electronics @\py

Article
Educational Programming on the Raspberry Pi

Michael Kélling
School of Computing, University of Kent, Canterbury, CT2 7NF, UK; mik@kent.ac.uk; Tel.: +44-1227-823821

Academic Editors: Simon J. Cox and Steven J. Johnston
Received: 3 May 2016; Accepted: 16 June 2016; Published: 24 June 2016

Abstract: The original aim when creating the Raspberry Pi was to encourage “kids”—pre-university
learners—to engage with programming, and to develop an interest in and understanding of
programming and computer science concepts. The method to achieve this was to give them their own,
low cost computer that they could use to program on, as a replacement for a family PC that often
did not allow this option. With the original release, the Raspberry Pi included two programming
environments in the standard distribution software: Scratch and IDLE, a Python environment.
In this paper, we describe two programming environments that we developed and recently ported
and optimised for the Raspberry Pi, Greenfoot and Blue], both using the Java programming language.
Greenfoot and Blue]J are both now included in the Raspberry Pi standard software distribution, and
they differ in many respects from IDLE; they are more graphical, more interactive, more engaging,
and illustrate concepts of object orientation more clearly. Thus, they have the potential to support the
original aim of the Raspberry Pi by creating a deeper engagement with programming. This paper
describes these two environments and how they may be used, and discusses their differences and
relationships to the two previously available systems.

Keywords: programming education; Raspberry Pi; Blue]; Greenfoot; Java

1. Introduction

The Raspberry Pi computer has been immensely successful for countless electronics projects:
Its low cost and accessibility have made it a favourite for do-it-yourself tinkering experiments and
special purpose projects, from home control to data gathering on balloons to being shot into the upper
atmosphere, and everything in-between. Despite being a general purpose computer, its low cost has
also made it feasible to be used as a component in single-purpose devices.

These projects—impressive as many of them are—were not, however, the original main purpose
of the creation of the Raspberry Pi. In this article, we come back to the original goal that led to the
development of this low cost computer: Getting an easily programmable machine into the hands of
kids to get them to learn to program and get them engaged with computer science.

The opening statement of the “About Us” page on the Raspberry Pi website, titled “The Making
of the Pi” starts:

“The idea behind a tiny and affordable computer for kids came in 2006, when Eben Upton, Rob
Mullins, Jack Lang and Alan Mycroft, based at the University of Cambridge’s Computer Laboratory,
became concerned about the year-on-year decline in the numbers and skills levels of the A Level
students applying to read Computer Science. From a situation in the 1990s where most of the kids
applying were coming to interview as experienced hobbyist programmers, the landscape in the 2000s
was very different; a typical applicant might only have done a little web design.”

1
The main goal was to turn kids back into programmers again. (D

Part of the problem was that the typical home computer, in contrast to earlier generations such
as the BBC Micro, Commodore 64 or Spectrum ZX, was not a toy to program and experiment with

Electronics 2016, 5, 33; doi:10.3390/ electronics5030033 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/journal/electronics

Electronics 2016, 5, 33 20f17

anymore, but was used by the family for a range of important purposes, and that “programming
experimentation on them had to be forbidden by parents” [1] for fear of breaking the family machine.
To get kids back into the position where they could play and learn with programming, they needed
a computer that they were in control of, that they could experiment with and break if necessary,
and—most importantly—that provided a “platform that, like those old home computers, could boot
into a programming environment” [1].

The goal was summarised in the following statement:

“We want owning a truly personal computer to be normal for children.”
(83

Thus, the original purpose of the Raspberry Pi was not as a special purpose device employed to
gather sensor data, or as the control element in electronics projects; it was to serve as a replacement for
a general purpose personal computer to tinker with and program on. Programming environments on
the Pi were crucial.

At the same time as taking inspiration from early personal computers’ successes, such as the BBC
Micro’s lasting impact on early programming in the UK, the Raspberry Pi team set their sights higher.
Instead of just appealing to the “geeky” kids who might already have an interest in programing, the
goal was to bring this computer to a wide spectrum of the population. One means to achieve this was
the goal to “provide excellent multimedia, a feature we felt would make the board desirable to kids
who wouldn’t initially be interested in a purely programming-oriented device” [1].

