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Abstract: Network on Chip (NoC) architectures have emerged in recent years as scalable
communication fabrics to enable high bandwidth data transfers in chip multiprocessors (CMPs).
These interconnection architectures still need to conquer many challenges, e.g., significant power
consumption and high data transfer latencies. Hybrid electro-photonic NoCs have been recently
proposed as a solution to mitigate some of these challenges. However, with increasing application
complexity, hardware dependencies, and performance variability, optimization of hybrid photonic
NoCs requires traversing a massive design space. To date, prior work on software tools for rapid
automated NoC synthesis have mainly focused on electrical NoCs. In this article, we propose a novel
suite of software tools for effectively synthesizing hybrid photonic NoCs. We formulate and solve
the synthesis problem using four search-based optimization heuristics: (1) Ant Colony Optimization
(ACO); (2) Particle Swarm Optimization (PSO); (3) Genetic Algorithm (GA); and (4) Simulated
Annealing (SA). Our experimental results show significant promise for the ACO and PSO based
heuristics. Our novel implementation of PSO achieves an average of 64% energy-delay product
improvements over GA and 53% improvement over SA; while our novel ACO implementation
achieves 107% energy-delay product improvements over GA and 62% improvement over SA.

Keywords: network-on-chip; photonic interconnects; synthesis algorithms; chip multiprocessors

1. Introduction

According to the ITRS roadmap [1], Complementary metal–oxide–semiconductor (CMOS) feature
sizes will shrink to sub-10 nm regime within the next five years. It is also projected that by 2020, as
many as 256 cores would be integrated onto a single die. With the advent of such highly parallel chip
multiprocessors (CMPs), the design of the network-on-chip (NoC) interconnection fabric [2] will be
crucial to ensure that compute cores are able to communicate with L2-L4 cache banks, main memory
modules, and other I/O devices with high bandwidths, low latencies, and minimal power dissipation.
However, electrical NoCs today are already severely constrained due to their long multi-hop latencies
and high power dissipation, which will make it practically impossible to stay within the limited on-chip
power budget while meeting performance constraints in the near future. CMOS compatible on-chip
photonic interconnects with silicon-on-insulator (SOI) waveguides provide a potential substitute
for on-chip electrical interconnects, particularly for global on-chip communication, allowing data
to be transferred across a chip with much faster light signals [3]. Based on recent technological
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advancements, the critical length at which photonic interconnects are advantageous over electrical
interconnects has fallen to well below chip die dimensions [4].

To minimize on-chip communication power dissipation, research in recent years, e.g., [4–13], has
focused on novel hybrid photonic NoC architectures that optimize the distribution of local and global
communication between electrical and photonic links. The optimization of these hybrid photonic
NoCs for parallel embedded applications requires traversing a massive design space to determine
suitable application-specific values for hybrid photonic NoC parameters such as wavelength division
multiplexing (WDM) density, number of photonic uplinks, serialization degree, etc. (these parameters
are discussed in more detail in later sections) to maximize communication performance-per-watt. For
example, a photonic NoC with n = 256 waveguides and up to m = 256 wavelengths per waveguide will
require exploring n + (n)2 + (n)3 + , . . . , + (n)m configurations (i.e., combinations of waveguides and
wavelengths per waveguide) to find the most power efficient solution that also meets the performance
goals for a given set of applications. This design space is practically exorbitant to traverse exhaustively.
Moreover, these two parameters (waveguides, wavelengths) are just a small subset of the much larger
set of parameters that must be explored during hybrid photonic NoC synthesis. Finding the best
solution for such a combinatorial optimization problem that is known to be NP-hard could take years if
we search through the entire solution space, even with leading-edge supercomputing technology today.
Indeed, rapid application-driven optimization of hybrid photonic NoCs will become increasingly important
as on-chip core counts increase, but this problem has not yet been addressed in prior work by researchers.

The only viable way to effectively solve the synthesis problem for hybrid photonic NoCs is by
developing polynomial-time heuristics that permit us to identify and search through a relevant portion
of the solution space in a tractable amount of time to find a near optimal solution. Greedy heuristics
are unlikely to find good quality solutions due to their inclination for getting stuck in local optima. In
contrast, non-greedy search heuristics such as Simulated Annealing (SA) [14] operate through repeated
transformations and have the hill-climbing ability to escape local optima by allowing acceptance
of worse solutions within the evaluation process. A population of solutions being simultaneously
manipulated is one of the major differences between the SA and traditional greedy search algorithms.
Approaches based on SA and other non-greedy iterative algorithms have proven highly effective in
recent years for several difficult problems in the realm of VLSI physical design, such as partitioning
and placement [15].

In this article, we address the problem of synthesizing (i.e., optimizing) application-specific hybrid
photonic NoCs for emerging CMPs by adapting four diverse classes of search heuristics to our problem:
(1) Particle Swarm Optimization (PSO) [16]; (2) Ant Colony Optimization (ACO) [17]; (3) Genetic
Algorithm (GA) [18] and (4) Simulated Annealing (SA) [14]. Our experimental results demonstrate
significant promise for these search heuristics, towards generating low power NoC communication
fabrics that meet performance objectives.

This article is a significantly extended version of our previously published paper from ISQED
2012 [19] with the following major additions across the manuscript: (i) more comprehensive related
work in Section 2 explaining how our contribution is different and novel in comparison with previously
published architectures and software tools; (ii) more details on parameterized PRI, the serialization
architecture, routing algorithm, and flow control for the hybrid photonic NoC architecture in Section 3;
(iii) two new synthesis techniques based on ACO and GA algorithms, and a new core-to-tile mapping
procedure in Section 5; and (iv) updated experimental results on new benchmarks and new synthesis
algorithms in Section 6.

2. Related Work

2.1. Hybrid Photonic NoC Architectures

The idea of using photonics for communication on a chip was first introduced by
Goodman et al. [3]. With advances in the fabrication and integration of photonic elements on a CMOS
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chip in recent years, several works have presented a comparison of the physical and circuit-level
properties of on-chip electrical and photonic interconnects (e.g., [20–22]).

