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Abstract: This article presents a method that provides an estimate of road bank by
decoupling the vehicle roll due to the dynamics and the roll due to the road bank. Suspension
deflection measurements were used to provide a measurement of the relative roll between
the vehicle body frame and the axle frame or between the sprung mass and the unsprung
mass, respectively. A deflection scaling parameter was found via suspension geometry
and dynamic analysis. The relative roll measurement was then incorporated into two
different kinematic navigation models based on extended Kalman filter (EKF) architectures.
Each algorithm was tested and then verified on the Prowler ATV experimental platform at the
National Center for Asphalt Technology (NCAT). Experimental data showed that both the
cascaded and coupled approach performed well in providing estimates of the current vehicle
roll and instantaneous road bank.
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1. Introduction

Vehicle rollover is a topic that has been widely researched by the vehicle community for some time.
With the rise in popularity of high center of gravity vehicles, such as sports utility vehicles, rollover has
become an important issue for vehicle safety.

In 2009, 2.954 trillion miles were traveled by motorists in the United States. Among those miles,
motor vehicle crashes resulted in 30,797 fatalities [1]. Rollover crashes account for only 3% of vehicle
crashes. However, they lead to approximately one third of all occupant deaths.

Some vehicle safety features recently introduced by manufacturers into motor vehicle fleets may be
contributing to a reduction in rollover crashes and the harm they cause. These features include rollover
sensors to trigger inflatable side curtain airbags (SCABs, known as rollover protection) to mitigate
occupant injury, electronic stability control (ESC) to reduce loss of yaw control and roll stability control
(RSC) to minimize the number of rollover crashes that occur. These safety features are typically installed
in light trucks and vans (LTVs) [2].

A review of the empirical evidence shows that ESC has the potential to reduce the number of rollover
accidents and several other fatal types of accidents, as shown in [3]. In fact, the National Center for
Highway Safety (NTSHA) has issued a final rule in the Federal Register that requires manufacturers to
implement ESC systems for passenger cars, multipurpose passenger vehicles, trucks and buses with a
gross vehicle weight rating of 4,536 kg (10,000 pounds). According to NHTSA research, preventing
single-vehicle loss-of-control crashes is the most effective way to reduce deaths resulting from rollover
crashes. The majority of loss-of-control crashes involve the vehicle entering the road shoulder or median,
where the bank is often more extreme and the terrain is more unforgiving. NHTSA concludes that
requiring ESC will significantly reduce single-vehicle crashes by over 30 percent and reduce vehicle
rollovers by over 70 percent [4].

1.1. Rollover Algorithms

The rollover issue has led to the development of several metrics and methodologies to predict and
prevent vehicle roll over. Although, typically, the motivation for these studies has been passenger vehicle
safety, the use of these metrics can also be used to aid in the navigation and control of unmanned ground
vehicles (UGV). In order for the UGV to be effective at performing its task, it must remain in a usable and
controllable state. Thus, the vehicle must avoid rolling over. Additionally, the appropriate control effort
required to keep the vehicle from rolling is dependent on the bank on which the vehicle is operating.

Work has been done to develop metrics and algorithms for rollover indication and prediction.
The most basic is the static stability factor (SSF). The SSF is a function of the track width and the
vertical height of the center of gravity (CG) of the vehicle. Increasing the CG height or decreasing the
track width will cause an increase in rollover propensity [5]. Other metrics, including the lateral load
transfer ratio (LLT, LTR) and the roll stability factor (RSF), use the difference in normal forces on the
left and right sides of the vehicle to indicate rollover [5,6]. Two-wheel lift off can be determined through
the observation of the RSF. A two-wheel lift-off velocity (TWLV) value can then be assigned and used
to characterize rollover propensity [5]. To predict a time-to-rollover (TTR), Gáspár et al. [7] used a
simple model to calculate a TTR, assuming that the speed and steer angle remain constant. In that work,
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a neural network is used to make up for the lack of complexity of the simple vehicle model, which needs
to run faster than real time.

Rajamani et al. [8] determined that if the roll motion of the sprung mass is caused entirely by the
lateral acceleration, ignoring the road and other external inputs, the rollover index can be approximated as
a function of lateral acceleration and CG height. Thus, the roll angle estimates and CG height estimates
need to be accurate. They then proposed a dynamic observer and a CG height estimator to estimate the
real-time roll angle and CG height in order to calculate an accurate rollover index value.

These rollover metrics and algorithms work well with the assumption that the road is flat and level.
This assumption will hold for small bank angles. However, in the more extreme cases, where bank
angles exceed the threshold of the small angle approximation, rollover characteristics change. In order
to improve the accuracy of the roll indicator, it is beneficial to have an understanding of the bank on
which the vehicle is traveling. A vehicle operating on a large bank will have an increased tendency to
roll compared to a vehicle operating on a flat surface. Peters and Iagnemma [9] developed a stability
metric based on the distribution of wheel terrain contact forces. They showed that the metric can
successfully predict rollover on surfaces with arbitrary geometries. Ryu and Gerdes investigated the
problem of estimating vehicle and road bank [10]. They modeled the road bank as a disturbance and
used a disturbance observer to estimate the road bank. Using a two-antenna GPS system, they were able
to accurately estimate roll and road bank.

1.2. Outline

The outline of this article is as follows: The relationship of roll and bank is discussed in Section 2.
The concept of relative roll is explained, and a geometry-based method that uses suspension deflections
to acquire a measurement of relative roll is presented. A scaling parameter, η, is shown to be necessary
for the use of the relative roll measurement. An overview of the formulation of the extended Kalman
filter for navigation comprises most of Section 3. The roll estimate is then combined with the relative
roll measurement in a cascaded approach for road bank estimation at the end of Section 3.

In Section 4, the navigation filter is augmented with a road bank state. This coupled EKF approach
to the bank estimation is then simulated and shown to provide the advantage of noise filtering on the
bank state. The experimental test setup is described in Section 5. The experimental results of both the
cascaded and coupled versions of the navigation EKF are discussed in Section 6. Both navigation filter
approaches are validated with the experimental data. Finally, Section 7 consolidates the conclusions
from preceding sections.

