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Abstract: Traffic sign recognition (TSR), taken as an important component of an intelligent 

vehicle system, has been an emerging research topic in recent years. In this paper, a traffic 

sign detection system based on color segmentation, speeded-up robust features (SURF) 

detection and the k-nearest neighbor classifier is introduced. The proposed system benefits 

from the SURF detection algorithm, which achieves invariance to rotated, skewed and 

occluded signs. In addition to the accuracy and robustness issues, a TSR system should target 

a real-time implementation on an embedded system. Therefore, a hardware/software co-design 

architecture for a Zynq-7000 FPGA is presented as a major objective of this work. The sign 

detection operations are accelerated by programmable hardware logic that searches the 

potential candidates for sign classification. Sign recognition and classification uses a feature 

extraction and matching algorithm, which is implemented as a software component that runs 

on the embedded ARM CPU. 
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1. Introduction 

Emerging technologies, such as vehicle-to-vehicle communications (V2V) [1], in-car cellular (online) 

connectivity [2] and increased computational prowess of embedded processors, are heralding a revolutionary 
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change in car design and driver assistance systems. These technologies will play a key role in the 

development of self-driving cars in the near future [3,4]. A key component of advanced driver assistance 

systems is traffic sign recognition (TSR) that enables the car to recognize the road signs in real-world 

environments. Successful detection and recognition of traffic signs can be used to alert the driver  

and/or to facilitate autonomous driving operations. The main challenge for robust detection performance 

comes from the complexity of the environment, such as lighting conditions, weather conditions, similar 

color background and occlusions. A reliable and robust TSR system that can overcome those 

cases/circumstances should be considered as a priority. Besides reliability, real-time operation is another 

challenge for the TSR system. A system that can provide sign information even at high traveling speeds 

is necessary for driver assistance systems. 

In this work, a new TSR algorithm flow is proposed, which performs exceptionally robustly against 

environmental challenges, such as partially-obscured, rotated and skewed signs. Another critical 

component is the embedded system implementation of the algorithm on a programmable logic device 

that can enable real-time operation. The proposed work is based on earlier research [5,6], which 

introduced a programmable hardware platform for TSR. This study shares the sign detection steps, but 

introduces a new sign recognition algorithm based on feature extraction and classification steps and its 

corresponding hardware implementation. 

In general, TSR systems are comprised of two parts: sign detection and sign recognition/classification. 

Many approaches for sign detection are based on color space information. In [7], a summary is given for 

color space threshold methods, including the RGB normalized threshold [8], the hue saturation  

threshold [9], the hue saturation enhancement threshold [10] and the space threshold [11]. For sign 

recognition [12], several feature extraction methods have been proposed, including Canny edge  

detection [13], scale invariance feature (SIFT) [14] and, more recently, speeded-up robust feature 

(SURF) [15]. HOG (histogram of oriented gradients) can also be used as features, as shown in [16,17]. 

Typically, features are extracted for the subsequent machine learning stage, which is used for the sign 

classification. Support vector machine (SVM) [18] and neutral networks [19] are popular classifiers 

based on such techniques. 

In recent years, a great variety of hardware solutions for real-time TSR has been proposed. These 

include conventional (general purpose) computers [20], custom ASIC (application-specific integrated 

circuit) chips [21], field programmable gate arrays (FPGAs) [22–25], digital signal processors  

(DSPs) [26] and also graphic processing units [27]. Although it is difficult to make a direct comparison 

due to differences in the TSR algorithms employed, the following section discusses the motivation and 

outcomes of these hardware architectures with respect to the proposed hardware/software solution. 

In [20], a software-based solution running on a Linux system with a 2.4-GHz dual core CPU is 

presented. The algorithm implements color processing and feature matching and is shown to have 95% 

accuracy. However, their traffic sign set is limited to only 20 signs, and the PC platform is not an 

embedded system that can be integrated into a car. In [21], a low power 0.13-μm ASIC chip has been 

presented for traffic sign detection, incorporating an image enhancement preprocessor and a sign 

recognition preprocessor. The image enhancement preprocessor uses the MSR (multi-scale retinex) 

algorithm, providing a robust image, adaptable to light and dark conditions. It uses neural-fuzzy logic to 

control the parameters of the MSR algorithm, and the recognition processor uses a support vector search 

engine for classification. Although the chip performs well, it is considered to be a very costly solution 
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due to the inflexibility of the ASIC platform for any post-silicon changes. FPGAs, on the other hand, 

provide unlimited reconfigurability as a hardware platform, and they are increasingly popular choices 

for TSR implementations. In [22], a SURF detector has been implemented on Kintex-7 FPGA, which is 

claimed to achieve a frame rate at 60 fps at 800 × 600 resolution. However, no information regarding 

the traffic sign recognition algorithm or relevant detection performance are given in the paper.  

The architecture given in [23] uses HOG features and the SVM classifier. The classification accuracy  

is 93.77%. However, the absence of any preprocessing step (sign detection) in the algorithm makes it 

difficult to recognize a potential sign in a raw image, and the effective accuracy is lower. Another FPGA 

architecture given in [24] uses a multi-core SoC implementation, targeting a latency of less than 600 ms 

(maximum latency for a car traveling at a speed of 180 km/h). Specifically, a Gaisler/Pender Electronics 

FPGA board, GR-CPCI-XC4V [28], is used for hosting a dual core LEON-3 processor and realizing a 

dedicated hardware accelerator for the support vector machine kernel used in the TSR algorithms. This 

is a very expensive prototype board and not feasible for production purposes. In [25], a TSR system is 

implemented on a Spartan-6-FPGA and includes color-based sign detection and feature-based 

classification steps, similar to our work, but their system is only capable of detecting speed limit signs. 