Several researchers have used silicon photonic device-level fabrication results as building blocks
to propose hybrid photonic NoC architectures for emerging CMPs. For example, Le Beux et al. [5]
proposed a hybrid photonic NoC with a point-to-point crossbar topology and electrical control network
that uses on-chip lasers and allows the bandwidth between IP cores to be adapted according to
application communication requirements. Vantrease et al. [7] proposed the Corona fully photonic
crossbar with electrical buffering in the electrical realm. Corona utilizes an all-optical crossbar topology
with photonic waveguides configured as token-based Multiple-Writer Single-Reader (MWSR) resource
reservation systems. This architecture has higher photonic-layer complexity as it requires more than
a million micro-ring resonators to implement all-optical crossbar. Corona also lacks communication
path diversity, and makes use of expensive electro-photonic and photo-electronic conversions even for
local transfers, which reduces its efficiency. Pan et al. [8] proposed the Firefly hierarchical photonic
crossbar coupled with a concentrated mesh based electrical NoC. The architecture utilizes a hierarchical
hybrid crossbar topology with clusters of nodes connected through local electrical networks, and
nano-photonic links overlaid for global, inter-cluster communication. The photonic waveguides in the
Firefly architecture are organized in a Reservation-assisted Single-Writer Multiple-Reader (R-SWMR)
configuration. Even though this architecture comes somewhat close to our goal of creating a hybrid
network that balances traffic among the electrical and photonic networks, still it has higher hardware
overhead and lacks a methodology for controlling the distribution of traffic through the electrical
and photonic paths. Shacham et al. [9] proposed a circuit-switched on-chip photonic torus network
with reconfigurable broadband optical switches coupled with a topologically identical torus electrical
NoC. Bahirat et al. [10] proposed concentric photonic rings coupled with a reconfigurable electrical
mesh NoC. Li et al. [11] proposed a photonic broadcast bus with an electrical packet switched network.
Joshi et al. [12] proposed a similar fully photonic NoC topology but using a Clos network and electrical
buffering. The all-optical network based Clos topology is less complex than a full crossbar topology,
however it still requires complex point-to-point photonic links and high-radix photonic routers. The
Clos topology uses photonic interconnects even for transfers over short distances, which wastes power
and leads to higher transfer latencies. Morris et al. [13] created a hybrid of an all-photonic crossbar and
a photonic fat-tree.

Le Beux et al. [6] presented a very interesting comparative study of the worst-case optical
losses of various crossbar based photonic NoCs, based on network topology, physical layout and
waveguide insertion losses. Bahirat et al. [23] proposed a system-level CAD framework called
HELIX for synthesizing application-specific hybrid nanophotonic-electric NoCs with an irregular
topology, to optimize an architecture that combines free-space photonics with an electrical mesh
NoC. Wang et al. [24] presented a software-defined photonic network-on-chip (SD-PNoC) based on
a central controller to provide a global network topology that generates optimized routing paths.
However this design suffers from scalability issues with long wires and has poor performance for
heavy traffic loads. LumiNOC [25] reduces optical loss in photonic NoCs by partitioning the global
network into multiple smaller sub-networks and using an arbitration scheme that utilizes the same
wavelengths for channel arbitration and parallel data transmission. Ahmed et al. [26] proposed a
hybrid silicon-photonic NoC architecture called PHENIC-II based on a light-weight electronic router
and an energy efficient non-blocking optical switch. Pintus et al. [27] presented a theoretical framework
to compare the NoCs with bus and ring topologies and concluded that ring NoCs can be more efficient
compared to bus based topologies. Li et al. [28] proposed a cross-layer architecture to address the effect
of temperature variations on photonic NoCs by varying the bias current through ring resonators and
rerouting messages away from high temperature regions towards cooler regions to their destinations.

Out of all the existing photonic NoC architectures, we select the hybrid photonic ring/electrical
mesh based topology from [10] as the baseline fabric for our synthesis effort due to its favorable low
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power and latency characteristics, coupled with its low implementation overhead. However, our
synthesis approach can also be adapted to the other photonic NoC architectures discussed above.

2.2. NoC Synthesis Approaches

Significant research efforts have been focused on the study of mapping, routing and synthesis
problems for regular as well as irregular NoC architectures. Efforts on regular NoC topology synthesis
primarily focus on mapping uniform sized cores and their communication flows on regular mesh
topologies to optimize energy and performance [29–34]. For instance, Ascia et al. [30] use a genetic
algorithm approach to map cores and their communication flows on a die to minimize communication
power in a mesh NoC. Kapadia et al. [32] propose a heuristic approach to enable a voltage island-aware
low-power mapping of cores and communication routes on a regular mesh NoC. Kapadia et al. [34]
also proposed a 3-D NoC-PDN cosynthesis framework to minimize communication power in a regular
NoC while also reducing worst-case IR-drops in the power delivery network (PDN). Other efforts focus
on application specific synthesis of irregular NoCs [35–40]. For example, Murali et al. [35] present a
synthesis technique that utilizes min-cut partitioning to allocate switches to groups of custom cores and
minimize NoC power consumption. Srinivasan et al. [36] present a genetic algorithm based approach
to synthesize a low power custom NoC topology. Payet et al. [39] present a dynamic approach to data
dependency profiling and its associated synthesis chain to generate NoCs. Romanov et al. [40] propose
using irregular topologies for the synthesis of NoCs based on task graph analysis.

To the best of our knowledge, ours is one of the first works that attempts to synthesize a hybrid
photonic NoC architecture at the system level. Our synthesis goal is to generate a hybrid photonic
NoC architecture that minimizes communication power dissipation while satisfying application
performance (latency) constraints.

3. Hybrid Photonic NoC Architecture

As discussed in the previous section, we consider the ring-mesh hybrid photonic topology
presented in [10] as our baseline NoC architecture. Here we summarize some of the key features of
this hybrid photonic NoC architecture.

Figure 1 shows an overview of the architecture, which consists of concentric ring photonic
waveguides on a dedicated photonic layer, interfaced to a 2D electrical mesh NoC. The key motivation
of this hybrid architecture is to use photonic links opportunistically to reduce latency and power
dissipation for global communication while utilizing the electrical NoC for local and semi-global
communication. The electrical mesh is composed of two types of routers: (1) conventional four stage
pipelined electrical mesh routers that have 5 I/O ports (N, S, E, W, local core) with the exception of the
boundary routers that have fewer I/O ports; and (2) gateway interface routers that are also four-stage
pipelined but have six I/O ports (N, S, E, W, local core, photonic link interface) and are responsible for
sending/receiving flits to/from photonic interconnects in the photonic layer.

The next several Subsections characterize and describe this architecture in more detail.