2. Roll, Relative Roll and Road Bank

Figure 1a represents the roll model of the vehicle. In this model, the sprung mass rotates about the
roll center. The road bank is described by the angle φr that exists between the road surface and the
horizontal. The angle φs describes the suspension roll, or relative roll, that is due to the suspension
deflections caused by the dynamics of the vehicle. The sum of the road bank and the relative roll is the
total roll indicated by φv. The center of gravity is denoted by CG, and the gravity vector points downward
and is denoted by g. The distance from the ground surface to the roll center is hrc; the distance from
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the roll center to the center of gravity is hrg; and the distance between the two wheels is the track width,
denoted as tw.

(a) (b)

Figure 1. Roll model and deflection diagram. (a) Roll model; (b) suspension
deflection diagram.

2.1. Relative Roll

The vehicle roll can be estimated using suspension deflections [11]. This measurement of roll can be
determined based on the geometry of the suspension and can be estimated using Equation (1),

φ̄s = sin−1
(

∆LLF −∆LRF + ∆LLR −∆LRR
2tw

)
(1)

where φ̄s is the relative roll of the suspension. It should be noted that the suspension roll is the roll of the
body relative to the surface on which it is driving. The deflections ∆Lij are the suspension deflections at
the respective corners of the vehicle. The suspension roll for the front axle is the inverse sine of the left
deflection minus the right deflection divided by the vehicle track width (tw), as observed from Figure 1b.

The suspension roll for the rear axle can be determined similarly, but the j subscript is denoted by
an R for rear axle. The front and rear suspension roll values can be averaged for a suspension roll
calculation of the whole vehicle. It should also be noted that this method captures the dynamics of the
suspension relative to the sample time of the deflection sensors.

2.2. The Eta (η) Parameter for Roll Scaling

Based on the vehicle suspension geometry, Equation (1) will underestimate the true suspension roll
by a factor that can be determined experimentally [11]. Thus, Equation (1) must be multiplied by the
scale factor η to represent the true suspension roll.

φs = ηφ̄s (2)
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Note that η is a parameter associated with the static geometry of the vehicle’s suspension and therefore
is vehicle suspension dependent. Initial results suggest that η is a constant value unique to the vehicle
and will not vary based on bank angle or other road inputs. This scale factor can be determined by taking
the ratio of the unscaled suspension roll to the difference of the true body roll and the bank angle, as
shown in Equation (3).

η =
φv − φr
φ̄s

(3)

In practice, calculating η is most easily performed on a flat surface with no bank angle. When the
bank angle (φr) is zero, the suspension roll (φs) becomes equal to the total roll (φv). Note that the total
roll (φv) should be a direct measurement or an estimate with suitable accuracy.

To demonstrate the procedure for calculating η, CarSim was used. The software has been accepted
by the industry as accurately representing vehicle dynamics. The vehicle used in the simulations was
the CarSim “small SUV”, which has vehicle parameters typically associated with the small sports utility
vehicle (SUV) class of vehicles.
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Figure 2. Simulated vehicle performing a double-lane change (DLC) maneuver on a
flat surface.

Figure 2 shows the CarSim results of the vehicle performing a double-lane change (DLC) on a flat
surface. The DLC maneuver is the industry standard for testing dynamic roll properties for various
vehicles [12]. The effect of the scaling factor on the suspension roll estimate can be seen in Figure 2.
The scaling value η of Equation (3) was calculated at each time step for the duration of the maneuver
in Figure 2 and then averaged. The averaged η was then applied to the raw suspension measurement
to yield the corrected suspension roll. Although the unscaled suspension roll captures the shape of the
vehicle roll, it under-predicts the magnitude. After the scaling is applied, the suspension roll closely
matches the total roll, as expected.
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The η parameter is a peculiar characteristic of the relative roll equation. The dynamic characteristics
of the η parameter were studied by altering the vehicle mass, location of the CG and inertial properties
of a simulated vehicle. It is unusual that a constant parameter can correct for the errors from the
suspension deflections.

2.3. The Effect of Speed on η

Individual double-lane change runs were created in CarSim at increments of 10 km/h from 10 km/h
to 250 km/h on a flat surface see Figure 3. Equation (3) was then used to calculate the average η value
for each run. For the η calculation, only the peaks of the Euler roll and suspension roll were used. The
average η value across all speeds was then calculated to be 1.736 rad/rad. The slower speeds seem to
generate lower η values, but the values still remain grouped close to the average.

0 50 100 150 200 250
1.66

1.68

1.7

1.72

1.74

1.76

AVG = 1.736

Speed (m/s)

η
,
E
ta

”
U
n
it
le
ss
”
(r
a
d
/
ra
d
)

Velocity & η

η Eta

Figure 3. η values for DLC on a flat surface (10 km/h to 250 km/h).

The average η was then applied to each of the runs for 10–250 km/h. The root mean squared (RMS)
error of the bank estimate was then calculated at each speed, as shown in Figure 4. The plot of the RMS
error shows a trend of increasing RMS as speed increases, but the RMS remains small relative to the roll
angles, which are near eight and nine degrees at the higher speeds.
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Figure 4. RMS error for DLC on a flat surface vs. speed.

2.4. Eta (η) as the Kinematic Suspension Ratio

In practice, both an accurate measurement of total roll, φv, and a flat surface may not be available.
These issues present a challenge to finding the η factor. However, an alternate method is available, which
uses measurements from the suspension links. Known primarily as the kinematic suspension ratio, the
method relates the vertical deflection of the suspension spring and damper to the vertical deflection that
is experienced at the tire through Equation (4). In [13], the relationship is termed the installation ratio,
and elsewhere, it is known as the motion ratio. Note that some suspensions are designed such that the
ratio is not constant. This work assumes that the ratio is constant. For information on a significantly
varying ratio, refer to [13].

Figure 5 shows the geometry of the vertical deflections of the suspension component and the vertical
deflection at the tire. The vertical displacements of the wheel center ∆Z and the suspension component
∆L are related, such that:

cos

(
∆Z

a+ b

)
= cos

(
∆L

a

)
(4)

∆Z

a+ b
≈ ∆L

a
(5)

After assuming small angles, the expression for the vertical deflection of the tire becomes:

∆Z = (a+ b)
∆L

a
(6)

∆Z = ηr∆L (7)
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The ηr scaling factor is thus the ratio of the upper A-arm length, (a+ b), to the length from the upper
A-arm link and the vehicle frame joint to the point where the suspension component attaches to the upper
A-arm link joint, a, as seen in Equation (8).

ηr =
(a+ b)

a
(8)

Figure 5. Suspension diagram.