These goals translate into several direct requirements for the Raspberry Pi’s software:

e The computer must come with an easily accessible programming environment. Programming as
an activity should not only be possible, but encouraged.

e To create engagement, the programming environment should be flexible and extendable. It should
also prepare learners for further engagement with computer science. This suggests using existing,
general purpose programming systems as a good option.

e To serve the goal of using multimedia to create engagement, the programming environment
should provide easy creation and manipulation of graphics, animation and sound.

When the Raspberry Pi was released, two general purpose programming environments were
included in its software: Scratch [2] and IDLE for Python [3]. (In fact, the “Pi” in the Raspberry’s name
derives from “Python” as the envisaged main language offered to users.)

This was a reasonable choice: The two environments represent the two main modes of
manipulation used in programming education—block-based editing for Scratch and text-based editing
for Python—and address distinctly different age groups and possible projects. While Scratch is usable
by children as young as primary school age, Python scales to large projects and professional quality
code. The two systems offer options to a wide range of users.

In addition, a Java runtime and development kit was included. Java was (and still is) one of the
most popular languages in use both in education and industry [4], and considering its inclusion is a
natural step.

Before the initial release of the Raspberry Pi standard image (the software recommended for
initial installation), Blue] [5] and Greenfoot [6], two of our own environments which we developed
specifically for the learning and teaching of programming, were considered for inclusion as Java
development tools. Both are attractive in this context in aligning perfectly with the goals of the
Raspberry Pi foundation: They are educational development environments aimed at attracting young
learners to programming, they teach concepts of computer science, and we have more than ten years
of experience with developing and maintaining these systems for other platforms. However, in early
testing it transpired that performance was a problem: The Java runtime did not perform well enough
to run any program with a significant graphical user interface at sufficient speed to be acceptably
usable. As a result, a decision was taken not to include Blue] or Greenfoot (or any other Java-based

Electronics 2016, 5, 33 30f17

applications), and not to release any educational resources or documents built around programming in
Java. Promotion of text-based programming activities on the Raspberry Pi was exclusively structured
around Python.

The Java runtime and SDK were present, however, even though no integrated development
environment was included in the image. This made development in Java on the Raspberry Pi
theoretically possible by using a plain text editor and command line compiler. This was unattractive to
most users. Crucially, though, it made execution of Java programs possible.

In the following years, a large number of Java projects on the Raspberry Pi were published.
A representative set of examples is Simon Ritter’s collection of Raspberry Pi/Java projects [7]. Java
could run on the Raspberry Pi. The development on the Java side did not, however, meet the original
goals of the Raspberry Pi project: While being a successful platform for knowledgeable enthusiasts, it
did not serve to attract kids to programming. Most importantly, the setup allowed Java development
for the Raspberry Pi, but not Java development on the Raspberry Pi.

To develop these applications, programmers typically worked in standard integrated development
environments (IDEs) on separate computers and then transferred the executable Java program to the
Raspberry Pi for execution. Thus, the Raspberry Pi did not function as a replacement for the existing
computer, as the mission statement envisaged, but in addition to the existing computer. This works well
for enthusiasts working on hobby projects, but is ineffective in providing kids with a new programming
learning platform.

Over the last few years, three separate developments have changed this situation:

e The Java runtime consistently improved in performance. Oracle, the developers of the main
Java platform, dedicated explicit effort to optimising the Java runtime for the ARM architecture of
the Raspberry Pi.

e More recently, we optimised BlueJ and Greenfoot for the Raspberry Pi. We created dedicated
Raspberry Pi versions for both systems (separate from the Linux version used before) which
included modifications specifically to improve performance on this platform.

e The Raspberry Pi hardware improved significantly. With the release of the Raspberry Pi 2 in early
2015, and then the Raspberry Pi 3 in 2016, hardware performance increased greatly compared to
the initial version.

As a result, running Blue] and Greenfoot—integrated educational Java development
environments—directly on the Raspberry Pi became possible. From September 2015, both these
systems were included on the standard Raspberry Pi disk image and are now available to every
Raspberry Pi user.