3.1. PRI-Aware Routing

A unique feature of this hybrid photonic NoC architecture is the reconfigurable traffic partitioning
between the electrical and photonic links. To minimize implementation cost, the number of gateway
interfaces are kept low (a maximum of 4 interfaces on the chip). However, with increasing CMP core
counts, having fewer gateway interfaces reduces photonic path utilization. To ensure appropriate
scaling and utilization, a parameterizable photonic region of influence (PRI) is used, which refers to the
number of cores around the gateway interface that can utilize the photonic path for communication.
For larger CMPs, having a larger PRI size can ensure appropriate photonic path utilization. Figure 1
shows a 6 ˆ 6 (36 core) CMP with varying PRI sizes at four gateway interfaces. Even though the figure
shows four PRIs of different sizes as presented in [10], in this work we assume that there are four
symmetrically distributed PRIs on a chip and all PRIs have the same size. The specific value of the size
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of the PRI is determined off-line using our synthesis framework on a per-application basis, where a
PRI can take values ranging from 1 to n/4 (as shown later in Table 1), where n is the total number of
cores on the chip.
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Table 1. Summary of Synthesis Parameters.

Synthesis Parameters Range Low Range High

Photonic Uplinks 4 32
PRI 1 (num cores)/4

WDM Density 32 256
Searialization Degree 1 32

Clock Frequency (GHz) 1 6
PRI data size threshold (Mth) 4 1024

Flit Width (bytes) 4 256
Waveguides 2 256

A modified PRI-aware XY routing scheme routes packets in this architecture as follows. If the
destination is within the same PRI (intra-PRI transfer) as the source, or if the destination is not part of a
PRI, then packets from the source are routed using XY routing via the electrical NoC and do not use the
nanophotonic waveguides. Cores that need to communicate and reside in different PRIs communicate
using the photonic paths (inter-PRI transfers), provided they satisfy two criteria: (1) the size of data
to be transferred is above a user-defined size threshold Mth, and (2) the number of hops from the
source core to its local PRI gateway interface is less than the number of hops to its destination core.
For inter-PRI transfers, the network interface at the source core sets an inter-PRI bit within the header
flits of the packets to be transmitted. The network interface knows the location for each destination
that is relevant for a source and decides to set or reset the inter-PRI bit for each packet header. When a
packet header with an inter-PRI bit set to 1 is encountered by a router, it is routed towards the source
gateway interface that falls within the source’s PRI using XY routing and then routed towards the
destination gateway interface through the nanophotonic waveguides, after which the packet may
again use XY-routing to arrive at its intended destination.

3.2. Photonic Ring Configuration

The concentric ring photonic waveguides are logically partitioned into four channels: reservation,
reservation acknowledge, data, and data acknowledge. A fully photonic path setup and
acknowledgement mechanism is implemented, with the reservation and acknowledge channels
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utilizing a Single Writer Multiple Reader (SWMR) configuration and the data channel utilizing a
low cost Multiple Writer Multiple Reader (MWMR) configuration. Each gateway interface has a
subset of λ/n wavelengths (microresonator modulators) available for transmission, where λ is the total
number of wavelengths available from the multi-wavelength laser and n is the number of gateway
interfaces. Every gateway interface must be able to receive (n ´ 1) ˆ λ/n wavelengths (from the rest of
the gateway interfaces), each with a separate microring resonator receiver. A source gateway interface
uses one of its available wavelengths (λt) to multicast the destination ID via the reservation channel to
other gateway interfaces. Each gateway interface has log(n) dedicated SWMR reservation photonic
waveguides that it writes the destination ID to, after which the other gateway interfaces read the
request. Only the intended destination gateway interface accepts the request, while the others ignore
it. As each gateway interface has a dedicated set of λ/n wavelengths allocated to it, the destination
can determine the source of the request, without the sender needing to send its ID.

3.3. Flow Control Protocol

If a request can be serviced by the available wavelength and buffer resources at the destination, a
reservation acknowledgement is sent back via the reservation ACK channel on an available wavelength.
The reservation ACK channel also has a SWMR configuration, but a single waveguide per gateway
interface is sufficient to indicate the success or failure of the request. Once the photonic path has
been reserved in this manner, data transfer proceeds on the data channel, which has a low cost
Multiple Writer Multiple Reader (MWMR) configuration. As flits are routed through the nearest
gateway interface, global communication power consumption is significantly lowered and the electrical
network bandwidth availability is increased, enabling a win-win scenario. Once data transmission
has completed, an acknowledgement is sent back from the destination to the source gateway interface
via an SWMR channel, with a single waveguide per gateway interface to indicate if the data transfer
successfully completed or failed. The advantage of a fully photonic path setup and ACK/NACK flow
control is that it avoids using the high latency electrical network, as done in prior work (e.g., [9]). Our
architecture thus allows gateway interfaces to request for access to the photonic paths whenever data
is available. High throughput is achieved by using dense wavelength division multiplexing (DWDM),
with multiple wavelengths per waveguide available to transfer multiple streams of concurrent data.

3.4. Serialization

To reduce the number of photonic components (waveguides, buffers, ring resonator based
transmitters/receivers, photodetectors), and consequently reduce area and power dissipation in
the photonic layer, we also make use of serialization at the gateway interfaces. We use a shift register
based serialization scheme as explained below.

A single serial line is used to communicate both data and control signals between the source
and destination nodes. A frame of data transmitted on the serial line using this scheme consists of
n + 2 bits, which includes a start bit (‘1’), n bits of data, and a stop bit (‘0’). The transmitter (serializer)
consists of a ring oscillator, an n+2 bit shift register, and an n + 2 bit ring counter with a single ‘1’ at its
least significant bit (r0) and ‘0’ in all other positions. When a word is to be transferred at a transmitter,
the ring oscillator is enabled and it generates a local clock signal that can oscillate above 2 GHz to
provide high transmission bandwidth. At the first positive edge of this clock, an n + 2 bit data frame is
loaded in the shift register. In the next n + 1 cycles, the shift register shifts out the data frame bit by bit.
The stop bit is eventually transferred on the serial line after n + 2 cycles, and r0 becomes 1. At this
time, if the transmission buffer is empty, the ring oscillator and shift registers are disabled, and the
serial line goes into its idle state. Otherwise, the next data word is loaded into the shift register and
data transmission continues without interruption.

A receiver (de-serializer) consists of a ring oscillator, an n-bit ring counter (with a single ‘1’ at
its least significant bit (r0) and ‘0’ in all other positions), an n-bit shift register, and an R-S flip-flop
connected to the serial link. The R-S flip-flop is activated when a low-to-high transition is detected
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on the input serial link (the low corresponds to the stop bit of the previous frame, while the high
corresponds to the start bit of the current frame). After being activated, the flip-flop enables the receiver
ring oscillator (which has a circuit similar to the transmitter ring oscillator) and the ring counter. The
n-bit data word is read bit by bit from the serial line into the shift register, in the next n clock cycles.
Thus, after n clock cycles, the n-bit data becomes available on the parallel output lines of the receiver,
while the least significant bit output of the ring counter (r0) becomes 1 to indicate data word availability
at the output. With the assertion of r0, the R-S flip-flop is also reset, disabling the ring oscillator. At this
point, the receiver is ready to start receiving the next data frame. In case of a slight mismatch between
the transmitter and receiver ring oscillator frequencies, correct operation can be ensured by adding a
small delay in the clock path of the receiver shift register.