Many industry TSR solutions, such as cars manufactured by BMW and Mercedes, are also limited to 

speed limit signs [29]. In [26], an automated sign detection algorithm has been implemented using a TI 

OMAP L138 DSP chip. The DSP solution is shown to achieve an execution time of 300 ms for both 

detection and recognition parts. However, the recognition part is based on template matching, which 

would generally fail for tilted, rotated and partially-obscured traffic signs, unlike the feature matching 

algorithm in our proposed system. Finally, a GPU (graphical processor unit)-based solution is proposed 

in [27]. At the software level, the authors have used parallel processing to improve the efficiency of 

computing. An average frame rate of 21 fps is achieved by the GPU (~50-ms latency), which presents a 

good alternative to FPGAs due to the programmability of GPUs, but generally, the cost and power 

consumption of GPUs are very high. 

The TSR system presented in this work is unique due to a balanced approach in the software and 

hardware components. TSR algorithm has robust recognition performance (i.e., tolerates rotated, tilted, 

shifted and even obscured signs); it supports all traffic signs (not just speed limit signs); it can be easily 

expanded to different regional traffic sign sets (belonging to different countries or states) by training; 

and it is computationally efficient. The target hardware platform, the Zynq FPGA, is a low cost, low 

power and flexible system that provides fast development due to embedded ARM processor cores and 

the reconfigurable logic blocks. It can also be integrated into automotive embedded systems. 

The rest of the paper is organized as follows: In Section 2, color-based sign detection is described, 

and the SURF detection algorithm is introduced. New feature extraction methods are explained.  

Section 3 discusses the FPGA platform and the system components. Finally, experimental results for 

evaluating the detection accuracy are shown in Section 4, and hardware performance results are given. 

2. Algorithm Overview 

The task of traffic sign recognition can be divided into two sub-tasks of detection and classification. 

Detection is the response of finding the region of interest that could contain a traffic sign. Classification 

takes the challenge of identifying if these candidates are truly traffic signs and classifying them.  
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Figure 1 presents the proposed algorithm used for sign detection and classification. The main goal of 

this work is to design a fast, robust and reliable TSR system. To overcome the challenges mentioned 

above, the algorithms are chosen carefully. The presentation of the image is transferred from the RGB 

space to the hue/saturation/intensity space to achieve lighting invariance. To make the system invariant 

to rotation and skew, the SURF detector is adopted to extract the feature for matching. To achieve  

real-time sign recognition, an FPGA-based implementation is utilized in order to map the entire 

algorithm into hardware acceleration. As shown in Figure 1, the algorithms implemented as hardware 

acceleration include hue detection, morphological filter, labeling and scaling, while feature extraction 

and nearest neighbor search are done on an embedded CPU core. 

 

Figure 1. System flowchart for the proposed traffic sign recognition (TSR) algorithm.  

The green section (left) highlights detection and classification operations executed on an 

embedded system (FPGA). The blue section (right) shows the training steps executed on  

a PC. 

The original input image is transferred from the RGB domain to the HSI (hue, saturation and intensity) 

domain. By mapping the values with the hue color wheel in HSI, pixels can be categorized as a particular 

color, such as red or yellow. Then, morphological filters (opening and closing steps) are applied, which 

are used to eliminate the noise from the single or small group of red pixels. The rest of the positive pixel 

groupings are labeled as the potential signs. The labeling process identifies a square block for each and 

every pixel grouping in the image. The labeled pixel groupings are candidates for possible traffic signs. 

Among these candidates, most of them are too small, that they may not contain enough information for 

candidate matching. Hence, these non-feasible candidates need to be filtered out by calculating their 

height and width. Only those candidates that contain enough resolution are considered as good 

candidates. The subsequent steps deal with the second part of the TSR algorithm: the sign classification 

part. The possible traffic sign candidates are scaled into a certain resolution, and features are extracted 

by the SURF detector. These features are used to perform nearest neighbor search (or other machine 
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learning algorithms) with the training database for classification. If the matching condition is satisfied, 

it will be classified as the equivalent traffic sign. The algorithms mentioned above are implemented on 

a Xilinx FPGA board. An example of the off board process required to prepare the database for sign 

classification is shown in Figure 1. Training images are captured for feature extraction. To accelerate 

the searching speed, the features are constructed into a k-means tree structure and stored in the board. 

The following sections provide more details about the algorithms. 

2.1. Color-Based Segmentation 

Sign detection is primarily finding the region of interesting (ROI) that may contain signs. One of the 

most popular methods is color-based segmentation. A traffic sign is usually designed with a single 

background color, e.g., red, yellow or blue, which can be easily distinguished from the environment. 

Images are usually displayed in the RGB color model, in which red, green and blue light are combined 

together to reproduce a broad array of colors. RGB is very useful when displaying colors and widely 

used in our input/output devices, like cameras, scanners and color TV. Using RGB directly is considered 

as the simplest way for color segmentation. However, the three color components used to present red, 

green and blue pixels are highly correlated and also easily affected by illumination conditions. The same 

color, under different saturation levels or light, may cause an almost random variance of RGB values. 

2.1.1. Color Detection 

In this paper, color-based segmentation in the HSI space is taken. HSI represents a pixel by its hue, 

saturation and intensity. The hue component describes the color itself in the form of an angle  

between [0, 360] degrees. Zero degrees means red; 120 means green; 240 means blue; 60 degrees is 

yellow; 300 degrees is magenta. The saturation component signals how much the color is polluted with 

white color. The range of the S component is [0, 1], if the RGB value has been normalized to [0, 1]. The 

Intensity range is between [0, 1], and zero means black and one white, if the RGB value has been 

normalized to [0, 1]. 