The scale factor ηr should be applied directly to the suspension deflections prior to the relative roll
calculations, as shown in Equation (9). However, suspension roll on vehicles does not exceed the small
angle approximation. Thus, the scaling method from Section 2.2 and the kinematic suspension ratio
method are roughly equivalent for small angles. As such, ηr is equivalent to η from Equation (2) and
Equation (3).

φs = sin−1
(
ηr (∆LLF −∆LRF + ∆LLR −∆LRR)

2tw

)
(9)

Therefore, the scaling method in Section 2.2 was used for the CarSim simulations in which no
physical measurements of the suspension links exist to be measured. The kinematic suspension ratio
method was used to find η for the experimental data with the Prowler ATV, because the suspension could
be directly measured and a sufficiently flat surface could not be found.

2.5. Eta (η) and Road Disturbances

Using the suspension deflections as the sole estimation of roll becomes problematic when there are
additional inputs into the suspension, such as bumps, or if the vehicle is traveling on a banked road. For
a banked road, a method of measuring or estimating the total roll of the vehicle must be used to decouple
the roll due to bank and the roll due to dynamics.

Thus, if the road surface is a assumed to be flat, a low fidelity roll model can be used in conjunction
with suspension deflection measurements to calculate the roll of a vehicle. The roll scaling parameter eta
(η) is needed to account for the effects of the suspension geometry on the deflection measurements. It
is possible to calculate the parameter η experimentally if a perfectly flat surface is available. For banked
road surfaces, the roll calculated from suspension deflections will be corrupted due to the bank
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disturbance input to the suspension. A method for measuring or estimating the total roll is needed to
decouple the roll from the bank and the roll due to dynamics of the vehicle.

In lieu of using an attitude measurement from a multi-antenna GPS system, the vehicle roll can be
estimated using a navigation filter. This method provides an estimate of the attitude of the vehicle body in
an absolute sense based on the kinematic relationships between positions and velocities measured from
a single antenna GPS and the accelerations and roll rates measured from an inertial measurement unit
(IMU). The navigation filter is used for sensor fusion of the GPS and IMU for the purpose of obtaining
an estimate/observation of total roll φv, which is not measured.

3. Road Bank Estimation Using Suspension Deflections and a Cascaded Navigation EKF

The EKFs used in this work utilize the methods from [14] with supplemental references to [15].
The navigation filters are error state filters, which means that the error states are added to the actual
states during each measurement update. The filter described below is used to blend Global Navigation
Satellite System (GNSS) solutions with inertial navigation system (INS) solutions. Specifically, the filter
is constructed with a six degrees of freedom inertial measurement unit (IMU) time update and a Global
Positioning System (GPS) measurement update.

3.1. Coordinate Frames

Inertial navigation algorithms use a few coordinate frames. The Earth-centered inertia (ECI), used in
navigation applications, is an inertial reference frame that does not accelerate or rotate with respect to
the rest of the Universe [15]. The ECI frame is denoted by the symbol i as a superscript or a subscript.
The axes of the IMU form the body fixed frame. The assumption is made that the x-, y- and z-axes align
with the front, right and down axes of the vehicle [14]. The body frame is denoted by the symbol b. The
Earth frame or Earth-centered Earth-fixed (ECEF) frame is similar to the ECI frame. However, the ECEF
frame remains fixed to the Earth, and thus, spins as the Earth spins. The ECEF frame is denoted with the
symbol e. The local navigation frame is a geodetic or geographic frame and is denoted with the symbol
n. The origin of the body frame is termed the “point of interest”, which is typically the center of mass
of the vehicle. The z-axis is referred to as the down axis and is normal to the surface of the reference
ellipsoid and points towards the center of the Earth. The x-axis is the axis that points north in the plane
orthogonal to the z-axis and is also called the north axis. The y-axis or east axis always points east [15].

3.2. Inertial Navigation

The velocities and angular rate measurements of an IMU can be used for stand-alone navigation
for short durations of time. In brief, integration of the angular rates yields attitude updates; the first
integration of the accelerations produces velocities; and positions are acquired from the integration of
these velocities or the second integration of the accelerations. The integrated noise and bias degrades
the solution with each subsequent integration. However, an integrated navigation system can provide
corrections to the IMU outputs and the inertial navigation solutions from estimates of IMU bias, which
can be determined with the GNSS/INS integration algorithm [14].



Electronics 2015, 4 127

3.3. Mechanization Equations

The equations of motion expressed in the north-east-down (NED) local navigation frame are:

ṗ = Tvn (10)

v̇ =Cn
b f
b − [(2ωnie + 2ωnen) ˆ]vn + gn (11)

Ċn
b = Cn

b

([(
ωbib
)

ˆ
]
−
[(
ωbin
)

ˆ
])

(12)

Note that ωcba denotes the rotation rate of frame b relative to frame a parameterized in frame c; thus,
ωnib is the rotation rate of the inertial frame (the ECI frame) relative to the body frame (the vehicle/IMU
frame) parametrized in the local navigation frame. The vector p is the position of interest, which is the
user, expressed in the geodetic coordinates of latitude (L), longitude (λ) and altitude (h).

p =

Lλ
h


The vector v represents the NED components of the users velocity vN , vE and vD.

v =

vNvE
vD


Local gravity is represented by the vector g. The matrix T is the transformation matrix that converts

the linear velocities of the NED frame to angular changes in latitude and longitude of the local navigation
frame.

T =


1

RN+h
0 0

0 1
(RE+h) cosL

0

0 0 −1

 (13)

The values of RN and RE are the radii of curvature of the reference ellipsoid for north/south
(meridian) and the east/west (prime vertical), respectively [15].

The matrix Cn
b is the rotation matrix. It is of the form Cb

a, such that the matrix rotates from frame a
to frame b. Thus, Cn

b completes the angular rotation from the body frame to the local navigation frame.

The notation [(ωcba) ˆ], used in [14], is the skew symmetric matrix of the vector ωcba =
[
φ̇cba θ̇cba ψ̇cba

]T
and is defined as:

[(ωcba) ˆ] =

 0 −ωcba,3 ωcba,2
ωcba,3 0 −ωcba,1
−ωcba,2 ωcba,1 0

 =

 0 −ψ̇cba θ̇cba
ψ̇cba 0 −φ̇cba
−θ̇cba φ̇cba 0

 (14)
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In this work, attitude is parametrized using Euler angles. Specifically, the aerospace sequence of yaw,
pitch and roll (ψ, θ and φ) is used. Accordingly, the attitude vector is:

ψnb =

φnbθnb

ψnb

 (15)

3.4. Update Equations

Assuming the initial position is known, three steps are needed to implement and solve the
mechanization equations. The steps include an attitude update, a velocity update and a position update.
The attitude update uses the gyro measurements from the IMU. These gyro measurements form an
angular velocity vector of the body frame relative to an inertial frame of reference, ωbib. For attitude
determination, the attitude of the body frame relative to the navigation frame and expressed in the body
frame, ωbnb, is needed. To obtain ωbnb, the rotation rate of the navigation frame relative to the inertial
frame expressed in the body frame, ωbin, is subtracted from ωbib, the angular rate of the body frame
relative to the inertial frame.