The preceding discussion assumed n:1 serialization, where n data bits are transmitted on one
serial line (i.e., a serialization degree of n). If wider links are used, this scheme can be easily extended.
For instance, consider the scenario where 4n data bits need to be transmitted on four serial lines. In
such a case, the number of shift registers in the transmitter must be increased from 1 to 4. However,
the control circuitry (flip-flop, ring oscillator, ring counter) can be reused among the multiple shift
registers and remains unchanged.

4. Problem Formulation

Our synthesis problem in this work has the following inputs:

(1) A core graph G (V, E); with the set V of vertices {V1, V2, V 3, . . . , VN} representing the N
cores on which the given applications tasks have already been mapped, and the set of M edges
{e1, e2, e3, . . . , eM} with weights that represent application-specific latency constraints between
communicating cores,

(2) A regular mesh-based CMP with T tiles such that T = (d2), where d is the dimension of the mesh,
and each tile consists of a compute core and a NoC router,

(3) The upper and lower bounds that define an acceptable value range for a set of parameters relevant
to hybrid photonic NoC architectures, as defined in Table 1.

Objective: Given the above inputs, our goal is to synthesize a hybrid photonic-ring/electrical-mesh
NoC architecture that will determine (1) number and location of photonic uplinks (i.e., gateway
interfaces); (2) sizes of PRI regions; (3) density of wavelength division multiplexing (WDM) in photonic
waveguides; (4) serialization degree at gateway interfaces; (5) clock frequency of links; (6) data
threshold size; (7) flit widths; and (8) number of photonic waveguides, to satisfy the target applications
communication latency constraints while optimizing (minimizing) overall communication power
dissipation. We focus our synthesis efforts on regular topologies because we believe that future chips
with hundreds of cores will be much more predictable in the face of process variations, easier to design,
and simpler to verify if the underlying network structure is homogeneous, even if the cores themselves
are heterogeneous.

5. Synthesis Framework Overview

In this section, we present an overview of our hybrid photonic NoC synthesis framework. Figure 2
shows a high level diagram of our synthesis framework that starts with a given core graph G(V,E)
and constraints defined in Table 1. In the first step, we perform core-to-tile mapping to optimize
the aggregate communication bandwidth and power in the network. The second step focuses
on parametric hybrid photonic NoC synthesis utilizing novel implementations of the four search
algorithms we utilize, aimed at reducing power dissipation while satisfying latency goals. In the
final step, we verify our synthesis results using a cycle-accurate SystemC simulation to account for
fine-grained traffic congestion and interference effects that can only become apparent with detailed
simulation analysis. The following sections present a detailed description of these three steps.
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∅ne is defined as Manhattan distance for the eth edge. The GA chromosome structure encompasses
core id and task id, with the aim of finding a one-to-one task id to core id mapping. Based on
empirical analysis, our GA population size was set to 200. Chromosomes were initialized based on a
uniform random function to assign core ids to the tasks. Crossover and mutation operations in the
GA algorithm were performed at each iteration to generate new offsprings. Acceptable offsprings
replaced the lowest rank solutions, allowing us to maintain a fixed population size. This process was
set to repeat for a 1000 generations or till no more improvement is observed over a designer-specified
number of generations. Section 5.2.4 elaborates on the general GA implementation in further detail.
This GA based core-to-tile approach enabled a 20%–30% communication power reduction compared
to a random mapping approach.

5.2. NoC Synthesis

In this subsection, we present details of each of the four NoC synthesis heuristics based on Particle
Swarm Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing (SA), and Genetic
Algorithm (GA) that we utilize to perform hybrid photonic NoC synthesis.

5.2.1. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) metaheuristic was initially proposed by R. Eberhart
and J. Kenned [16] in 1995. The fundamental idea behind PSO is inspired by the coordinated and
collective social behavior of species such as a flock of birds, fish, termites, or even humans. In nature,
each individual bird, bee, or fish shares some information with its neighbors and by utilizing shared
information collectively, they strive to organize efforts such as developing flying patterns to minimize
aerodynamic drag, etc. Although by itself, a single entity such as a bird or a bee is a simple and
unsophisticated creature, collectively as part of a swarm they can perform complex and useful tasks
such as building nests, and foraging. Within the PSO framework, an individual entity is called a particle
and it shares information with other particles, either in the form of direct or indirect communication to
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coordinate their problem-solving activities. In recent years, the PSO algorithm has been applied to
many combinatorial optimization problems such as optimal placement of wavelength converters in
WDM networks [38] and reconfiguration of field-programmable analog circuits [39].

To implement the PSO algorithm, particles are placed in the search space of some problem, and
each particle evaluates the objective function at its current location to determine its next movement
by combining the best (best-fitness) locations in the vicinity. The next iteration takes place after all
particles are relocated to the new position. This process is repeated for all particles and eventually for
the swarm as a whole. A particle on its own does not have the power to solve the problem; rather
the solution evolves as the particles interact and work together, utilizing a social network consisting
of bidirectional communication. As the algorithm iterates, particles move towards local as well as
global solution optima forming a swarm pattern. For example, when one particle or entity finds a good
solution, other particles in the vicinity are likely to be attracted to it. This social interaction feedback
eventually causes all particles to move towards a globally optimal solution path. The phenomenon
is similar to the social interactions where a leader or a set of leaders emerge from the swarm and
followers attempt to follow them. In summary, the key idea in PSO is to mimic the social collective
behavior found in nature and utilizing it to solve complex problems.

Figure 3 shows the pseudo-code for our PSO formulation, for the hybrid photonic NoC synthesis
problem. The algorithm starts by initializing each particle with the function call InitializeParticles().
This function initializes inertia and learning weights (as discussed later in the section), and initial
position and velocity for each parameter from Table 1. The UpdateParticleSystem() function iterates
and updates velocity and positions of the individual particles, using relations (1) and (2) that are
presented later in this section. At the end of the evaluation loop, particle positions are updated and they
are moved to new positions by calling the UpdatePositionMatrix() function. This process continues for
the application, until a dominating (global) solution emerges.
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In our adaptation of the PSO algorithm for the hybrid photonic NoC synthesis problem, a particle
represents a unique communication request from a source to a destination. A group of particles or
solutions are initialized at the beginning of the PSO execution and then the optimal or near optimal
solution is constructed using an iterative process. The PSO algorithm selects among various values
for the parameters in Table 1 for each particle. Gradually one dominant solution emerges. This best
configuration has a unique value for each of the parameters in Table 1, and satisfies application-specific
latency constraints, while minimizing power.