Given an image in RGB format, the H component of each pixel is obtained using the equation [30]: ܪ = ൜ ߠ ݂݅ ܤ ≤ °360ܩ − ߠ ݂݅ ܤ ≥ ܩ  (1)

with: ߠ = 	 cosିଵ ൝ ଵଶሾ(ܴ − (ܩ + (ܴ − ܴ)ሿሾ(ܤ − ଶ(ܩ + (ܴ − ܩ)(ܤ − ሿభమൡ(ܤ  (2)

A fast version is given by [31]: 

ܪ =	
۔ۖۖەۖۖ
ۓ 0, ܴ = ܩ = ܩ)ܤ − ,ܴ)ݔܽ݉°60(ܤ ,ܩ (ܤ − ݉݅݊(ܴ, ,ܩ ݀݋݉(ܤ 360°, ܴ ≥ ,ܩ ܤ)ܤ − ,ܴ)ݔ60°݉ܽ(ܴ ,ܩ (ܤ − ݉݅݊(ܴ, ,ܩ (ܤ + 120°, ܩ ≥ ܴ, ܴ)ܤ − ,ܴ)ݔܽ݉°60(ܩ ,ܩ (ܤ − ݉݅݊(ܴ, ,ܩ (ܤ + 240°, ܤ ≥ ܴ, ܩ

 (3)
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The saturation and intensity can be calculated by equation [32]: ܵ = 1 − 3(ܴ + ܩ + (ܤ ሾmin(ܴ, ,ܩ ܫሿ (4)(ܤ = ଵଷ(ܴ + ܩ + (5) (ܤ

Once the conversion is made, the hue values for each pixel can be used for detection. Detection is the 

process of identifying a pixel whose hue value falls in a certain range of the hue wheel. Then, the image 

can be split into two components: pixels that have the color of interest and those that do not. A binary 

image can be created by flagging each pixel as to whether it belongs to the color of interest or not. 

According to [7], the red, yellow, blue and white colors can be detected by the following Equation (6) 

with the thresholds listed in Table 1: 

,݅)݈݁ݔ݅ܲ ݆) =

ەۖۖ
ۖۖۖ
۔ۖۖ
ۖۖۖ
ۓۖۖ ܴ݁݀, ݂݅ ,݅)ܪ ݆) ≤ ܶℎܴଵݎ݋ ,݅)ܪ ݆) ≥ ܶℎܴଶ	݁ݑ݈ܤ, ,݅)ܪ	݂݅ ݆) ≥ ܶℎܤଵ		ܽ݊݀	ܪ(݅, ݆) ≤ 	ܶℎܤଶ	ܻ݈݈݁ݓ݋, ,݅)ܪ	݂݅ ݆) ≥ ܶℎ ଵܻ	ܽ݊݀	ܪ(݅, ݆) ≤ 	ܶℎ ଶܻ		ܽ݊݀	ܵ(݅, ݆) ≥ 	ܶℎ ଷܻ	ܹℎ݅݁ݐ, ݂݅	ܵ(݅, ݆) 	≤ ܶℎܣ			݀݊ܽ	ܫ(݅, ݆) ≥ 	ܶℎ ,݁ݏ݈ܧܹ	 ݁ݏ݅ݓݎℎ݁ݐ݋

 (6)

Table 1. Color detection thresholds [7]. 

Color Threshold Values 

Red ܶℎܴ1 = 10, ܶℎܴ2 = 300 

Blue ܶℎ1ܤ = 190, ܶℎ2ܤ = 270 

Yellow ܶℎܻ1 = 20, ܶℎܻ2 = 60, ܶℎܻ3 = 150 

White ܶℎܣ = 48, ܶℎܹ = 60 

2.1.2. Morphological Filters 

In the binary image created above, not all pixels are part of the traffic signs. Much spark noise 

sometimes spreads on the image. Leaving them without any processing will only cause them to propagate 

to the next level and harm the detection performance. Hence, the image has to be filtered. For this spark 

noise, such as single dots or small pixel blobs, a morphological filter is an easy and efficient way to 

remove those pixels and only leave larger candidates for the next step. 

The basic idea of the binary morphological filter is to sweep an image with a window called the 

structuring element (SE), which is a pre-defined small geometric window, such as a square or cross. 

There are two basic operators: erosion and dilation. Other operators, such as opening and closing, are 

sequential combinations of these two operators. Erosion is good enough to eliminate those small pixel 
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blobs, but it also trims other objects. Opening meets the requirement of eliminating the noise and 

retaining the information of other objects. The remaining object(s) could be treated as a region of interest 

that may contain a traffic sign. In this work, different structural elements have been tried, as shown in 

Figure 2. Large structure elements may cause the loss of a potential sign; and multiple combinations of 

erosion and dilation operations improve the results slightly. Therefore, the conclusion was that a single 

opening operation (erosion and dilation) with a 3 × 3 square structure element provides the best results. 

 

Figure 2. Experimental results of morphological filters with various combinations of 

operations and structural elements. Clockwise from top left corner: original image; after 

erosion and dilation steps using 3 × 3 pixel structural elements; after erosion and dilation 

steps using 5 × 5 pixel structural elements; after erosion, dilation, dilation and erosion steps 

using 3 × 3 pixel structural elements. 

2.1.3. Labeling 

Labeling is the process of scanning the image to detect pixel groupings. Pixels that share an edge or 

a vertex are considered to be members of the same pixel grouping or “blob”. The remainder of this 

section details the algorithm used to detect these blobs. The goal with labeling is to identify a bounding 

box for each and every pixel grouping in the image. This will result in four parameters for every blob: 

Xmin, Ymin, Xmax, Ymax. These are the two diagonal corners that define the bounding box. Simply put, the 

labeling algorithm scans the image from bottom to top and left to right (raster order) keeping track of 

Xmin, Ymin, Xmax and Ymax for all of the pixel groupings it encounters. During this scanning, only one row 

plus two pixels are stored and labeled at a time in memory. Labels are assigned, and a table is built 

containing the Xmin, Ymin, Xmax and Ymax values for each label. While scanning, a window of five pixels 

is examined at a time: the current pixel and its four previously-visited neighbors. The window size is 

chosen to be five due to the reduced memory usage (only one row plus two pixels). Each pixel initially 
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starts with a label of 0 (not labeled), and if the pixel is a foreground pixel, then a non-zero label is 

assigned. The value of that label depends on the labels of its four neighbors. 