In this paper, we discuss what these environments have to offer, how they compare, and what they
can achieve. We present their differences (to each other, and to the Python environments available on
the Raspberry Pi), and outline how they allow users to interact directly with the Raspberry Pi hardware.

2. Why a Java IDE?

The Raspberry Pi already includes two easily accessible programming environments: Scratch and
Python. This leads to the obvious question: What do additional Java development environments offer
that is qualitatively different to what is already possible?

The difference to Scratch is more easily obvious. Java offers the same difference to Scratch that
Python presented and that justified the coexistence of these two systems in the first place. Java, like
Python, is a traditional, industry strength, text-based language. Scratch, on the other hand, with its
block-based, drag-and-drop language of limited scope, is mainly aimed at young learners under 14
years of age. The systems serve a different market, both in targeted user group and application domain.

The more interesting comparison is between Java and Python, since these languages share many
similar characteristics and serve the same market. There are, however, several reasons why including
both the Greenfoot and Blue] environments leads to qualitatively new possibilities:

Electronics 2016, 5, 33 40f17

1. Many teachers of programming prefer the statically typed nature of Java to the dynamic typing
of Python, as it helps clarify some programming concepts and acts as an aid to learners.

2. Some learners have the goal of not only learning programming in general, but learning Java in
particular. Java is attractive, as it is the basis for many popular systems, from many well known
web-based programs to most Android applications. More teaching material exists for Java than
for Python, as it has been used in schools and universities for a much longer time (although there
is also plenty of Python material available).

3. The most important reason is the lack of a good educational development environment for Python.
An educational environment should create engagement (the Raspberry Pi mission statement itself
suggested multimedia support to facilitate this engagement), it should be easy fo use, and it should
teach programming concepts through its interactions. Greenfoot and Blue] make it easy to program
interactive animated graphical applications (such as games and simulations), thereby creating the
engagement aimed for. They also have interfaces designed specifically for learners with specific
educational functionality. This includes a high degree of interaction to facilitate experimentation
and visualisation to illustrate important underlying programming concepts. IDLE, the Python
environment included and recommended by the Raspberry Pi foundation [8], does not fit the
requirements nearly as well. In IDLE, it is difficult to create even simple graphical games, support
for graphical interaction in the environment is poor and pedagogical visualisations are missing
in the system. Whereas Greenfoot and BlueJ are developed based on many years of computing
education research [9-13], IDLE incorporates few of the lessons learned. It incorporates none of
the pedagogical interaction and visualisation functionality that constructivist learning requires,
and its main interface abstractions remain on the low syntactic level, offering little support for
developing mental models at higher abstraction levels.

Thus, fundamentally, the attraction of including Greenfoot and Blue] in the Raspberry Pi image
is not based mainly on a difference between the programming languages—Python and Java—but a
difference between the programming environments: Greenfoot and Blue] versus IDLE.

3. Greenfoot—A Playful Step to Programming

In this section, we discuss the educational aspects of the Greenfoot environment, as they present
the most significant advantage in using Greenfoot over IDLE and Python.

3.1. Aims of the Greenfoot Environment

Greenfoot was created in 2006 at the University of Kent to facilitate learning and teaching of
programming for learners aged about 14 upwards. It was designed for use in both classic teaching
situations (with a teacher present) as well as for self-directed learning without a human instructor.

The main design goals of Greenfoot were four-fold:

e Engaging examples. Greenfoot should make it easy to create engaging programming examples.
Creation of interactive animated graphics and sound should be quick and easy, so that the
first examples—such as simple graphical games or simulations—can be achieved in the first
programming session.

o Visualisation. The Greenfoot environment should employ visualisation techniques to illustrate
fundamental programming concepts. The interface should not primarily concentrate on the
presentation of source code, but should add presentations of underlying concepts.

e Interaction. The environment should allow small scale and quick-turnaround interaction to
facilitate experimentation and exploration.

o Simplicity. The interface of the software must be simple and become familiar quickly. It should be
easy to learn how to use the environment, so that mental effort can be concentrated on learning
to program.

Electronics 2016, 5, 33 50f17

These main goals are discussed in more detail below, together with a description of the Greenfoot
functionality presenting implementations to meet these goals. They are also described at a more
detailed level in previous publications [6].