Within an iteration, a particle tracks the personal best solution (pk), which is the best solution
found by the particle k, and the global best solution (gk), which is the best solution that was found
by the entire population. Every particle moves towards the better solutions with some velocity and
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position. The computation step includes some amount of randomness instead of following an exact
profile. This randomness can produce a superior solution, which may result in other particle being
attracted towards it. In our implementation of the PSO algorithm, each particle updates its velocity
and position based on the following set of equations:

vk`1 “ wvk ` c1r1 ppk ´ xkq ` c2r2 pgk ´ xkq (1)

xk`1 “ xk ` vk`1 (2)

where, the current velocity and position for each particle is defined by vk and xk respectively; pk
represents the current best solution based on particle k’s history and gk defines the current best solution
based on the entire population or swarm. The positive inertial weight w is assigned to control how
fast or slow each particle can move based on its own weight or inertia, c1 and c2 are constant numbers
that represent learning weights to control the learning rate of global vs. local optima, i.e., the higher
the weight, the faster the particles gravitate towards the solution. Instead of just following the current
best solution in a linear path, r1 and r2 are random numbers from 0 to 1 that change every iteration,
adding randomness to the path, thus finding newer and better solutions on the way.

The stability of the PSO algorithm is one of the key concerns during implementation, where
position and velocity can diverge instead of achieving convergence. To ensure solution convergence in
our implementation, we tune the learning and inertial weights carefully and also implement a velocity
limit parameter Vmax, where if the updated velocity exceeds the velocity limit, we saturate the velocity
value to Vmax.

5.2.2. Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) metaheuristic was proposed by Colorni, Dorigo, and
Maniezzo [17] with the fundamental idea inspired by the behavior of real ants, specifically, the way
they organize efforts to collect food. ACO is a probabilistic technique for solving computational
problems which can be reduced to finding good paths through graphs. In recent years, this algorithm
has been applied to many combinatorial optimization problems such as the asymmetric traveling
salesman problem [31] and the graph coloring problem [32].

Although by itself, an ant is a simple and unsophisticated creature, collectively a colony of ants
can perform useful tasks such as searching for food. Ants achieve stigmergic communication by laying
down a chemical substance called pheromone, which can be sensed by other ants. When a pheromone
trail laid by an ant that has found food is discovered by other ants, they tend to stop moving randomly
and start following this specific trail, returning and reinforcing it if they eventually find food. Over
time however, the pheromone trail starts to evaporate, thus reducing its attractive strength. The more
time it takes for an ant to travel down the path and back again, the more time the pheromones have to
evaporate. A short path, by comparison, gets marched over more frequently, and thus the pheromone
density becomes higher on shorter paths than longer ones. Pheromone evaporation is crucial for
avoiding the convergence to a locally optimal solution. If there were no evaporation at all, the paths
chosen by the first ants would tend to be excessively attractive to the following ones. In that case,
the exploration of the solution space would be constrained. The key idea of our ACO based hybrid
photonic NoC synthesis algorithm is to mimic this behavior with “simulated ants” walking around a
graph representing the problem to solve.

An ant in our formulation can be thought of as a simple computational agent that helps iteratively
construct a solution for our synthesis problem. The intermediate solutions are referred to as solution
states. At each iteration of the algorithm, an ant k moves probabilistically from a state i to state j. Each
of the parameters from Table 1 has a separate evaporation trail value (τij) that represents the amount of
pheromone deposited for a state transition between i and j. The selection probability for a parameter is
a function of its attractiveness η

β
ij, defined by inverse of normalized power consumption for parameter
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β. Global convergence within the selection process is achieved by increasing attractiveness η
β
ij for low

power dissipation solutions that meets latency constraints.
An empirically-derived pheromone evaporation coefficient (ρ) with a value 1 > (ρ) > 0 is utilized

to control the evaporation of a trail over time. Trails are updated usually when all ants have completed
their solution, increasing or decreasing the value of trails corresponding to moves that were part of
“good” or “bad” solutions, respectively. ∆τij represents the change in trail value based on the choices
available for a parameter, and the impact they have on the cost function (in our case power dissipation).
At the start of simulation, selection probability of each parameter is equal. If power dissipation reduces
significantly based on a parameter change for a majority of the communications, then ∆τij increases
which causes the resulting selection probability to also increase. The selection for each parameter is
performed using the following rules:

τij pt` nq “ ρ ˚ τij ptq ` ∆τij (3)

which is the trail update relation, with ∆τij given by:

∆ τij “

m
ÿ

k“1

∆ τij
k (4)

for all m ants. The probability pk
ij of moving from state i to j for the kth ant is given as:

pk
ij “

τα
ij ptq η

β
ij ptq

ř

τα
ij ptq η

β
ij ptq

(5)

This probability depends on the attractiveness η
β
ij of the move computed based on increasing a

tunable weight for an ant for which power is lower and latency is within the constraints, and the trail
level τij of the move, indicating how proficient it has been in the past to make that particular move.
α ě 0 is a parameter to control the influence of τij, and β ď 1 controls the influence of ηij.
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Figure 4 shows the pseudo-code for our ACO formulation to solve the hybrid photonic NoC
synthesis problem. The algorithm starts by calling InitializeAntSystem() to initialize the ant system,
with each ant representing a unique communication trace between a pair of cores. The function also
sets up equal selection probability for every parameter. The function UpdateAntSystem() updates the
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probabilities of the individual ants, using Relations (3), (4), and (5). If the source core lies within a PRI
region, the flow (ant) is directed towards the nearest gateway interface. The state transition parameter
selection probability pk

ij is applied to select serialization degree, clock frequency, flit width, and PRI
data threshold. Once a flit reaches the uplink, number of waveguides and WDM density are selected
for the next state. The same process is repeated for the destination gateway interface and destination
core. As ants reach the destination, trail values are updated based on Equations (4) and (5), improving
selection probability of parameters that lead to lower power dissipation. At the end of the evaluation
loop, the trail and pheromone updates are performed by calling UpdateTrailMatrix(). This process
continues until a dominant solution emerges.

5.2.3. Simulated Annealing (SA)

Simulated Annealing (SA) algorithms [14,41,42] generate solutions to optimization problems
using techniques inspired by annealing in solids. SA algorithms simulate the cooling of a metal in
the heat bath known as annealing where the structural properties depend on the cooling rate. When
a metal is hot and in liquid state, if cooled in a controlled fashion, large and consistent grains can
be formed. On the other hand, grains may contain imperfections if the liquid is quenched or cooled
rapidly. The key idea in SA algorithms is that by slowly lowering the temperature, globally optimal
solutions can be approached asymptotically. SA allows hill climbing (i.e., moves with inferior quality)
to be taken within the initial part of the iteration process to escape local minima.

