe root mean squar&{/.S) voltage
of the fundamental frequenaye.,

VEHVE+ VS g
Vi

whereV;, i = 2,.... is the root mean squard?(/.S) value of thei-th harmonic, and/; is the RM S
value of the fundamental cycle. Total harmonic distortiah @bviously vanish if there are no parasite
harmonics. On the other hand, if the form of the output vatddfers significantly from the sine wave
specified by the reference signalff D will be high.

We have determined the total harmonic distortion for the AXC/converter model to be
THD = 2.83% when the converter operates in its normal period-1 regime={ 200, £y, = 50V,
a = 6.0, 8 = 0.075, anda = 10~ s). Note, however, that due to the assumption of ideal switch
dynamics, only the ripple left unsmoothed by the outputrfiiseincluded in the calculated value of
THD. Possible contributions from imperfect switching are eetgd.

THD =
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When the corrector feedback gain starts to exceed one obthe bifurcation curves, the period-1
cycle loses its stability and variety of complex dynamicaldas appear, including resonance cycles
of different periodicity, quasiperiodicity, and phase slyronized quasiperiodicity. When such modes
appear, the converter produces forms of distortion thatrmaionger be accounted for by the above
index of total harmonic distortion.

To characterize the distortion of a complex output voltagg Wwoth anharmonic components and
contributions with nearly continuous spectra, we have aseithdex of Complex Mode Distortion

2 2
vV Vio = Vi*

CMD = -100%

1

with

Here, V; is the RM S-voltage of the fundamental mode ahf, is the RM S-value of the output
voltage with its harmonic, subharmonic, resonant, andfgodic spectral components7, is the
averaging time. For a periodic output voltagé,may be restricted to one period. For a quasiperiodic
or chaotic output voltagel; must be large enough to include low-frequency componenisarmutput
signal with sufficient accuracy. The index for complex modgadtion CM D reduces to thd H D
if only harmonic distortion is present. Numerical calcidas show that the distortion in the output
signal from our H-bridge inverter system increases to abboutD = 17.0% when the system displays
phase-synchronized quasiperiodic motion (e.g.,ifioe= 200, £, = 50 V, 8 = 0.075, a = 107* s,
anda = 6.5).

The frequency modulation rati@ obviously has a major impact on the quality of the output aign
(or on the requirements to the output filter). If the frequenwdulation ratio is small, the parasite
harmonics of the output voltage may interact with the fundatal frequency and destroy the linear
relation between reference and output signals.

6. Conclusions and Per spectives

Pulse-width modulated converter systems have a broad amlyrgrowing area of application. Over
a few decades the use of DC/DC converters and other typeswérer systems has spread from their
initial application in space- and aircrafté] to the widespread use as power supplies in the industry and
transportation sectors as well as in common householdapgas.

By virtue of the complex set of requirements to their operatit is not always easy to optimize the
architecture of a converter system or to determine the lheste of parameters for a given application.
Computer simulations therefore play an important role i@ tkesign of these systems. Besides its
size, weight and cost, the most important performance patensifor a pulse-modulated power supply
system are the conversion efficiency, the speed and accafaisyregulation, and the noise (or signal
distortion) it produces through its switching dynamics. @uith important parameter is the safety
margin in parameter space between the desired mode of mpesaid other modes that would reduce
the performance significantly.



Electronics2013, 2 160

In the present review we have focused on the instabilities tlan arise in DC/DC and DC/AC
converter systems that operate with high feedback gainfacSignificant feedback gain is necessary
to ensure a fast and precise regulation. However, for bgibstyf converter systems we have shown
experimentally as well as through computer simulation hanaasition from stable regular switching
dynamics to various forms of ergodic or resonant torus dyosiwccurs if the feedback gain becomes
too large. We have demonstrated that this transition canpikce either via a modified Hopf bifurcation
(in which a pair of complex conjugated eigenvalues smoothtywe out of the unit circle in the
complex plane) or through a border-collision torus-birtfutzation (in which the eigenvalues jumps
out of the unit circle). We have also shown that the toruthtddifurcations may be subcritical. This
usually implies that a pair of stable and unstable tori isndara torus-fold bifurcation and that these
tori coexist with the stable period-1 cycle over a certainap@eter range. By further increasing the
feedback gain we have observed a number of additional congiyieamical phenomena, including the
formation of structures of embedded tori, torus-torus nstaction, and the emergence of so-called
phase synchronized quasiperiodicity.