ωbnb = ωbib − ωbin (16)

Note that ωbin is essentially the rotation of the Earth. When using low-cost gyros, the rotation rates
from Earth are often less than the noise sensitivity of the gyros, such that the following approximation
can be made.

ωbnb ≈ ωbib (17)

The Euler rates are then computed from the angular velocity vector as:

ψ̇nb = F (ψnb)ω
b
nb (18)

where:

F (ψnb) =
1

cos θnb

1 sinφnb sin θnb cosφnb sin θnb

0 cosφnb cos θnb − sinφnb cos θnb

0 sinφnb cosφnb

 (19)

For consumer-grade and automotive gyros, Euler integration of Equation (18) is sufficient to generate
an estimate of attitude. φnbθnb

ψnb


k+1

=

φnbθnb

ψnb


k

+ τF (ψnb (tk))ω
b
nb (tk) (20)

In Equation (20), tk is an instance in time at step k, and τ is the change in time, such that τ = tk+1−tk.
The attitude estimateψnb (tk) =

[
φnb θnb ψnb

]T
k

is used for the rotation matrix Cn
b that rotates vectors
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from the body frame to the navigation frame in the proceeding velocity and position updates. The Cn
b

transformation matrix is populated as:

Cn
b =

 cosψnb sinψnb 0

− sinψnb cosψnb 0

0 0 1


k

cos θnb 0 − sin θnb

0 1 0

sin θnb 0 cos θnb


k

1 0 0

0 cosφnb sinφnb

0 − sinφnb cosφnb


k

(21)

The acceleration of the vehicle in the navigation frame is a function of the specific force measurement

vector from the IMU, f b =
[
fx fy fz

]T
, the angular rate of the Earth, ωnie, the transport rate, ωnen, and

the gravity vector, gn, and is given by:

v̇n = Cn
b f
b − [(2ωnie + ωnen)]vn + gn (22)

For low-cost IMUs, the measurement errors overpower the Coriolis effect, such that the acceleration
can be simplified to:

v̇n ≈ Cn
b f
b + gn (23)

Applying Euler integration to Equation (22) yields:vNvE
vD


k+1

=

vNvE
vD


k

+ τ v̇n (24)

The position update requires applying Euler integration to Equation (10), which yields:

Lk+1 = Lk + τ

(
vn

RN + h

)
|k (25)

λk+1 = λk + τ

(
vE

(RE + h) cosL

)
|k (26)

hk+1 = hk + τ (−vD) |k (27)

It is important to remember that the precision of latitude and longitude at the level of meters
represented in the local navigation frame will require seven or more significant digits (1 m ≈ 1.6e−7 rad).

3.5. Error Equations

The manner in which errors propagate through an INS is useful for navigation, because the
mechanization equations, Equations (10)–(12), represent the ideal case. Perturbation analysis of the
mechanization equations yields the first-order Taylor series expansion of the mechanization equations:

δṗ = T′δpn + Tδvn (28)

δv̇n =
[(
Cn
b f
b
)

ˆ
]
δψn

nb + Cn
b δf

b − [2 (ωnie + ωnen) ˆ] δvn − [(2δωnie + δωnen) ˆ]vn + δgn (29)
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δψ̇
n

nb ≈ − [(ωnin) ˆ] δψn
nb + δωnin −Cn

b δω
b
ib (30)

Error is represented by δ, and the matrix T′ is the time derivative that relates positional errors into
corresponding velocities. In practice, the negative skew of the transport rate, − [(ωnen) ˆ], can be used
as T′. The error in gravity is often approximated as a function of the magnitude of gravity at the user’s
latitude and the error in altitude.

δgn =

 0

0

− 2g
Ro
δh

 (31)

Note that δψn
nb, the attitude errors, are the errors resolved about the NED frame, not errors in the

Euler angles themselves. Therefore, note that ωnin is equal to the sum of the Earth rate and transport rate.

ωnin = ωnie + ωnen (32)

The variables δωbib and δf b are the errors from the accelerometer and rate gyro output errors.
These errors ultimately determine the performance of inertial navigation. Simple models of the
accelerometer and gyro are:

f b = f bt + Maf
b
t + bba + wb

a (33)

ωbib = ωbibt + Mgω
b
ibt + bbg + wb

g (34)

The subscripts a and g denote terms from the accelerometer and gyro, respectively. The subscript
t represents the true value that is being measured, and the superscript b means that the term is
expressed in the body frame. The matrices Ma and Mg account for the effects of scale factors and
any non-orthogonality errors. The b term is the bias vector, and the w term is the uncorrelated output
noise vector. The bias vector and the uncorrelated noise form the error model for the accelerometer and
gyro, δf b and δωbib, used in Equations (28)–(30).

δf b = bba + wb
a (35)

δωbib = bbg + wb
g (36)

These errors limit the performance of inertial navigation. Because they are integrated twice,
accelerometer errors cause position errors to grow as a function of the time squared. Position errors
from angular velocity will grow as a function of the time cubed. Including accurate position and velocity
updates will help to mitigate the error growth problem [14].

3.6. Integration of Inertial Navigation and GPS

In this work, an automotive-grade INS is used. Therefore, the loosely-coupled filter with feedback is
utilized. Loose GPS/INS integration occurs at the PVT (position, velocity and time) level. This means
that the PVT measurements from the GPS are blended with the PVA (position, velocity and attitude)
estimates of the INS. In the closed loop configuration, the inertial sensor errors estimated by the filter are
fed back to the INS equations to compensate for the accelerometer and gyro errors. The most common
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fusing filter used for loosely-coupled GPS/INS is the extended Kalman filter (EKF) [14] and is the filter
of choice for this work. Refer to [16,17] for further specific details on the Kalman filter.