An SA algorithm involves the evolution of an individual solution over a number of iterations,
with a fitness value used for evaluating solution quality whose determination is problem dependent.
Based on the law of thermodynamics, at temperature t the probability of an increase in energy of
magnitude δE is given by:

P pδEq “ ep´
δE
kt q (6)

where k is the Boltzmann’s constant. This equation is directly applied to SA by dropping the Boltzmann
constant which was only introduced into the equation to cope with different materials. The probability
of accepting a state in SA is:

P “ ep´
c
t q ă r (7)

where r is a random number between 0 and 1, c defines the change in evaluation function output,
t defines current temperature which is decremented at every iteration by a regression algorithm
involving a linear method t(k+1) = α.t(k), where α < 1 (our chosen value for α is presented in the
Experimental Setup section (Section 6.1)). At each iteration, values for individual parameters (from
Table 1) are selected randomly for the current solution and the probability of accepting the solution is
determined by Equation (7). A high enough starting temperature (T0) is selected to allow movement
through the entire search space. As the algorithm progresses, the temperature is cooled down to
confine solutions, allowing better solutions to be accepted until the final temperature is reached. As
SAs are heuristics, the solution found is not always guaranteed to be optimal. However in practice, SA
has been used successfully to generate high quality solutions in several problem domains.

Figure 5 shows the pseudo-code of our SA formulation for the hybrid photonic NoC synthesis
problem. Our SA implementation begins by calling GenerateInitialSolution() to generate an
initial solution, where parameters from Table 1 in the solution are populated with randomly
chosen valid values. Subsequently, four key parameters for annealing are initialized by calling
ScheduleCoolingRate(): (i) Starting temperature; (ii) Temperature decrement; (iii) Final temperature,
and (iv) Iterations at each temperature. We tuned the starting temperature to be hot enough to allow
our hybrid photonic NoC synthesis parameters to traverse farther along in the solution space. Without
this consideration, the final solution would be very close to the starting SA solution. Based on the
number of iterations for which the algorithm will be running, the temperature needs to be decremented
such that it will eventually arrive at the stopping criterion. We also need to allow enough iterations
at each temperature such that the system stabilizes at that temperature. We evaluated a method first
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suggested in [43] that proposes implementing one iteration at each temperature by decreasing the
temperature very slowly. The formula we used was t(k+1) = t(k)/(1 + βt(k+1)) where β is a suitably small
value as defined in [43]. However the approach did not yield any benefits in terms of improvement in
results. The fitness value is updated by calling ComputeFitnessValue(), and the process continues until
temperature decays below a certain threshold or a predefined number of iterations have passed. The
fitness value we use in our SA algorithm is a weighted combination of average packet latency and
communication power dissipation.Electronics 2016, 5, 21 13 of 24 

 
Figure 5. Simulate Annealing (SA) algorithm formulation for hybrid photonic NoC synthesis. 

5.2.4. Genetic Algorithm (GA) 

Genetic algorithms (GAs) [15] generate solutions to optimization problems using techniques 
inspired by natural evolution, such as inheritance, mutation, selection, and crossover. A GA involves 
the evolution of a population of individuals over a number of generations. Each individual of the 
population is assigned a fitness value whose determination is problem dependent. At each generation, 
individuals are selected for reproduction based on their fitness value. Such individuals are crossed 
to generate new individuals, and the new individuals are mutated with some probability. 

Figure 6 shows the pseudo-code of the GA formulation for our hybrid photonic NoC synthesis 
problem. Our GA implementation begins with the generation of an initial population by calling 
GenerateInitialPopulation(). Each individual element of this population consists of a chromosome 
with constituent parameters as defined in Table 1. Thus, each chromosome in the population represents 
a unique solution to our hybrid photonic NoC synthesis problem. Based on empirical analysis, we set 
our GA population size to 2000, composed of chromosomes with parameter values set according to a 
uniform random distribution. The fitness value assigned to each chromosome consists of a weighted 
combination of average packet latency and communication power dissipation. The fitness is evaluated 
analytically based on the communication requirements of the application for which the hybrid NoC 
is being synthesized. Each application can have a unique set of communication patterns (represented 
by edges in the core graph), and thus the same architectural optimization (e.g., changing PRI size) 
can impact the latency and power dissipation of different applications differently. 

 

Figure 6. Genetic Algorithm (GA) formulation for hybrid photonic NoC synthesis. 

Similar to a roulette wheel, a probability based selection process was implemented for choosing 
chromosomes from the population to perform crossover and mutation on. Crossover was applied to 
randomly paired parameters of selected chromosome pairs by exchanging genetic information via 

Figure 5. Simulate Annealing (SA) algorithm formulation for hybrid photonic NoC synthesis.

5.2.4. Genetic Algorithm (GA)

Genetic algorithms (GAs) [15] generate solutions to optimization problems using techniques
inspired by natural evolution, such as inheritance, mutation, selection, and crossover. A GA involves
the evolution of a population of individuals over a number of generations. Each individual of the
population is assigned a fitness value whose determination is problem dependent. At each generation,
individuals are selected for reproduction based on their fitness value. Such individuals are crossed to
generate new individuals, and the new individuals are mutated with some probability.

Figure 6 shows the pseudo-code of the GA formulation for our hybrid photonic NoC synthesis
problem. Our GA implementation begins with the generation of an initial population by calling
GenerateInitialPopulation(). Each individual element of this population consists of a chromosome with
constituent parameters as defined in Table 1. Thus, each chromosome in the population represents a
unique solution to our hybrid photonic NoC synthesis problem. Based on empirical analysis, we set
our GA population size to 2000, composed of chromosomes with parameter values set according to a
uniform random distribution. The fitness value assigned to each chromosome consists of a weighted
combination of average packet latency and communication power dissipation. The fitness is evaluated
analytically based on the communication requirements of the application for which the hybrid NoC is
being synthesized. Each application can have a unique set of communication patterns (represented by
edges in the core graph), and thus the same architectural optimization (e.g., changing PRI size) can
impact the latency and power dissipation of different applications differently.

Similar to a roulette wheel, a probability based selection process was implemented for choosing
chromosomes from the population to perform crossover and mutation on. Crossover was applied
to randomly paired parameters of selected chromosome pairs by exchanging genetic information
via swapping bits within the parent’s chromosome (by calling Crossover()). We also implemented
multipoint crossovers where multiple parts of chromosome strings replaced each other. Then mutation
was performed by calling Mutation(), where one parameter was changed within allowable limits
(as defined in Table 1). Mutations and crossovers produced the chromosomes for the next generation,
and the process continues iteratively till a termination criteria is met.