3.2. Engaging Examples

The Greenfoot framework was designed to make the creation of interactive, animated graphics and
production of sound easy for programming novices. This enables the creation of two-dimensional video
games and simulations. Figure 1 shows two simple examples that can be used for early introduction
of programming concepts, each with a keyboard controlled game character. The examples illustrate
two classes of typical games, a birds-eye view game and a platform jumper game. Game characters
(classes and their objects) can be created interactively, and character behaviour is programmed in
Java. Greenfoot provides simple movement, control and collision detection methods to enable novice
programmers to create the first interactively controlled graphical characters within a few minutes.

@ ® Greenfoot: feena's game

[share.
Points: 0
World classes
—
[JOX) Greenfoot: little-crab
i Share...
i World classes
£
=
.L i __CrabWorld
i Actor classes
o =
@? % -\:'4, Crab
L {
>Act pRun © Reset Speed: _L j. T %

> Act P Run © Reset Speed:

Figure 1. The Greenfoot main window. Two examples are shown, each of a simple computer game
(one birds-eye-view and one platform jumper game). The window displays the Greenfoot “world” in
its main part, a class diagram to the right and some control buttons along the bottom.

Greenfoot also includes a built-in sound recorder and easy functionality for sound playback,
enabling audio support.

Greenfoot scenarios do not have to be games: other often used examples include simulations
(such as an ant simulation or a simulation of solar systems) and musical examples (such as an on-screen
piano). Since the implementation language is Java, and Greenfoot provides the full standard Java
Development Kit (JDK), the system scales easily to more complex and elaborate examples. For example,
networking libraries can be used to include data from the internet in Greenfoot scenarios (such as live
weather reports), and Greenfoot can easily be connected to a number of external devices, such as the
Microsoft Kinect (a sensor board for human motion tracking). Actors in Greenfoot scenarios can also
be controlled with arbitrarily complex artificial intelligence algorithms; this is in contrast to possible
programs in Scratch, which provides a similar World / Actor model, but fails to scale to the same size
and sophistication of example programs (see further discussion below). A wide range of different
example programs with pedagogical explanations is presented in a Greenfoot specific programming
textbook [14].

Electronics 2016, 5, 33 60of 17

3.3. Visualisation

To learn programming, especially to learn the concepts of object orientation, it is not sufficient to
learn about lines of code; instead, sophisticated models of object interaction have to be understood
by novices. It is crucial that learners develop mental models of these underlying concepts to
master the foundations of programming. The difficulty in developing these mental models, and
understanding the concepts of programming, has often been identified as the main hurdle to the
learning of programming [15]. Therefore, the Greenfoot environment provides a number of conceptual
visualisations to aid in this understanding.

3.3.1. Classes and Objects

The main window of the Greenfoot environment does not present lines of code in its main panel,
as so many other environments (including IDLE, the default Python environment on the Raspberry Pi)
do. Instead, it shows classes and objects.

The classes are represented in a simple diagram along the right side of the main window
(see Figure 1) which shows their inheritance relationships. Instances of these classes are shown
as actors (with custom images specified by their class) in the main part of the interface, the world.

Objects (actors) can be dragged and dropped in the world, and actors of the same class exhibit
similar appearance and behaviour. This design illustrates important object-oriented concepts before
learners start to interact with lines of source code.

Of course, to modify the behaviour of actors, learners will soon enough see lines of code and
edit them, but when this happens it does so in the context of changing the behaviour of an object.
The context is established first, before small scale syntax is addressed.

3.3.2. State

Objects in the world can be inspected (using an Inspect function in a right-click menu).
This displays an object inspector showing the state of the object (Figure 2). Object inspectors serve to
visualise the concept that objects have state, and the names of the fields can be associated with the
variable names defined in the source code. Comparison of inspectors can be used to illustrate the
class-based nature of field definitions (objects of the same class have the same fields; objects of different
classes have different fields) and the object-based nature of values (each object holds its own values).

[share...