3.6.1. Navigation Error State EKF with Closed Loop Feedback

The system model for navigation states consists of the mechanization equations, Equations (10)–(12),
which are nonlinear, and the models for the IMU biases. The linearized error state formulation of
the mechanization equations was discussed as an item of interest of the standalone inertial navigation
algorithm and formed Equations (28)–(30). While the INS states are error states, the remaining states are
the full bias states of the accelerometer and gyro from the IMU. Accordingly for the cascaded navigation
EKF, the error state vector is defined as:

x =


δp

δvn

δψnb

bba
bbg

 (37)

Remember that the position vector p is a vector of latitude, longitude and altitude, vn is a velocity
vector of north, east and down velocities andψnb is an attitude vector of roll, pitch and yaw. Note that the
position states are not necessarily required to estimate the attitude, but are included in the formulation,
because the typical user is also interested in the position information. The two bias vectors are included
to account for the biases present in the IMU, where bba is comprised of the three bias states corresponding
to the accelerometer biases, and similarly, bbg is comprised of the gyro biases.

bba =

bbax
bbay
bbaz



bbg =

bbgφ
bbgθ
bbgψ


The IMU model consists of random noise and a bias added to the accelerations and angular velocities.

The biases are modeled as a random walk. Specifically, the bias models for a low-cost inertial IMU are:

bba (t) = bbas + bbad + wb
a (38)

bbg (t) = bbgs + bbgd + wb
g (39)

Note that the biases are a function of time, with some components that are modeled as stochastic
processes. Both the accelerometer biases and the gyro biases are the sum of three random processes.
The terms bbas and bbgs represent the constant null shifts of the accelerometer and gyro. They are
essentially static biases that are modeled as random constants. The terms bbad and bbgd are the dynamic
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“in-run” biases. These two time-varying components are modeled as an exponentially correlated random
process, i.e., a first order Gauss–Markov process specifically with a standard deviation σad for the
accelerometer and σgd for the gyro. The Gauss–Markov processes for the accelerometer and gyro bias
models are:

dbbad
dt

= ḃbad =
−1

τa
I3×3b

b
ad + I3×3µ

b
a (40)

dbbgd
dt

= ḃbgd =
−1

τg
I3×3b

b
gd + I3×3µ

b
g (41)

The linearized system matrix F is the Jacobian of the system model equations, which are
Equations (28)–(30) and (40)–(41). The Jacobian of the system model equations yields the system model
matrix F:

F =


− [(ωnen) ˆ] T 03 03 03

Gg − [2 (ωnie + ωnen) ˆ]
[(
Cn
b f
b
)

ˆ
]

Cn
b 03

03 03 − [(ωnie + ωnen) ˆ] 03 −Cn
b

03 03 03
−1
τa
I3 03

03 03 03 03
−1
τg
I3

 (42)

where 03 is a three by three null matrix, I3 is a three by three identity matrix and:

Gg =

0 0 0

0 0 0

0 0 − 2g
Ro

 (43)

For small propagation times, the F matrix can be simplified to:

F =


03 T 03 03 03

Gg 03

[(
Cn
b f
b
)

ˆ
]

Cn
b 03

03 03 03 03 −Cn
b

03 03 03
−1
τa
I3 03

03 03 03 03
−1
τg
I3

 (44)

The corresponding process noise, ws, of the system is:

ws =


03×1

Cn
bwa

Cn
bwg

Cn
bµa

Cn
bµg

 (45)

The process noise is used to define the process covariance matrix, Q. Taking the expectation of the
process noise defines the diagonal terms of Q as power spectral densities. The expectations, E

{
waw

T
a

}
and E

{
wgw

T
g

}
, are the accelerometer and gyro noise power spectral densities or standard deviations.

According to [15], the process noise of the bias states, µa and µg are 2σ2
ad/τa and 2σ2

gd/τg, respectively.
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The terms τa and τg are the time constants for the Markov process error model for acceleration and gyro
errors, respectively. The discrete process noise matrix, Qk, is calculated from the continuous process
noise matrix, Q, using the time interval τs = tk+1 − tk.

Qk = τsQ (46)

Neglecting any lever arm effects (i.e., the kinematic displacement between the center of gravity and
the sensor location), the measurement matrix H is:

H =

[
I3 03 03 03 03

03 I3 03 03 03

]
6×15

(47)

For the closed-loop error state navigation EKF, all of the states, except the attitude states of the state
vector, x, need to be fed back following the measurement update prior to the mechanization phase.
For example, the update to the position state is given in Equation (48):

p̂+ = p̂− − δp̂k+1 (48)

where the superscripts + and − represent before and after the error state corrections are applied and
δp̂k+1 represents the position error state estimate from the measurement update. The attitude errors,
δψ̂

n

nb, are corrections to the rotation matrix, Ĉn
b , and therefore cannot simply be added to the previous

Euler angle estimates. The attitude states are updated by executing the following equations:

Ĉn+
b =

(
I3 +

[
δψ̂

n

nbˆ
])

Ĉn−
b (49)

The Euler angles are then extracted from Ĉn+
b by:

φ = tan−1
(
c32
c33

)
(50)

θ = − sin−1 c31 (51)

ψ = tan−1
(
c21
c11

)
(52)

where cij represents the element in the i-th row and j-th column of the rotation matrix Cn+
b . Once the

update is complete, the Kalman filter state vector, x̂+
k+1, is reset to zero and P+

k+1 is used to initiate
another time update cycle [14].

3.7. NAV EKF Cascaded with Relative Roll

The difference between the total roll (φv) and the relative roll (φs) of the suspension deflections is the
road bank.

φr = φv − φs (53)
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Since the suspension roll can be determined from Equation (2), we can subtract it from the total body
roll estimated by the EKF to yield an estimate of road bank:

φr,est = φv,EKF − φs (54)

Assuming the tires remain in contact with the ground, the dynamics of the vehicle body can be
correctly removed via the measurement relationship in Equation (54). Note that errors in the estimate
of road bank will be related to the accuracy of the total roll estimate, φv, and how well the suspension
scaling parameter, η, scales the relative roll measurement, φs.

4. Road Bank Estimation Using Suspension Deflections and a Coupled Navigation EKF

The goal of the coupled approach is to see if any useful relationship between the relative roll angle
given from the suspension deflections and the total roll state of the navigation filter could be exploited.
Since the deflections are measured from potentiometers that operate at 100 Hz or better, it seemed logical
to have the suspension deflections implemented inside the INS navigation portion of the EKF filter, the
time propagation phase.