As GA is a stochastic search algorithm, it is difficult to formally specify convergence criteria based
on optimality. The results are expected to get better with every generation, however sometimes the
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fitness of a population, calculated by calling ComputeFitnessValue(), may remain unchanged for a
number of generations before any superior chromosomes can be created. The general practice is to
terminate the GA after a predefined number of generations and then to evaluate the quality of the
results within the population against the expected optimal, where expected optimal is obtained using
extended GA runs or iterations.
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5.3. Cycle Accurate Simulation and Validation

Upon completion of the synthesis algorithms (PSO, ACO, SA, and GA), we verified the results
obtained from these algorithms using an in-house SystemC-based [44] cycle-accurate hybrid photonic
NoC simulator. This was done to ensure that latency constraints are satisfied in the presence of
communication congestion and computation delays, which can only be accurately analyzed via
simulation. If the cycle-accurate simulation found a generated solution that violated the communication
latency constraints, it was pruned out from the final solution set. If all solutions generated by an
algorithm that meet performance constraints are pruned away, this step will lead to the re-invocation
of the algorithm. As all the search algorithms considered in our work involve some measure of
random search, such a step would ensure that a different set of outputs are generated across different
invocations of the search algorithms.

6. Experiments

6.1. Experimental Setup

We conducted extensive experimental analysis to compare the performance of our PSO, ACO,
GA and SA based hybrid photonic NoC synthesis frameworks for mid-size 6 ˆ 6 (36-core) and
large-size 10 ˆ 10 (100-core) CMPs with a 2D mesh hybrid photonic ring/mesh NoC fabric. Parallel
implementations of seven SPLASH-2 benchmarks [45] (barnes, lu, cholesky, fft, fmm, radiosity, radix) were
utilized to guide the application-specific synthesis. We also utilized NAS [46] and PARSEC [47] parallel
application benchmarks. NAS [46] benchmarks are derived from computational fluid dynamics (CFD)
applications. The Princeton Application Repository for Shared-Memory Computers (PARSEC) [47]
suite is composed of several multithreaded programs that represent next-generation shared-memory
programs for CMPs. Our synthesis runs lasted around 8 to 10 h for each search algorithm; however
initial runs lasted around 4–6 days. Once we realized that 8–10 h of runtime was able to provide
solutions with performance within 2%–4% of solutions generated with extended runs, we reduced our
simulation time to be more efficient.

We targeted a 32 nm process technology with the assumption of a 400 mm2 die area budget.
Table 2 shows delay values for 32 nm technology that we assumed, obtained from [48] and from
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device fabrication results [49]. The delay of an optimally repeated and sized copper wire at 32 nm was
assumed to be 42 ps/mm [50]. The power dissipated in the hybrid photonic NoC can be categorized
into (i) electrical network power and (ii) photonic ring network power. The static and dynamic
power dissipation of electrical routers and links were derived from Orion 2.0 [51]. For the energy
dissipation of the modulator driver and TIA power we used ITRS device projections [1] and circuit-level
implementation results. Energy dissipation values for the photonic modulators and receivers are
also summarized in Table 2. An off-chip electrical laser power of 3.3 W (with 30% efficiency) is also
considered in our energy calculations. The laser power value accounts for per component optical
losses due to various factors such as non-linearity (1 dB at 30 mW), couplers/splitters (1.2 dB),
waveguides (3 dB/cm), waveguide crossings (0.05 dB), ring modulators (1 dB), receiver filters (1.5 dB)
and photodetectors (0.1 dB).

Table 2. Delay, energy of photonic elements (32 nm) [48].

Component Delay DDE SE TTE

Modulator Driver 9.5 ps
20 fJ/bit 5 fJ/bit 16 fJ/bit/heaterModulator 3.1 ps

Waveguide 15.4 ps/mm - - -
Photo Detector 0.22 ps

20 fJ/bit 20 fJ/bit 16 fJ/bit/heaterReceiver 4.0 ps

DDE = Data traffic dependent energy, SE = Static energy (clock, leakage), TTE = Thermal tuning energy
(20 K temperature range).

The search heuristics were configured as follows. For the PSO algorithm, we empirically set
the inertia weight w = 0.66, c1 = c2 = 0.5, and the velocity limit parameter Vmax = 0.33. For the ACO
algorithm, we set the pheromone evaporation coefficient ρ = 0.67, and tunable weights α and β were set
to 0.46 and 0.54, respectively. For the SA algorithm, we set α to 0.997, and utilized initial temperature
T0 = 1000 ˝C. For the GA, we maintained an initial population size of M “ 256 pN ˆ Nq2 where N
is the (X or Y) mesh dimension of the NoC and ran the algorithm for up to 2000 generations. We
evaluated our GA implementation for various mutation and crossover probabilities and ultimately
utilized values of 0.3 and 0.2, respectively.

6.2. Results

Our first experiment provides insights into the workings of the PSO and ACO algorithms. Figure 7
shows the solution space pre- and post-PSO and ACO, that compares the power and average packet
latency, for the lu benchmark from the SPLASH-2 suite. The solution space is relatively randomly
distributed in 2D with higher power consumption before the PSO and ACO algorithms begin execution.
The ACO solutions converge towards the shortest path (lower left quadrant) of the 2D space as can
be seen in Figure 7b. This result can be explained based on Equation (5), as the attractiveness of
shortest paths grows higher in the ACO algorithm over time. On the other hand, the PSO algorithm
drives the solutions more uniformly towards lower power as can be seen in Figure 7a by following
velocity/position profiles relative to local and global minimum power solutions.

To gain insights into the quality of the generated solutions using different search techniques,
we evaluated the best solutions (lowest power solutions that meet application latency constraints)
generated by ASO, PSO, GA and SA for the seven SPLASH-2 benchmarks. Figure 8 shows results
for the 10 ˆ 10 CMP while Figure 9 presents results on a 6 ˆ 6 CMP implementation. For reference
purposes, we also show the results for a purely electrical regular 2D NoC without any customization
(EE). On average it can be seen that ACO and PSO algorithms generate solutions with lower power,
lower latency, and lower energy delay product (EDP), as well as higher throughput than the best
solutions generated by the SA and GA algorithms.
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Figure 8. SPLASH-2 [45] benchmarks comparison for 10 ˆ 10 NoC (a) throughput, (b) power,
(c) latency and (d) energy delay product.