: Lobster

int x
inty
int rotation
World world
private G

fi image o A

Show static fields Close
e
inty

int rotation
World world
private G fi image

int x

Show static fields

> Act P Run © Reset Speed:

Figure 2. Object inspectors. Two inspectors are shown for two different objects of type ‘Lobster’. Each
inspector shows the object’s state (its fields and their values). We can see that the fields in each case are
the same, but the values differ.

Electronics 2016, 5, 33 7 of 17

Object inspectors may be left open when the program executes, and field values will be
dynamically updated as they change. This visualises dynamic state changes in a running program.

3.3.3. Behaviour

Another important concept in object orientation is that of behaviour of objects. Two important
mechanisms are present in Greenfoot to visualise behaviour.

The first aspect comes from the nature of Greenfoot as a micro-world, and was first popularised
with the introduction of turtle graphics in Logo [16]: The visualisation of the program as it runs. It is
in the nature of graphical micro-worlds that the execution of the program has visible visual effects
in real time during runtime. This often provides an automatic implicit debugging aid: bugs in the
program often surface as unexpected behaviour of an actor in the world. A learner might observe
this behaviour and immediately ask herself “Why did it do that now?”. This is a valuable implicit and
effortless start to program testing and debugging.

The second visualisation option of object behaviour is offered via the provision of interactive
method calls (Figure 3). Instead of running the program as a whole, individual methods of individual
objects can be invoked interactively via the mouse. Parameters may be passed in if necessary, and
return values may be displayed.

£ b g, 23

inherited from Actor W

i void act()

L : void checkKeyPress()

void lookForWorm() N

Inspect
Remove

{

w -.’ i

Figure 3. Interactive method calls. A right-click on an object in the world posts a popup menu that
displays the object’s public methods. These methods can be interactively selected to be invoked.

This mechanism serves two distinct purposes: It illustrates the concept that objects have a fixed
set of methods and that one can communicate with an object by invoking those methods, and it
allows experimentation with and exploration of the classes and objects to investigate and understand a
program’s behaviour.

3.4. Interaction

3.4.1. Method Invocation

The first example of interactive behaviour—interactive method invocation—has already been
discussed (Section 3.3.3), as visualisation and interaction are closely integrated. This can be extended
by combination with other interaction mechanisms. Objects can, for example, be freely dragged to
different locations in the world. By combining this with interactive method invocation, many concepts
and behaviours can be illustrated. For example, the getX() method (which provides an objects current
x-coordinate) may be called repeatedly after moving the object to different locations to illustrate the
world coordinate system, or a check for touching the edge of the world may be called with the object

Electronics 2016, 5, 33 8of 17

being or not being at the edge. Many behaviours can be experienced in exploration without the need
to write test drivers.

3.4.2. Object Creation

Another opportunity for interaction lies in the interactive creation of objects (Figure 4).
By right-clicking a class, access can be gained to a class’s constructors; invoking these interactively
creates instances that then may be placed into the world. Flexible scenarios may be created this way to
experiment with different object configurations.

World classes World classes

a &5
CrabWorld CrabWorld

Actor cl 0 Actor cl

Cctor classes {;@% ctor classes
=

=

L}

Set image...
Inspect

% Lobster

Remove
Duplicate...
New subclass...

(a) (b)

Figure 4. Object creation: Objects can be interactively created by right-clicking a class and choosing a
constructor (a); the resulting object can then be dragged into the world and placed there (b).

3.5. Source Level Support

While the first interactions with Greenfoot are often with existing, at least partially implemented
scenarios, and the first activities are often at the conceptual level—running programs, creating objects,
invoking methods interactively, etc.—learners very quickly get to the point where they are ready to
modify or write source code. Programming is, after all, the goal.

Source code is displayed in Greenfoot by opening the editor for a class (Figure 5). The source is
standard Java code.

One of the arguments often presented in favour of Python over Java is the larger amount of
boilerplate code needed in Java to get started. This code is a hurdle for beginners, and Python’s ability
to let users get started with individual lines of code is very attractive.

Greenfoot ameliorates this affect by partly avoiding, partly auto-generating the boilerplate code.
Java’s usual public static void main method—a major stumbling block for beginners—does not appear in
Greenfoot. Learners simply implement individual behaviour of objects, and the Greenfoot framework
arranges execution. The object model therefore is cleaner than in other Java environments.