Figure 3 shows all of the possible combinations for consideration when determining the label of the 

current pixel. Each of these diagrams represents the current pixel, X, its immediate previously-scanned 

neighbor, P, and its previously-scanned neighbors, 1, 2 and 3. Shaded pixels are active and labeled. There 

are two special cases distinguished by the red and blue borders. The first special case, marked in red, is 

the case in which none of the current pixel’s neighbors have a label. In this case, the current pixel receives 

a new label. The second special case, marked in blue, is the case when the current pixel has multiple 

neighbors that have labels, and these labels may not be the same. When different labels meet at the current 

pixel, relabeling must happen, so that a single bounding box is generated to encompass what had been 

two separate labels. The remaining case is the simplest: the current pixel has one or more previously-

labeled neighbors having the same label. In this case, the current pixel is simply labeled in kind. 

 

Figure 3. Possible pixel configurations for the labeling process. X is the current pixel; P is 

the immediate previous neighbor; 1, 2 and 3 are previously-scanned neighbors [5]. 

While pixel labels are being assigned, the bounding box for each label is being grown to encompass 

all of the pixels that contain that label. This is done by maintaining a record table that holds Xmin, Ymin, 

Xmax and Ymax for each label. The second special case described above is where the interesting portions 

of this algorithm reside. When two labels meet, the algorithm is discovering for the first time that what 

was previously thought to be two distinct blobs is indeed one. The records that have been maintained 

thus far will need to be updated to include this information. One possible approach would be to rescan 

all or portions of the image. However, given that doubling back to reliable portions of the image can be 

a time-consuming step, it was chosen to solve this problem by using a level of indirection. Each pixel is 

given a label. This label does not point to a record of Xmin, Ymin, Xmax and Ymax, but rather, to a record 

number. This record number points to these actual bounding box parameters. In this way, when two 

labels meet, both labels can be made to point to the same record that will now encompass what was once 

two labeled groupings. 

Consider the example in Figure 4. This is a simple 16 × 16 pixel image that contains two blobs that 

should be labeled by the labeling algorithm. As the algorithm begins, as shown in Figure 4a, the first 

three pixels encountered are labeled with new labels, as they have no labeled neighbors that have been 

encountered yet. The pixels that are marked with red indicate this special case; a new label is used. The 
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record table to the right shows the values it would take at this point in the scan of the image. The next 

two figures (Figure 4b,c) show what happens when Labels 1 and 2 meet and when Labels 2 and 3 meet. 

The yellow box shows the window the algorithm is considering at that point in time. When two labels 

meet, the label table is updated to point to the lower record entry. This entry is also updated, so that the 

points it describes encompass all of the pixels of both labels. In this way, information is carried along. 

Figure 4d shows the fully-labeled image with its completed record table. It can be seen that temporary 

label numbers, 1, 2, 3, all point to the same record number and boundary box as expected, since they 

belong to the same “blob”. 

(a) (b) 

(c) (d) 

Figure 4. Labeling example. (a). Three new labels are created; (b) Labels 1 and 2 meet;  

(c) Labels 2 and 3 meet; (d) completed labeling. Labels 1, 2 and 3 all point to the same record 

number and boundary box. 

 

Figure 5. Detection of potential traffic signs. Steps include RGB to HSI conversion, 

denoising using morphological functions, labeling (grouping) of potential signs and 

extraction of potential signs to be forwarded to the sign classifier process. 
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2.1.4. Segmentation and Detection of Traffic Sign Candidates 

After the labeling step, multiple regions of interest (each label corresponds to an ROI) have been 

identified and extracted, and they are sent to the sign classification part. This is accomplished by 

mapping the associated binary image with the original image. The associated binary image is the result 

of the original image processed by all steps mentioned above. Coordinates provide the location of the 

ROI, and active binary pixels provide the exact pixels that need to be extracted from the original image. 

Figure 5 shows the complete procedure for the detection of traffic sign candidates. 

2.2. Sign Classification 

After the sign detection step, several regions of interest are obtained that may potentially contain  

a traffic sign. Next, these potential signs are searched in the traffic sign database in order to find a match. 

In this work, a sign classification approach based on speeded-up robust features (SURF) [33] and the 

nearest neighbor classifier is used. The SURF detector is used to detect and extract features from 

hundreds of sign templates for training. The nearest neighbor classifier is used in the final step  

for categorization. 

2.2.1. Feature Extraction and SURF Detector 

SURF is a robust local feature detector popular in computer vision applications. It is based on the 

SIFT algorithm and is shown to be faster and more robust against SIFT. It uses the determinant of the 

Hessian matrix to find interest points. For a continuous function of x and y, the value of the function at (ݔ, ,ݔ)݂ is given by (ݕ ,ݔ) The Hessian matrix H of function ݂ at .(ݕ  :is (ݕ

,ݔ)൫݂ܪ ൯(ݕ = ێێێۏ
ۍ ߲ଶ݂߲ݔଶ ߲ଶ݂߲߲ݕ߲ݔଶ݂߲ݕ߲ݔ ߲ଶ݂߲ݕଶ ۑۑۑے

ې
 (7)

where 
డమ௙డ௫మ, డమ௙డ௬మ and 

డమ௙డ௫డ௬ are second partial derivatives of function ݂. 

The determinant of this matrix is given as: det(ܪ) = ߲ଶ݂߲ݔଶ ߲ଶ݂߲ݕଶ − ቆ ߲ଶ݂߲ݕ߲ݔቇଶ (8)

This determinant is used to estimate whether the function f has extremum at (ݔ,  If the determinant .(ݕ

is positive, which means f changes with x and y in the same direction, then point (ݔ,  could be a local (ݕ

extremum. If the determinant is negative, which means f changes with ݔ and ݕ in different directions, 

then point (ݔ,  .is not a local extremum (ݕ

For image processing, we can just replace the function ݂(ݔ, ,ݔ)ܫ by a gray image (ݕ  The second .(ݕ

order derivative can be replaced by the Laplacian. Since Laplacian is sensitive to noise, the SURF 

detector combines the Gaussian filter for smoothing. Then, the second order derivative is replaced by 

the Laplacian of Gaussians (LoG). 

SURF features are scale invariant. To achieve this, scale-space is used to find the extrema across all 

possible scales. Typically, this is achieved by creating an image pyramid with smaller down-sampled 
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images. For computational efficiency, instead of using an image pyramid, SURF increases the size of 

the filter to achieve a similar effect. Based on the response of these filters, a scale-space is created.  