Our analysis is based on the assumption that the switchimgepses are instantaneous and that the
smooth dynamics of the converter systems is generated bydae output filter. This has allowed us to
analytically integrate the equations of motion from switghevent to switching event and thereby reduce
the mathematical model to a low-dimensional map. This aggrgrovides an enormous simplification
to the problem. At the same time, transformation of the systeo a low-dimensional nonlinear map
clearly emphasizes the role of border-collision bifureas and other nonlinear dynamic phenomena.

An obvious way to reduce the noise in the output signal wo@ddbadjust the parameters of the
output filter,i.e., increase the capacitan€eand/or the inductanck. However, this would in most cases
add to the size and weight of the converter. An alternatiy@@gch would obviously be to increase the
switching frequency, but it is also possible to experimeithwhe overall architecture of the converter,
e.g., by introducing additional levels for the input vokkagA larger number of input levels generally
allow the output voltage to be delivered with higher efficgm@nd less distortion. At the same time, a
multi-level architecture reduces the requirements tornde/idual components.

The review has already mentioned a significant number ofegins of power electronic converter
systems ranging from power supplies in mobile phones, hmld@ppliances and navigation equipment
for boats, cars, and airplanes, over back-up systems faitsencomputers and hospital equipment
to power supplies for electric cars and induction furnacRscharacteristic feature of many of these
applications is that the use of power electronic conveder® speak “unties” us from the main power
distribution network and allows us to use electric powerlat@s and under conditions where the main
power lines are not directly accessible.

At the same time, power electronic converters (so-calleédHig converters) have made it possible
to feed electric power into the main distribution systermfreources that do not operate with normal
line voltage and frequency or cannot satisfy standard ¢immdi with respect to regularity and stability.
Solar cell panels, for instance, produce DC power at lowagas and high currents, and the availability
often involve random variations at many different time ssalSimilarly, the electric power output from a
wind mill park lacks the regularity of voltage, frequencydghase required by the net. Realization of the
so-called “smart grid” power distribution system that vaillow us to replace contributions from major
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coal- and oil-fired power stations by inputs from large nurslosd smaller and diffuse sources (beside
solar cells and wind mills also local co-generation plamd plants operating on biogas, secondary
biomaterials, waste, geothermal energtg,) will require an intelligent and closely supervised syste
The smart grid system will also require a broad spectrumftéréint power electronic converters.

Conversion between AC and DC high voltage power alreadyantagnportant role in the optimization
and stabilization of the main distribution network. The dder this type of conversion arises, for
instance, in connection with the transmission of high \gdtaoower over long distances where the
Ohmic losses in the transmission line become significante @uhe skin effect, an AC current does
not distribute itself uniformly across the conductor, tlagising increased losses. For transmission
in underground or undersea cables, the capacitive curegntired to repeatedly charge the cable
capacitance contribute additional losses not encounteited C transmission. Finally, in relation to the
dielectric breakdown of the insulation, DC-transmissitsoaffers an advantage over AC transmission
when compared at the sanke/ S-voltage.

Another important use of DC transmission is associated thigrstabilization of the main distribution
system. One way of achieving such stabilization involvesidigd decoupling of different parts of the
network such that they can operate at different phases ayittlgldifferent voltages and frequencies,
but still exchange power in a controlled manner. This fornsearation can be achieved by inserting
DC transmission lines between the different parts of thevodts with AC/DC and DC/AC converters
in either end. Beside the costs of such high-power highageltconverters, a main problem with this
approach is clearly the additional structural complexityyiroduces, and the associated need for new
control approaches.

We hope that the analysis presented in this review can tomérito a better understanding of the
relation between the architecture of a power electronivedar and the dynamics it will display under
different operational conditions. Such understandingntyerepresents an essential background for the
design of new and improved converter systems.

During the last decades, development of the converter téaby has to a significant extent been
driven by improvements of the physical/electronic projsriof the various components such as to
allow for operation at higher voltages, powers, frequeneied/or efficiencies while at the same time
minimizing size, failure rates, and costs. During the l&st fyears, improvements in the converter
technology have increasingly become dependent on an igéeatd intelligent, digital control of the
way of operation. The appearance of microcomputers withcgrit computational capacity has lead
to the development of new types of so-called predictive radlers. These controllers are capable of
following variations in currents, voltages, on-times, @éncies,etc, evaluate this information within
a clock period, and trigger the next switching process taipedth an optimal timing §0-92]. The
scope of this approach is even broader as it can be used tct detereactive power 93], ground
leakage 94], unusual temperature variations, and a broad range of otteations of inappropriate or
non-optimal functioning. The digital control approachel also come to play an extremely important
role in connection with a realization of the smart-grid donet.
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