Each class has the standard Java class structure, requiring the class header and method signatures.
These are, however, auto-generated when a new Greenfoot class is created, so that learners can indeed
create the first executable program (with a visual effect) by adding a single line of code. Once users
become more familiar with the environment and more adventurous, standard techniques such as
code-completion and links to documentation facilitate further exploration of the APL

One other educational tool that should be highlighted is Greenfoot’s scope colouring (Figure 5).
Correctly maintaining nested lexical scopes is one of the difficult challenges for beginners, and the
Greenfoot editor helps with this by automatically colouring the extent of the defined blocks. If an
opening or closing bracket is missing or misplaced, this colouring helps greatly in recognising and
localising the error.

Electronics 2016, 5, 33 90f17

© @® Crab - little-crab-5

Compile. Undo Cut | Copy Paste Find... | Close Source Code H

public class Crab extends Actor

{
private GreenfootImage imagel;
private GreenfootImage imageZ;
private int wormsEaten;

Vil
* Create a crab and initialize its two images.
*/

public Crab()

{

imagel = new GreenfootImage("crab.png");
imageZz = new GreenfootImage("crab2.png");
setImage(imagel);

wormsEaten = Q;

/'*
* Check whether a control key on the keyboard has been pressed.
* If it has, react accordingly.
)
public void checkKeypress()

if (Greenfoot.isKeyDown("left"))
{
turn(-4);
}
if (Greenfoot.isKeyDown("right"))

turn(4);

|| savedI

Figure 5. Source code display in the Greenfoot editor. The code is standard Java. The editor uses
scope highlighting to illustrate the extent of scopes and their nested structure, such as methods and
if-statements.

3.6. Greenfoot and Scratch

Scratch has been available on the Raspberry Pi for introductory programming education longer
than Greenfoot, so it is interesting to evaluate how they relate.

Greenfoot does not replace Scratch: Scratch is aimed at younger learners and uses a different
programming model (block-based programming). However, the two systems have a number of
similarities: Both are graphical, two-dimensional frameworks that let users program the behaviour of
actors in a world, and they display this world and its execution on screen. Because of these similarities,
they present an ideal sequence of instruction for younger learners: concepts learned in Scratch
transfer well into Greenfoot, with Greenfoot providing more complex and powerful abstractions and
interactions. Therefore, Greenfoot is an ideal successor system once young learners outgrow Scratch.

The characteristics of Scratch and Greenfoot, their similarities and possible educational path, have
been discussed elsewhere [17].

3.7. Greenfoot and IDLE/Python

As this discussion shows, Greenfoot may be used as an alternative to IDLE on the Raspberry Pi.
Both systems aim at similar styles and level of programming (full featured, text-based programming
languages), and both share similar models (modern object-oriented abstractions).

Electronics 2016, 5, 33 10 of 17

While Python in IDLE has the attraction that typing in individual lines of code can have a
visible execution result, Greenfoot has many other advantages from a pedagogical point of view:
It is more interactive, allows easy creation of more engaging and more sophisticated examples, and
illustrates important programming concepts better. The output of programs is more graphical, and the
functionality it provides delivers on the goal of the initial Raspberry Pi mission statement to “provide
excellent multimedia” to “make the board desirable to kids who wouldn’t initially be interested in a
purely programming-oriented device” [1]. It delivers this multimedia capability not only in the form
of a media player for passive media consumption, but tied in to active programming activities.

4. Blue]

Blue] is the second educational Java development environment included in the Raspberry Pi
image, and therefore available to all Raspberry Pi users. It differs from Greenfoot in a number of
important aspects (which we discuss in detail below). Greenfoot is aimed at programmers from 14 years
old upwards, and it specialises in the development of a specific class of application—two-dimensional
graphical games. Blue] was initially developed for introductory university courses (although it, too, is
now often used at school age) and is more generic: It provides no special support for any particular type
of application, and in return lets users develop programs of any kind. What is especially interesting in
the context of the Raspberry Pi is that it can also interact directly with the Raspberry Pi hardware and
provides easily accessible software abstractions for its components.