A non-maximal suppression is performed in a 3 × 3 × 3 neighborhood to localize interesting points. The 

interest point localized by the determinant of the Hessian matrix is compared against its 26 neighbors. If 

it is greater than its surrounding pixels, it is selected as a maximum. After locating the interest points, 

descriptors are created using the Harr wavelet response of the surrounding pixels. Each interest point is 

assigned an orientation. If descriptor components of an interest point are extracted relative to this 

orientation, it will be invariant to image rotation. In order to determine the orientation, Haar wavelet 

responses in the x and y direction are calculated for a set of sampled points within a radius of 6σ at the 

detected interest point, where σ refers to the scale at which the interest point was detected. 

2.2.2. Dataset, Feature Selection and Training 

The SURF detector is used to find a reliable extractor that could provide robust features to the traffic 

sign database for machine learning. One problem for feature extraction is the difficulty of finding a 

suitable database that contains enough examples of U.S. traffic signs sampled from a natural 

environment. Collecting examples from different sources is not desirable, since various brands of camera 

plus various image formats will make the database unreliable for testing and training. Therefore, we 

created a sign database by taking hundreds of signs with different rotation and scale values. The numbers 

of signs with different color categories are listed in Table 2. Some example images are shown in  

Figure 6. 

 

Figure 6. Example images from the traffic sign dataset. 
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Table 2. Distribution of primary colors in the sign dataset. 

Sign Color Number of Signs 

red 8 
yellow 13 
white 12 

Figure 7 shows an example traffic sign, “BUMP”, with detected interest points. It can be seen that 

some of the interest points are detected at the edge. In fact, there are as many interest points at the edge 

as the interest points detected around the center. Center interest points usually contain more valuable 

(distinguishing) information. Most signs in our database contain edges that contribute a large number of 

redundant interest points to our database. Furthermore, using this database for training leads to 

undesirable outcomes. To avoid the disturbance of those interest points around edges and to reduce the 

number of interest points, we propose two feature selection methods for database creation. One method 

is to setup a threshold of the determinant of the Hessian matrix at the interest point detection step. Recall 

the determinant function, where 
డమ௙డ௫మ and 

డమ௙డ௬మ are second derivatives of function f in the x and y direction, 

respectively. Both 
డమ௙డ௫మ and 

డమ௙డ௬మ will have larger values, if point(x, y) is of the corner. If the point(x, y) is 

of the edge, then either 
డమ௙డ௫మ or 

డమ௙డ௬మ would like to have a larger value. Hence, the determinant of the points 

around the corner is larger than the determinant of the points around the edge. Based on the experimental 

results, a threshold value is selected. The interest points detected after thresholding (interest points at the 

edges are ignored) are shown in Figure 8a. 

Another method is to cut off the edges from training images and then extract only “good” matches 

from the remainder image (see Figure 8b). For each interest point of the query image, we calculate its 

distance with every interest point in the template image and find the minimum distance and second 

minimum distance. Generally, a good match has both a smaller absolute distance and smaller relative 

distance. Hence, a determinant of a good match is given by: (	݀ଵ݀ଶ < ଵܶ) ܽ݊݀ ( ݀ଵ < ଶܶ) (9)

where ݀ଵ is the minimum distance, ݀ଶ is the second minimum distance, ଵܶ is the relative threshold and ଶܶ is the absolute threshold. This equation was validated by experimental results. To balance the number 

of interest points of each sign, ଵܶ and ଶܶ can be adjusted during the extraction processing. 

 

Figure 7. Detected interesting points (features) on a traffic sign image for “BUMP”. 
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Figure 8. Proposed interest point reduction methods for database creation. (a) Method 1: 

removal of interest points around the edge; (b) Method 2: select only “good” interest  

point matches. 

The similarity measure between two interest point p and q is based on Euclidean distance, which is 

given by: ݀ = ඥ(ݍଵ − ଵ)ଶ݌ + ଶݍ) − ଶ)ଶ݌ + ⋯+ ଺ସݍ) − ଺ସ)ଶ (10)݌

Figure 9 shows the flowchart of the feature database creation. For Method 1, interest point matching 

is not required. The determinant threshold, which can eliminate edge points, needs to be set before 

executing the program. The program is designed to build only one type of traffic sign at a time. Once 

the program starts, a single training image will be loaded, then features will be extracted and stored. The 

program will extract features iteratively until all images (belonging to one traffic sign) are done. The 

final step will be combining these features extracted from different images together and storing in a 

single file “database”. 

As described earlier, Method 2 uses only features from training images that have “good” matches on 

the template image. Hence, an extra matching step is inserted to create the database for Method 2, as 

shown in Figure 9b. Since features of a single image have been extracted in the previous process, the 

program starts from read features form “sign_name_i ipts” files. The standard template will be treated 

as the target sign, and features from other training images will try to find their match on this template 

sign. The iteration will keep executing until all images are done. The final step is to store all matched 

features in a single file. For both programs, the final database contains features extracted from  

33 different types of traffic signs (set from Illinois, USA). 
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Figure 9. Flowchart for database creation. Repeat the steps for each traffic sign. Training 

can be done with any number of test images. (a) Method 1 uses the determinant threshold to 

eliminate edge interest points; (b) Method 2 determines the “good” matches to a template 

image and only uses those interest points as features. 

2.2.3. k-NN Classification 

In pattern recognition applications, the k-nearest neighbor is a non-parametric method used for 

classification and regression. In k-NN classification, the output is a class membership. An object is 

classified by a majority vote of its neighbors, with the object being assigned to the class most common 

among its k-nearest neighbors, If k = 1, then the object is simply assigned to the class of that single 

nearest neighbor. It has been proven that the risk of 1-NN is never more than twice the value of the  

Bayes risk [34]. 