The coupled or augmented approach uses the same principle equations and structure as the cascaded
method described in Section 3.6.1. However, there are some details that are important to know for the
coupled approach. First, the error state vector is augmented with the road bank as the 16th state.

x =



δp

δvn

δψn
nb

bba
bbg
φnr


(55)

The system model, the F matrix, must be adjusted, as well. Ideally, there would exist an equation that
propagates the road bank rate as a function of the states in the state vector. No such function exists, so
the road bank rate is modeled as a disturbance with the time constant τs.

φ̇nr =
−1

τs
φnr (56)

The new model matrix is:

F =



− [(ωnen) ˆ] T 03 03 03 03×1

Gg − [2 (ωnie + ωnen) ˆ]
[(
Cn
b f
b
)

ˆ
]

Cn
b 03 03×1

03 03 − [(ωnie + ωnen) ˆ] 03 −Cn
b 03×1

03 03 03
−1
τa
I3 03 03×1

03 03 03 03
−1
τg
I3 03×1

01×3 01×3 01×3 01×3 01×3
−1
τs


(57)
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where 03 is a three by three null matrix, 03×1 is a three by one null matrix, 01×3 is a one by three null
matrix, I3 is a three by three identity matrix and:

Gg =

0 0 0

0 0 0

0 0 − 2g
Ro


For small propagation times, the F matrix can be simplified to:

F =



03 T 03 03 03 03×1

Gg 03

[(
Cn
b f
b
)

ˆ
]

Cn
b 03 03×1

03 03 03 03 −Cn
b 03×1

03 03 03
−1
τa
I3 03 03×1

03 03 03 03
−1
τg
I3 03×1

01×3 01×3 01×3 01×3 01×3
−1
τs


(58)

The measurement matrix for the GPS measurement is:

H =

[
I3 03 03 03 03 0

03 I3 03 03 03 0

]
6×16

(59)

The suspension deflection measurement is incorporated through a second measurement update.
Like the GPS update, the second measurement update will occur whenever a new deflection
measurement exists. The measurement matrix for the second update is:

H2 =
[
01×3 01×3 1 0 0 01×3 01×3 −1

]
1×16

(60)

In practice, coupling the navigation filter with the road bank state did not provide any noticeable
benefits to the estimation of the other states in the filter. However, the experimental results show that
adding the road bank as a state to the navigation EKF provided some filtering of noise on the road bank
state estimate.

5. Experimental Setup

The Prowler ATV, a light, tactical, all-terrain vehicle for the military designed by ATV Corporation,
was used to test the road bank algorithms. The Prowler has been automated and is outfitted with
various sensors. To test the road bank algorithm, the following sensors were used: single-antenna
GPS receiver, six degrees of freedom IMU and four linear potentiometers to measure suspension
deflections. In addition, a three-antenna GPS attitude system was utilized to obtain accurate attitude
truth measurements for comparison with the EKF attitude estimates.

The area selected for testing of the vehicle occurred at the National Center for Asphalt Technology
(NCAT) track. The facility has a closed 1.7-mile oval track and a skid pad area, which allows for safe
testing of autonomous vehicle operation with sufficient GPS accessibility for various testing scenarios.
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5.1. Sensor Mounting

The Prowler vehicle has a range of sensors to provide information about the vehicle states. The six
DOF Crossbow 440 IMU provides accelerations and gyroscopic rates about all three vehicle axes. As
seen in Figure 6, the Crossbow is mounted directly behind the driver seat and is centered with respect
to the lateral axis. Various GPS sensors have been implemented on the vehicle, including a Novatel
system with integrated real-time-kinematic (RTK) corrections and a Septentrio system, which provides
GPS-based roll, pitch and yaw measurements. The Novatel antenna is located on top of the Prowler
roll cage and is laterally and longitudinally aligned with the CrossBow IMU. Celesco potentiometers
mounted on the suspension components produce measurements of suspension deflections. Brackets
were created that position the potentiometer, such that it is collinear with the shock and spring assembly,
as seen in Figure 6. A Celesco string potentiometer is mounted on the steering rack and measures the
turns of the steering column. The string potentiometer provides a measurement of the steering angle at
the wheels with the assumption that steer angles at the left and right wheels are equal.

Figure 6. Sensor locations.

The black case mounted on the front of the Prowler holds almost all of the sensor electronics, as shown
in Figure 7a. The Septentrio and Novatel receivers are stacked on top of one another and connect via
a serial port to the Advantech fan-less computer, the silver brick furthest from the viewer in Figure 7a.
The Crossbow IMU communicates via a serial connection, as well. The steering potentiometer and
suspension potentiometers are both read by an A/D converter on a Microchip PIC and custom board.
Each board is housed in an aluminum enclosure shown in the center of Figure 7a. The PIC sends the
converted reading to the CAN Bus, which is read via a CAN toUSB adapter by the Advantech computer.

The Advantech computer runs Ubuntu, which is a Linux operating system. The MOOS (Mission
Oriented Operating Suite) architecture is the C++ platform used to log the data. Sensor interfaces that
inherit from a base sensor class were written to read and log each sensor.
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(a) (b)

Figure 7. Sensor logging and National Center for Asphalt Technology (NCAT) banked turn.
(a) Sensor logging; (b) NCAT oval eight-degree banked turn.

5.2. Test Procedures

For maneuvers on flat terrain, the NCAT skid pad and the straights on the the NCAT oval track were
used. Note that the flat surface of the skidpad appears to have roughly a two-degree slope, with the high
portion in the northwest corner and the low portion in the southeast corner. The straights of the NCAT
oval track have a 1–2 degree crown, with the peak running between the two lanes.

Maneuvers involving the bank were performed on turns of the NCAT oval track. Both turning sections
transition from the 1–2-degree crown of the straights to roughly eight degrees of the bank and then back
to 1–2 degrees of the crown. Figure 7b via a chase vehicle shows the Prowler driving through the turn
on the west end of the track.

Specific maneuvers of interest were the lane changes, sinusoidal steer inputs, constant radius
steady-state turns and straight driving at various speeds. Lane changes were performed on the straights
and the banked turns of the NCAT oval track, but they were not executed with any measured spacings or
lengths. The runs involving sinusoidal steer inputs were intended to provide insight into the effects on
bank estimation with respect to the high- and low-frequency steering inputs.

6. Results and Discussion

From Equation (8) and suspension component measurements, η was found to be 2.3. The eight-degree
banked turns on the NCAT oval track were used to verify the η scale factor for the suspension
deflection measurements.