4.1. Aims of the Blue] Environment

The purpose of Blue] is to provide a thorough introduction to the foundations and principles
of object-oriented programming. The environment is designed with pedagogical goals in mind, to
support the understanding and mastery of object-oriented principles. Where Greenfoot’s foremost
aim was to create engagement and motivation by providing special support for one particular class of
application, BlueJ aims to facilitate a full understanding of principles and details of object-oriented
programming. No framework code is automatically provided (as it is in Greenfoot), so there is no
“magic”, and no restriction as to what kinds of programs can be created. Blue] is a general purpose
IDE. While Greenfoot was aimed at drawing people in to programming who previously may not have
thought they would like it, Blue]’s target user group are novices who have decided they want to learn
more, and achieve a deeper understanding.

The overall design goals of Blue] are similar to Greenfoot: visualisation, interaction and simplicity.
We will first give a short overview of the Blue] environment (a more detailed description is provided
elsewhere [18]), and then concentrate on possible projects specific to the Raspberry Pi.

4.2. The Main Window

Blue] differs from most IDEs for text-based languages in that its main window (Figure 6) does not
focus on the display of source code, but program structure. That main part of the window shows a
diagram of classes (in a notation that is a subset of UML) and their relationships. These classes are
interactive: A right-click on a class allows interactive invocation of a class’s constructors, and the
resulting objects are displayed on the object bench (Figure 6, bottom left). The bottom right area in
the main window is a read-eval-print loop, which allows typing in and evaluation of single expressions
or statements.

Electronics 2016, 5, 33 11 of 17

[JON | BlueJ: zuul-better
New Class...
-—>
Parser
; T
!
Compile Game —
i
Il
"
"
H
" i
I !
i Command i E CommandWords
i:_____> 1
!
!
i Room
Lo

~ "abcd".substring(1,2)
B "b" (String)

===
‘ rooml: roomz2: parserl:
Room Room Parser

Figure 6. The Blue] main window. The main part of the window shows a class diagram of the
application under development. At the bottom left is the object bench, a place where interactively
created objects are displayed. At the bottom right is the Code Pad, an interactive read-eval-print loop that

can evaluate single expressions or statements.

4.3. Execution

Methods may be directly and interactively invoked by selecting them from an object’s pop-up
menu (Figure 7). As in Greenfoot, methods may have parameters (which are then supplied in a
dialogue) and return values, which are displayed after execution.

inherited from Object >
Room getExit(String direction)
= String getLongDescription()

String getShortDescription()
void setExit(String direction, Room neighbor)

Inspect
Remove

rooml : Room

Figure 7. Interactive invocation of methods. Methods of objects displayed on the object bench can be
interactively invoked by selecting them from the object’s pop-up menu. Alternatively, they could be
invoked by typing the method invocation in the Code Pad.

Not all classes have to be complete, or even be able to compile, before execution, and there is no
need for a public static void main method. As soon as a single class successfully compiles, objects of this

Electronics 2016, 5, 33 12 of 17

class may be created and methods executed. This allows much earlier experimentation and testing than

possible in other systems, without the need for written test drivers, and it aids the learning process.
If a traditional main method is present, it can be invoked (as can all static methods) from the class’s

pop-up menu. BlueJ projects are standard Java, and all Java programs can be manipulated in Blue].

4.4. Editing

Blue] uses the same editor that is also integrated in the Greenfoot environment (Figure 5).
This allows easy transition from Greenfoot to Blue] (and back), and also provides the useful educational
support, such as scope colouring.

4.5. Other Tools

Several other tools are integrated in Blue] and can be enabled in the application’s preferences.
Some are hidden by default to initially provide a simple interface that can be mastered quickly by
beginners, and enabled when they are needed. Tools available include a debugger, support for unit
testing with JUnit [19] and support for standard source code repositories [20].

4.6. Accessing the Raspberry Pi hardware

Blue] is a general purpose IDE, and many teaching projects making use of it have been created and
discussed in detail [21]. In the context of this paper, however, one new aspect is especially interesting:
accessing the Raspberry Pi hardware components. With the port of BlueJ to the Raspberry Pi, we have
added support for accessing the Pi’s hardware, and we provide some Blue] projects that offer higher
level abstractions of the hardware components for pedagogical purposes. These abstractions allow
interaction with the hardware (as GUI interactions or programmatically), and they offer an easier start
into programming that addresses the hardware. We discuss this here in a little more detail.