In summary, from the results in Figures 8 and 9 it can be seen that despite the overhead of
additional photonic components, using hybrid photonic NoCs can lead to orders of magnitude savings
in power dissipation over electrical NoCs. Among the synthesis algorithms considered, the solutions
generated with PSO and ACO have as much as 1.2ˆ lower power dissipation on average than solutions
generated by SA and GA (with 2.2ˆ power savings for the best case).
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Tables 3–6 summarize the synthesis parameter values for the best solutions generated by the
PSO, ACO, SA, and GA algorithms, for SPLASH-2 benchmark applications implemented on the
10 ˆ 10 hybrid photonic NoC. The communication traffic pattern for each benchmark is different, so
these results provide insights into the inner workings of each of the synthesis algorithms. Both ACO
and PSO achieve a higher photonic path utilization (as can be observed from their higher WDM, PRI,
and uplink count values) compared to SA and GA, especially for benchmarks with high communication
load (e.g., radix). In fact, the superior results obtained with PSO and ACO can be explained by looking
at many of the selected parameter values for the solutions, which are similar. Among ACO and PSO,
it was found that ACO generated solutions with lower latency on average than PSO. This can be
explained by looking at the PRI data threshold values for the two approaches. ACO has larger PRI
data threshold values than PSO (particularly for the radiosity, fmm and radix benchmarks), indicating
that ACO generated solutions that utilized photonic links only for large data transfer sizes when it is
most efficient to use photonic links, whereas smaller sized data transfers used the electrical NoC. The
chosen PRI data threshold values led to a better load balancing between photonic and electrical paths,
resulting in ACO outperforming PSO by a small margin.

Table 3. PSO Synthesis Results.

Synthesis
Parameters barns lu cholesky fft fmm radiosity radix

WDM 68 122 44 83 135 132 143
Uplinks 4 4 4 4 4 8 12

PRI 15 12 10 10 12 12 12
PRI Data Threshold 96 4 120 48 7 54 96

Clock Frequency 5 4 5 4 4 2 2
Source PRI Uplink 9 7 8 9 8 9 9
Dest PRI Uplinks 9 9 9 9 9 9 9

Flit Width 43 256 28 85 256 128 128
Serialization 6 1 9 3 1 2 2
Waveguides 18 12 135 136 112 20 18
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Table 4. ACO Synthesis Results.

Synthesis
Parameters barns lu cholesky fft fmm radiosity radix

WDM 128 56 145 138 56 67 166
Uplinks 4 4 4 4 4 8 12

PRI 4 4 4 4 8 8 8
PRI Data Threshold 72 32 56 46 186 459 148

Clock Frequency 4 2 4 5 4 5 5
Source PRI Uplink 4 4 4 4 4 8 12
Dest PRI Uplinks 4 4 4 4 4 58 12

Flit Width 28 64 46 49 28 28 42
Serialization 12 4 3 8 12 18 10
Waveguides 48 32 58 108 128 128 256

Table 5. Simulated Annealing Synthesis Results.

Synthesis
Parameters barns lu cholesky fft fmm radiosity radix

WDM 102 79 58 128 93 141 63
Uplinks 4 4 4 4 4 4 4

PRI 4 4 4 4 4 4 4
PRI Data Threshold 176 16 60 96 280 459 168

Clock Frequency 4 2 4 5 6 5 4
Source PRI Uplink 4 4 4 4 5 5 4
Dest PRI Uplinks 5 5 4 4 5 5 4

Flit Width 23 64 85 43 26 15 37
Serialization 11 4 3 6 10 17 7
Waveguides 48 2 25 200 105 128 90

Table 6. Genetic Algorithm Synthesis Results.

Synthesis
Parameters barns lu cholesky fft fmm radiosity radix

WDM 89 73 56 89 67 130 67
Uplinks 4 4 4 4 4 4 4

PRI 4 4 4 4 4 4 4
PRI Data Threshold 223 23 45 78 139 320 123

Clock Frequency 3 3 3 3 4 4 3
Source PRI Uplink 4 4 4 4 4 4 4
Dest PRI Uplinks 4 4 4 4 4 4 4

Flit Width 28 78 56 43 22 12 38
Serialization 11 12 13 11 11 12 11
Waveguides 35 25 45 178 99 111 89

Figures 10 and 11 present the best solutions generated by the algorithms for the PARSEC
benchmarks, while Figures 12 and 13 present results for NAS benchmarks. For both sets of benchmark
applications, the ACO and PSO algorithms achieve superior solutions than SA and GA, similar to the
trend observed with SPLASH-2 benchmarks in Figures 8 and 9.

Figure 14 summarizes the energy-delay product (EDP) improvements for the best solutions
generated with the PSO and ACO algorithms, compared to the GA and SA algorithms. The adaptation
of the PSO search algorithm to our hybrid photonic NoC synthesis problem generated solutions that
achieved on average 64% EDP improvements over GA and 53% improvements over SA. Our adaptation
of the ACO algorithm achieved on average 107% EDP improvements over GA and 62% improvements
over SA. We also observed significant (up to 18ˆ) improvements in EDP with PSO and ACO generated
hybrid photonic NoC solutions compared to the baseline 2D electrical mesh NoC architecture, for the
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given application benchmarks. Thus, our proposed algorithmic synthesis framework is an effective
software tool to rapidly prototype high quality hybrid photonic NoC architectures for future CMPs.
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Lastly, we discuss the area overhead of our customized hybrid photonic NoC architecture. Based
on our analysis of a 10 ˆ 10 electrical torus, electrical mesh, Corona [7], Firefly [8], and our proposed
hybrid photonic NoC architecture, these architectures on average have a 16.33, 14.46, 1.78, 3.39,
18.1 mm2 electrical area overhead respectively and photonic area overheads of 0, 0, 223, 147, 67 mm2

respectively. It can be seen that our proposed architecture has a higher electrical-layer area footprint
compared to the other architectures. This area is greater than the electrical mesh area primarily due to
the extra router complexity at the gateway interfaces. Firefly and our proposed architecture both have
lower area overhead than Corona, which uses significantly higher number of resonators and detector
resources. Our proposed architecture also has a lower optical-layer area overhead compared to Firefly,
which uses a more complex optical crossbar.

7. Conclusions

In this article, we proposed a framework for rapidly synthesizing hybrid photonic NoC
architectures for emerging CMPs. We formulate the synthesis problem using four different search
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heuristics: Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing
(SA) and Genetic Algorithms (GA). One of our goals in this work was to evaluate and determine the
appropriate algorithm that provides the best quality solutions. Our results and experimental data
demonstrate significant promise for the ACO as well as PSO-based search algorithms for our problem
domain of hybrid photonic NoC synthesis, allowing us to determine application-specific architectural
parameters that minimize power dissipation while satisfying application latency constraints.
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