The training examples are vectors in a multidimensional feature space, each with a class label. The 

training phase of the algorithm consists of only storing the feature vectors and assigning labels of the 

training samples. In the classification phase, k is a user-defined constant, and a query is classified by 

assigning the label that is most frequent among the k training samples nearest to that query point. 
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The easiest way of searching the nearest samples is exhaustive search or brute force search. In this 

algorithm, each query point is compared to all training points in the database. Searching the closest 

matches to high-dimensional vectors in a large database will lead to a computationally-expensive 

problem. Instead of using exhaustive search, our database is transferred into a k-means tree structure. 

Once the tree is constructed, the searching problem becomes tracing a branch to find a leaf and 

comparing with every points inside the leaf to find the nearest points. Again, the Euclidean distances are 

calculated for the similarity measure. If the distance is smaller than the threshold, it will be considered 

as a good match. The sign that contains the highest number of good matches will be treated as a potential 

positive detection. If this number is greater than the threshold and it occupies 30% of the total number 

of good matches, it will be considered as a positive detection, and the traffic sign is identified. The 30% 

threshold is to avoid those noises that may have broad matches among different signs. Figure 10 shows 

the sign classification flow with the database creation described above. 

 

Figure 10. Sign classification based on SURF and nearest neighbor search. 

3. FPGA Implementation 

In this section, an FPGA-based TSR system implementation is described. The sign detection part  

has been successfully realized as a custom IP core [5]. The sign classification based on template 

matching and k-NN classification is designed as software code running on the ARM CPU embedded in 

a Zynq FPGA. 

3.1. Development Environment 

The TSR system has to be able to provide the traffic sign information as a car approaches the sign. 

Then, the execution time of the algorithm becomes an issue. Generally, the hardware implementation is 

necessary due to timing requirements. However, some operations or some types of data may increase 
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the complexity of the hardware design. If possible, a compromise between hardware and software is 

desirable. In this scheme, the software component is used to pre-process data and communicate with 

hardware blocks. For example, MicroBlaze is an embedded soft core processor, optimized for 

implementation on Xilinx FPGAs. It has advanced architecture options, like an AXI or PLB interface, a 

memory management unit, instruction and data-side cache, a floating-point unit, and more. Figure 11 

shows our earlier TSR design using the MicroBlaze soft core [5]. The MicroBlaze was initially used to 

handle the input and output data streams, setup parameters for the image processing peripheral and 

implement some portions of the image processing algorithm [5]. Since MicroBlaze is soft core, it has 

vast flexibility. There are many options for configuring the soft core according to the performance and 

resource utilization requirements. The key drawback of the MicroBlaze soft core system was the limited 

clock frequency of the programmable logic. The RAM access during the application programming is 

also inconvenient, which increases the complexity of development. To fill the market requiring more 

powerful embedded system development tools, Xilinx released Xilinx Zynq-7000, which contains a dual 

1-GHz ARM Cortex-A9 processor that comes with a high performance memory system. ZedBoard is a 

complete development kit for designers using the Zynq-7000 All programmable SoC. As shown in 

Figure 11 [5], this board includes all of the necessary interfaces and peripherals to enable a wide range 

of applications. 

 

Figure 11. System block diagram [5]. 

One of the key goals of this work is to develop an efficient combination of a software processing 

system (C code running on CPU cores) and an FPGA logic for hardware acceleration and control. 

Compared to the MicroBlaze CPU, the ZedBoard processing system, shown in Figure 12, runs much 

faster, and it is not necessary to add and manage a RAM unit. It has 512 Mb DDR3 attached, which is 

large enough for most of the applications. ZedBoard provides an efficient combination of a processing 

system (software) and FPGA. The development of custom IP cores is more like a plug-and-play design. A 

framework was designed based on this stimulus, as shown in Figure 13 [6]. Xilinx’s Embedded 

Development Kit (EDK) was used to create this platform, which includes blue and red parts, as shown 

in the figure. The processing system includes the ARM cores, which are responsible for running the 

program on top. The red part is the interface AXI4 and its attached registers, the back-bone of the whole 
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system. It carries the responsibility of communications among the processing system, hardware 

peripherals and PC. Registers attached to customer peripherals (once they are created) are software 

accessible. This means parameters can be sent to the peripherals by writing simple codes to set these 

registers. These registers could be classified as a control register, a status register, a data register and an 

address register. The control register is used to initialize the peripheral. The data register is used to 

transfer data, and the address register is used to set a proper IP buffer address for data register, which 

means the data in the data register will be transferred into the IP buffer associated with the address 

register. Overall, the interface is very intuitive. Since software-accessible register drivers will be 

automatically generated, EDK has been used to create the custom IP. The debug window is like an HCI, 

which is used to display the interaction of applications. The processing system handles the input and 

output data. The system uses UART to build the connection to the PC. AXI4 interface is used to build 

the connection between the CPU processing system and hardware peripherals. The proposed system was 

implemented on a Xilinx ZedBoard as a HW/SW co-design. 

 

Figure 12. ZedBoard and peripherals [35]. 

 

Figure 13. FPGA system framework (adapted from Han and Oruklu [6], with permission 

from © 2014 IEEE). 
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3.2. Hardware Implementation 

3.2.1. Hue Calculation and Detection: Hardware IP Core 

Generally, the hardware has its advantage in processing data streams. Hence, the image is transferred 

as a stream of pixels in RGB format. As described in the previous section, the image is converted into 

the HSI color spectrum. The hue value represents the color; the saturation represents the purity of the 

color; and intensity represents how dark that color is. Hence, only hue calculation should be good enough 

to detect the color. Unfortunately, there is no such hue value for the white sign. In this situation, 

saturation and intensity have to be calculated. Compared to the hue calculation, determining the 

saturation and intensity is much easier. Figure 14 shows the implementation of hue calculation in the 

hardware. The circuit takes in the RBG values and outputs hue values. The division step requires  

17 clock cycles to fill the pipeline and generates the quotient every clock cycle. Hence, it is necessary to 

introduce delay registers that allow the control signals, offsets and quotient to align. 

 

Figure 14. Hue calculator logic. 