The standard deviation values used for the process covariance matrix Q are listed in Table 1. Note that
the variance for states with process noise modeled via the Markov process error model are functions of
the standard deviation and the corresponding time constant or 2σ2/τ . The time constants for the IMU
bias in Table 2 are based on the findings in [18]. The standard deviation values for the measurement
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covariance matrix R and scalar R2, to be used with the second measurement update H2 in the coupled
EKF, are presented in Table 3. Finally, the initial variance values for the covariance matrix P are found
in Table 4.

Table 1. Process noise standard deviations for Q.

Name Value Units

σa 0.3 m/s2

σg 0.3 degrees/s
σba 0.01 m/s2

σbg 0.035 degrees/s
σφr 1 degrees

Table 2. Time constants.

Name Value Units

τa 500 s
τg 1,300 s
τs 1,000 s

Table 3. Tuned measurement standard deviations for R and R2.

Name Value Units

σPos. Horz. 0.0000052 degrees
σPos. Z 1 m
σVel. Horz. 0.05 m/s
σPos. Z 0.1 ms
σDef 0.0002 m

σφs sin−1
(

4σDef
2tw

)
rad

Table 4. Error covariances for P.

Name Value Units

σ2
LP,λP

0.001 rad
σ2
hP

2.8 m
σ2

VelP 0.1 m/s
σ2
φ,θP

0.01 rad
σ2
ψP

0.05 rad
σ2
baP

0.000001 m/s2

σ2
bgP

0.000001 rad/s
σ2
φrP

0.0001 degrees
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The initial state vector values were assumed to be known. Position and velocities states were
initialized with values from the Novatel GPS receiver. Euler angle states were initialized with values
from the Septentrio receiver. Acceleration and angular rates from the CrossBow IMU were each averaged
from static data taken at the begging of the dataset. These averaged values were then used to initialize
the bias states of the state vector. High dynamic maneuvers at the beginning of the run served to provide
sufficient excitation, so that the bias could be estimated.

No difference in time to convergence of the error covariances was observed between the cascaded
and coupled approach. Note, that if the initial states, especially the gyro bias and accelerometer bias
states, are significantly different from truth, then the attitude estimate states will be less accurate until
the error covariances converge and the biases are estimated. In this work, the initial position velocity
and attitude states are known, and the bias states are initialized from averaged static IMU measurements.
For a deeper look into the convergence of the bias states and the importance of excitation for attitude
estimates, refer to [19]. In [19], the observability of a similar EKF is explored, and experimental results
using similar sensors are provided.

6.1. Comparison of Cascaded and Suspension-Coupled Navigation EKF

Both architectures presented in Sections 3 and 4 were adjusted to handle the timing and structure of
real data. The filter states are very similar in comparison. The bank estimates of each architecture match
the expected measurements of bank on the NCAT oval track. For reference, Figure 8 represents a plot
of the measured and estimated positions of the Prowler on the NCAT oval track. The estimates are from
the 15-state navigation EKF.
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Figure 8. Position on the NCAT oval track 15-state cascaded EKF.
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6.1.1. Navigation EKF Cascaded

Recall that a three-antenna Septentrio unit was mounted on the Prowler to provide truth measurements
of the roll, pitch and yaw of the vehicle. To demonstrate that the navigation EKF filter is estimating the
states correctly, the attitude measurements from the Septentrio are compared with the attitude estimates
of the 15-state navigation EKF. Figure 9 represents the roll and pitch comparison, while Figure 10
represents the comparison of yaw. The data in both figures are from a single lap around the NCAT
oval track. The banked turns are marked by the sections where the roll angle is roughly eight degrees.
The sinusoids are purposefully induced to excite the vehicle states for the estimation of biases. Note for
the data shown in Figures 9 and 10 that the bias states have been previously estimated and were used
as the initial biases for this dataset. Accordingly, the covariance matrix was set to small initial values,
indicating that the biases were known.

Observe in Figure 9 that the pitch estimate is roughly one degree different from the Septentrio
measurement. The difference in the pitch data from the Septentrio is due to slight misalignment of
the Septentrio antenna frame and the IMU frame. The IMU mounting location behind the seat of
the Prowler is not completely coplanar in the direction of pitch with the vehicle body. The mounting
surface pitches downward roughly one to two degrees. Additionally, observe in Figure 9 that the
Septentrio has difficulties maintaining both a “no fix solution” and a “fixed solution” for attitude during
the high-frequency vehicle body roll that begins prior to 520 s.

Figure 10 represents the yaw estimate and gives further confidence that the EKF filter is estimating
properly. The estimates of yaw match quite well with the measurements from the Septentrio.
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Figure 9. Roll and pitch comparison on the NCAT oval track 15-state cascaded EKF.
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Figure 10. Yaw comparison on the NCAT oval track 15-state cascaded EKF.

The estimate of bank is shown in Figure 11. For reference, the estimate of total roll, the Euler roll and
the measured roll from the suspension deflections are displayed. The figure shows a section of straight
driving followed by sinusoidal motion. Then, straight driving is resumed during the banked turn, after
which sinusoidal motion is resumed. While in the straight section, the one to two degrees of road crown
are observed in the estimate of the bank from time 460 s to 465 s. During the sinusoids, the bank estimate
remains within reasonable bounds. Note that due to the orientation of the vehicle as it oscillates from left
to right, the bank estimate is a combination of the crown and vehicle orientation. The vehicle oscillates
in the right side lane from 460–475 s. This is evident from the average bank estimate of two degrees.
Similarly, from 475 s till the bank begins at 485 s, the vehicle oscillates about the center of the crown and
displays an average bank estimate of zero degrees. Recall that the NCAT oval track has banks of eight
degrees through the turns. The estimate of bank during the steady-state turn occurring over the period
of 492–506 s is eight degrees. Note that roll measured by suspension deflections is not zero during the
steady-state turn on the banked surface.
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Figure 11. Bank estimate on the NCAT oval track 15-state cascaded EKF.
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6.1.2. Navigation EKF Couple

The measurements and estimates of roll, pitch and yaw are again presented to validate that the 16-state
coupled Navigation EKF is functioning as expected. The estimates of roll pitch and yaw in Figures 12
and 13 match very closely with the estimates of the 15-state navigation filter estimates shown in Figures 9
and 10.
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Figure 12. Roll and pitch comparison on the NCAT oval track 16-state coupled EKF .
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Figure 13. Yaw comparison on the NCAT oval track 16-state coupled EKF.

The root mean square values of the difference between attitude measurements from the Septentrio and
attitude estimates from both filters are provided in Tables 5 and 6, respectively. Note, there maybe some
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minor alignment discrepancies between the coordinate frame of the filter sensors and the Septentrio
frame due to mounting of sensor equipment. Thus, some deviation from the reference Septentrio
measurements is to be expected. Nonetheless, the RMS error of the attitude from both filter methods
confirms that the attitude is being estimated properly.

Table 5. Root mean square error for cascaded EKF attitude estimates.

Name Value Units

φv 0.401 degrees
θ 0.570 degrees
ψ 0.577 degrees

Table 6. Root mean square error for coupled EKF attitude estimates.

Name Value Units

φv 0.422 degrees
θ 0.526 degrees
ψ 0.696 degrees

Figure 14 represents a section from the NCAT oval track. The same time interval of 460 s to 520 s is
used to compare the result with Figure 11. The estimate of the bank for the navigation EKF coupled with
the bank state looks very similar to the cascaded bank estimate approach with standard navigation EKF.
However, as mentioned previously, the coupled EKF filters the noise from the bank estimate. The noise
filtering is the primary advantage of the coupled approach. For this reason, the remaining experimental
result analysis is presented with the coupled 16-state navigation filter.
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Figure 14. Bank estimate on the NCAT oval track 16-state coupled EKF.
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6.1.3. Additional Validation of the Coupled Navigation EKF

A circle with a radius of 10 ft was marked on the skid pad area at NCAT. Laps were driven around the
circle. The velocity was increased about every two laps, until the tires exceeded peak force generation
and were unable to provide enough lateral force to hold the turn for the ATV. The idea is to demonstrate
the steady-state cornering capabilities of a vehicle in both the linear and the nonlinear section of the
tire curve. As the speed increases more, the steer angle is required to hold the turn. In the nonlinear
portion of the tire curve, the required steer angle is no longer linearly proportional to the step increase in
velocity. Figure 15 shows Novatel measurements of position, as well as the horizontal velocity profile for
the duration of the 10-ft circle run. Figure 16 shows the bank and total roll estimates and the relative roll
measurement from the suspension potentiometers. The peaks of the bank are represented by triangles.
In this run, the Prowler is turning right, which means the lateral acceleration pushes the vehicle body
towards the outside of the circle, and the roll due to dynamics φs is always negative. At 121.4 s, the
vehicle was pointed roughly east and experienced positive 1.25 degrees of bank. At 124.6 s, when the
vehicle was pointed roughly west, the vehicle experienced −1.5 degrees of bank. Thus, this area of the
skidpad appears to have roughly a bank of one to two degrees. Static measurements observed while
testing confirm that the skidpad area does tend to slope about 1–2 degrees in the direction running from
the southeast to the northwest.

The prowler suspension is nonlinear in that at extreme turn angles, the outer wheel turns in more than
the inner wheel, as seen in Figure 17. Also present in Figure 17 is tire deformation in the outer front tire.
These properties could effect the bank angle estimate. However, Figure 16 shows almost no noticeable
growth in peak bank estimates as the vehicle increases speed towards the conditions where asymmetrical
steering and tire relaxation are prevalent.

−15 −10 −5 0

x 10
−5

0

2

4

6

8

10

x 10
−5

120.3s

123.2s

121.4s

124.6s

Longitude (deg)

L
a
ti
tu
d
e
(d
eg
)

Position

Novatel
Estimate
Start
End
Bank Zero
Bank Zero
Bank Peak
Bank Min

60 80 100 120 140 160 180
0

2

4

6

Time (s)

(m
/
s)

Horizontal Velocity
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Figure 16. Coupled EKF on the NCAT skid pad 10-ft circle bank estimate.

Figure 17. Tire relaxation and asymmetrical steering.

Revisiting the NCAT oval track run, the coupled EKF bank estimate was tested under highly dynamic
steering input excitations. Figure 18 shows the position and velocity for a banked turn on the NCAT oval
track. On this particular turn, the roll axis is excited through sinusoidal steering inputs. The sinusoids
start during the transition from the crowned straight to the banked left turn and end just before the
transition back to the crowned straight. The bank estimate through the turn shown in Figure 19 closely
resembles the bank estimate in Figure 14. Notice that the bank estimate for the increasing bank angle is
unaffected by the vehicle body roll excitation.
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Figure 18. Coupled EKF on the NCAT oval track roll excitation position and velocity.
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Figure 19. Coupled EKF on the NCAT oval track roll excitation bank estimate.

In Figure 19, the vehicle returns to the straight section of track around 710 s. At 713.5 s, the vehicle
is centered over the road crown straddling the two lanes, and the bank is roughly zero. The vehicle then
performs a lane change maneuver to the outer edge of the track, and at 716.9 s, the estimate of the crown
for this section of straight is observed to be about two degrees, which corresponds to the 1–2 degrees of
crown purposefully designed into the track construction.

7. Conclusions

This work presents a method that provides an estimate of road bank by decoupling the vehicle roll due
to dynamics and roll due to the road bank. Suspension deflection measurements were used to provide
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a measurement of the relative roll between the vehicle body frame and the axle frame or between
the sprung mass and the unsprung mass, respectively. A method of scaling the suspension deflection
measurements to vertical wheel motion was explored. A deflection scaling parameter was found by both
a dynamics-based method and a suspension geometry-based method. The parameter was determined to
effectively scale the suspension deflection measurements with minimum error variances over varying
vehicle speeds. The relative roll measurement was then incorporated into two different estimation
architectures. Two kinematic navigation model-based extended Kalman filters (EKF) were developed.
The first EKF used a cascaded approach to incorporate the relative roll measurement. The second EKF,
a coupled approach, augmented the state vector with a state for the road bank. The road bank rate was
modeled as a time-varying disturbance, and a measurement update for the relative roll measurement
was developed. The estimators were tested on the Prowler ATV experimental platform at the National
Center for Asphalt Technology (NCAT). Both the cascaded and coupled approach performed well for
both simulation and experimental data. The EKFs correctly estimated the road crown and banked turns
of the NCAT oval track. The coupled EKF displayed the added benefit of filtering the noise on the bank
estimate. Both of the kinematic-based approaches performed well across all ranges of dynamics and
road bank disturbances. However, the coupled approach filtered the noise on the bank estimate, which
was determined to be advantageous. Furthermore, it should be noted that the methodology presented can
be modified and applied to vehicle pitch and road grade estimation.
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