According to Equation 2, the hue value should be a value between zero and 359. To simplify the 

multiplication, 64 (a power of two) degrees are used as the multiplier, rather than multiplying by  

60 degrees [31]. This resulted in a color wheel with a range between zero and 383. Furthermore, the red 

color has a zero value in the original color wheel. To avoid the modulo calculation for red pixels, the 

color wheel is rotated by 64 degrees. This can be achieved by implementing the offset according to the 

following equation: 

Offset = 256∙Bmax + 128∙Gmax + 64 (11)

3.2.2. Morphological Filtering: Hardware IP Core 

Figure 15 shows the hardware implementation of morphological filters, which can be used for both 

erosion and dilation. Single-bit registers are used to hold the pixels within the filter window, which is 
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also called a structural element. The enabled signal is attached to the output of each register to make the 

structural elements programmable. The filter window is implemented as a 5 × 5 rectangle. Therefore,  

it is not necessary to redesign the combination logic when the structural element changes. Further, the 

duality relation between erosion and dilation enables both to be implemented with a single circuit.  

A control signal E/_D is used to complement both input and output signals. This increases the flexibility 

of the design and allows for reuse when different combinations of filters are needed. The center of the 

window is the pixel under evaluation. Combinational logic compares the central pixel and its neighbors 

to determine if the output pixel should be active or inactive. Given that the image arrives as a data stream,  

a row buffer has to be attached to hold all of the pixels in a row. Therefore, when the filter window scans 

the image, the pixels stored in the buffer can be piped to the filter. Since a 5 × 5 filter window is chosen,  

four row buffers are required. 

 

Figure 15. Morphological filter implementation. 

According to experimental results, a structural element of a 3 × 3 square and a single open operation 

gives the cleanest image, while not Hamming the traffic sign. This is based on the image with a resolution 

of 320 × 240. If the resolution of the image increases, a larger structural element may be needed to  

adapt to the changes. 

3.2.3. Labeling: Hardware IP Core 

Similar to the morphological filter process, labeling also requires a window to scan the binary images. 

The five pixels in the window, as mentioned in Section 2, are the current pixel and its four previous visited 

neighbors. A pixel buffer and a label buffer are required to hold pixels and labels, respectively.  

Figure 16 shows the block diagram for the labeling circuit. The label and record update logic block 
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determine the labels for each pixel and update the label and record table. If the current pixel is active, a 

label will be assigned to that pixel. It is determined by which case gets hit (see Figure 3). 

 

Figure 16. Labeling implementation. 

At the end of the labeling process, an acknowledgement will be received by the software part 

indicating that the segmentation is done, and the labeling results are ready to be loaded. 

3.2.4. Candidate Resizing: Embedded CPU Program 

At this stage of the TSR algorithm, the boundaries of potential candidates have been extracted and 

loaded by the ARM CPU for sign classification. Before executing the classification algorithm, the 

candidates need to be further processed. A small box may not contain enough information for 

classification, and a big box has no chance to be a traffic sign. Those candidates that are too small or big 

could be easily removed by calculating the Xmax-Xmin and Ymax-Ymin. After this, only those candidates 

with a proper size remain. Each candidate has to be scaled to a certain resolution based on the method 

of classification. So far, two classification methods have been implemented on the ZedBoard. One 

method is to directly match the template pixel by pixel. Another method is based on the nearest neighbor 

classifier. For the template matching method, each candidate will be scaled to the same resolution as the 

template and then compared to each template. For the nearest neighbor classifier, each candidate will be 

scaled to 200 × 200 pixels, and then, features will be extracted. For both methods, the scaling algorithm 

calculates the ratio between the original size of the candidate and the target resolution. A new memory 

location is used as the storage location of the new resized candidate. The algorithm locates and scans the 

candidate on the original image based on its boundaries and sets the pixels of the scaled candidate to be 

active or inactive according to the calculated ratio. 
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3.3. Classification Implementation: Embedded CPU Program 

The SURF detector has been implemented on many platforms, such as the OpenCV library and 

MATLAB. However, our bare-metal system can only run pure C/C++ code plus basic C/C++ library. 

Hence, OpenSURF [36], which is given in nearly pure C++ code, is adopted and converted to a C version 

that can run on an ARM processor. The OpenSURF still uses the OpenCV library to load the image and 

stores in Mat format, which is primarily used by the OpenCV function. In the C library, we only have 

the array or matrix that can be used as the image container. During the implementation, it was found that 

the matrix created by the “malloc” function does not work properly, which left “array” as the only choice. 

All of the function calls or use of the Mat container have been transferred to proper ones. OpenSURF 

also uses the OpenCV library to perform the last step in localizing the interest point, whereas our 

implementation uses the Gaussian elimination algorithm. 

For sign recognition, as described in Section 2, features are extracted from training images and stored 

in a file. This database will be loaded to the ZedBoard before sign detection. To find the best matches in 

the database, each feature calculates its Euclidean distance. Once the distance meets the condition,  

a good match is counted. The sign that contains the highest number of good matches will be treated as  

a potential positive classification. 

4. Accuracy Analysis and Performance Results 

4.1. Experimental Results 

For initial accuracy performance analysis, experiments are carried out on a PC, using  

Visual Studio 2010 with OpenCV library Version 2.49 and OpenSURF. Our image database includes  

33 types of signs and thousands of test images in total. Experiments are categorized into three database 

groups, Group 1, Group 2 and Group 3, depending on the feature selection and interest point reduction 

method. In order to make a comparison, the images used for extracting interest points for each group are 

the same. 

For Group 1, No interest point reduction strategy is used. 

For Group 2, feature selection Method 1 is used; no interest points around the edges. 

For Group 3, feature selection Method 2 is used; only interest points that have a good match are used. 

The accuracy results are listed in Table 3 and Figure 17. The accuracy results are represented  

in two ways: (1) misclassification rate and (2) false classification rate. The misclassification (MC) 

represents the signs that are detected in the sign detection stage, but neglected and not classified into any 

category in the sign classification stage. False classification (FC) represents the signs that are detected 

in the sign detection stage, but classified to the wrong category. Most of the false recognitions are caused 

by blurry images (shown in Figure 18), which do not contain enough good features for matching. For 

actual applications, false classification is more critical than misclassification. The camera may capture 

dozens of frames per second; and most misclassified signs may be eventually correctly recognized.  

On the other hand, FC errors cannot be recovered from. Considering that FC is more critical than MC, 

both Group 2 and Group 3 databases have better results. The Group 3 database (generated using  
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Method 2) has the least FC. All groups perform robustly for rotated and skewed signs, as shown in  

Figures 19 and 20, respectively. 

Table 3. Accuracy analysis for SURF feature extraction and nearest neighbor search. 

 Group 1 Database Group 2 Database Group 3 Database

Number of training images 231 231 231 
Number of test images 1236 1237 1218 
Misclassification (MC) 7.69% 5.74% 11.82% 
False classification (FC) 3.80% 2.18% 0.99% 

 

Figure 17. Performance of test images with 20% blurry images and 30% rotated images. 

MC is misclassification; FC is false classification; and TF is total failure. Groups 1, 2 and 3 

differ in their interest point selection for database creation. 

 

Figure 18. Examples of blurry images. 

 

Figure 19. Rotated sign examples. 

 

Figure 20. Skewed sign examples. 

If the blurry images are removed from the test images, the accuracy performance is greatly improved, 

as shown in Figure 21. Group 3 still has the best FC. Group 2 has the best overall performance in 

recognition. From the experiments, it was observed that signs with a similar layout have a higher false 

classification rate, such as “lane merge right” and “lane merge left”. The speed limit sign has the highest 
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false classification rate. The speed limit signs for 30, 45 and 55 have similar layouts, except the number, 

which leads to a significant mixed boundary between their features. The larger mixed boundary will 

cause a higher false classification rate. 

 

Figure 21. Performance of test images without blurred images. MC is misclassification; FC 

is false classification; and TF is total failure. Groups 1, 2 and 3 differ in their interest point 

selection for database creation. 

4.2. Hardware Performance Results 

Table 4 compares the execution time of our earlier TSR algorithm running on Virtex 5 and ZedBoard 

platforms. This particular algorithm uses the same front end (HSI color space, morphological filters, 

labeling and scaling steps) and implements a simple template matching based on Hausdorff distance 

calculation, which is fast, but not very robust with respect to accuracy [5]. 

Table 4. Comparison of TSR algorithm performance running on Virtex 5 and Zynq FPGA platforms. 

Algorithm Steps: 
Execution Time: 

MicroBlaze and IP Cores on Virtex 5 ARM CPU and IP Cores on Zynq 

Custom IP peripheral core: (HSI conversion,  

morphological filters, labeling) 
114 ms 28.7 ms 

Scaling and template matching  

(Hausdorff distance) 
663.3 ms 67.8 ms 

Total Time 777 ms 96.5 ms 

Next, the SURF-based feature extraction and matching algorithm is implemented on the ZedBoard 

FPGA hardware. A user-friendly PC interface in C# is designed for controlling the ZedBoard (shown in 

Figure 22). The terminal window presents all of the responses from the application, which displays the 

same information as the SDK terminal. The debug window displays the execution times of the SURF 

detector and search. Once the ZedBoard is initialized, the program running on the board loads the test 

image and waits for the command to execute the SURF detector. The open image button displays the 

image under test. Start SURF will trigger the ZedBoard to execute the SURF detector to extract features 

for matching. The classification results and timing results are shown on the left. 
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Figure 22. Execution time for the (recognition phase only) “CROSSWALK” sign using 

brute force matching. 

Figure 22 shows an example of brute force searching based on the database that only contains 10 

signs. The number of features stored in the database is around 1500. The average classification time, 

which includes executing the SURF detector and brute force searching, is about three seconds.  

Figure 23 shows the timing performance of k-means search, which contains the complete Group 3 dataset 

that includes around 5000 features. As shown in the results, the matching time of k-means is much faster 

(less than a second) than the brute force template match, even if the number of features stored in the 

system is 3.3-times larger. Nevertheless, a 992-ms total execution time (shown in Table 5) cannot be 

considered as a real-time operation speed for fast moving cars. Therefore, the execution time of the 

SURF detector in particular needs to be improved by the hardware accelerator blocks instead of the 

software implementation. 

 

Figure 23. Execution time for the (recognition phase only) “CROSSWALK” sign using  

k-means matching. 
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Table 5. Performance results for the proposed TSR algorithm. 

 
Sign Detection (Hardware IP  

Cores for HSI Conversion,  
Morphological Filters, Labeling) 

Sign Recognition and Classification  
(Runs on ARM CPU) 

SURF Feature Extractor k-NN Search 

Execution Time 28.7 ms 
892 ms 72 ms 

964 ms 

Total Time 992.7 ms 

Figure 24 shows the resource utilization of the target Zynq FPGA platform. Due to the software-only 

implementation of the SURF algorithm, only 30% of the logic slices are needed for the TSR hardware 

IP blocks. It is evident that more hardware peripherals can be instantiated to accelerate the feature 

extraction algorithm and achieving real-time operation. 

 

Figure 24. FPGA hardware resource usage for the proposed TSR system. 

5. Conclusions 

In this paper, a new TSR system that combines the SURF feature extractor and nearest neighbor 

classifier methods has been presented. The system shows robust detection performance even for rotated 

or skewed signs. False classification rates can be reduced to less than 1%, which is very promising. The 

proposed TSR system that combines hardware and software co-design is implemented on Xilinx’s 

ZedBoard. An ARM CPU framework based on the AXI interconnect is developed for custom IP design 

and testing. Overall, the system throughput is eight times faster compared to the authors’ previous design 

based on the Virtex 5 FPGA, when considering both IP hardware execution and algorithms implemented 

in software. The current execution time of 992 ms may not be sufficient for real-time operation (when a 

fast moving car is considered); however, the FPGA resource usage is very low, and dedicated IP blocks 

can be used to implement the SURF algorithm and improve the computation time. This would enable 

real-time TSR. This hardware platform can be also expanded to include other driver assistance 

technologies that may be necessary in autonomous cars, such as pedestrian detection and lane detection, 

which utilize similar computer vision methods. 
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