Blue] interfaces with the Raspberry Pi via a (slightly modified version of) the Pi4] library [22],
which is included by default with the Raspberry Pi Blue] version and does not need to be installed
separately. In addition to the resulting ability to access the Pi4] interface directly (documentation for
this is available online [23]), we provide a set of classes that represent physical components. Once
the Blue] project has been opened that provides these abstractions, users can interact with these
components by interactively creating objects and invoking their methods. They can also write code to
perform more complex actions.

Figure 8, for example, shows classes representing output devices connected to the general purpose
I/0 (GPIO) pins and buttons (which may also be connected to the GPIO pins). If we now, for instance,
connect a LED to a pin on the Raspberry Pi, we can create an object of class GPOutput, specifying the
pin number in its constructor, to represent the LED. This LED will now be represented in Blue] as an
object on the object bench, and methods can be called interactively on this object to communicate with
the LED (Figure 9).

This abstraction allows easy interaction and exploration of the functionality of various
components, and also makes it easy to start writing code with these. Making use of the classes
shown in Figure 8, for example, it is now easy to add a class called LightSwitch and write code to switch
the LED in reaction to the button state (Code 1).

if (button.isDown()) {

led.on();
}
else {
led.off();

Electronics 2016, 5, 33 13 of 17

Code 1. A sample code snippet showing use of the Button and GPOutput abstractions being used
for simple program control. Variable button is of type Button, and variable led is of type GPOutput.

Thus, the classes provided by Blue] provide a more interactive interface to the hardware that
provides an easier entry to starting to code on the Raspberry Pi. The initial interactive method
invocation, which requires no typing of code or memorisation of syntax, allows easy familiarisation
with the available functionality that is not available when accessing similar components from the
Python/IDLE environment.

The Blue] projects providing the Raspberry Pi hardware abstractions are available on the Blue]
website [24]. In addition to the GPOutput and Button abstractions shown here, classes are also available
for other components, including servo motors and analogue inputs and outputs.

The convenience and ease of use of these pre-fabricated classes comes at the price of flexibility:
While some actions are made easy by having specific methods provided to support them, some
other possible functionality is not directly supported. When users reach the point that they want to
implement behaviour not supported by these classes, they can fall back to using the Pi4] interface
directly. In that case, the implementation of the classes provided serves as a code example of how to
access and use the Pi4] library.

(JON) BlueJ: RasPi-I0

l New Class... h

<<interface>>
Fm————= >| ButtonListener

GPOutput Button !

Figure 8. A Blue] project with classes representing kinds of hardware components on the Raspberry Pi.
The Button and ButtonListener classes can be used to interact with push buttons connected to the GPIO
pins, while the GPOutput class can represent any output device connected to a pin.

= inherited from Object »

| —

t void blink(int n, int time)
felJot] Vvoid off()
void on()
X

gPOutput Inspect
ﬁ‘ Remove

Figure 9. Once an object has been created for an LED connected to a GPIO pin, the LED can be switched

on and off using methods of the GPOutput object.

Electronics 2016, 5, 33 14 of 17

5. Discussion

Programming in Java is now available on the Raspberry Pi via the Greenfoot and Blue]
environments. These systems provide a direct alternative for text-based programming to the IDLE
environment and Python as the language. Learners now have a choice of language and IDE.

All three approaches, IDLE, Greenfoot and Blue], have their strengths and weaknesses which
make them a good choice in different situations.

5.1. IDLE/Python

Starting with Python in IDLE has the advantage that single lines of code can be typed in
and evaluated, without any overhead. No boilerplate code is necessary, little “magic” is present.
Most behaviour that is observed is explainable by the lines of code immediately typed in. First
experiences of success—typing a code snippet and seeing it evaluated—are possible very quickly [8].

Many teachers and learners also like the syntax of Python: It appears somewhat simpler than Java
(although not by much), and some teachers argue that dynamic typing increases flexibility. Python is
an easy language to get started very quickly with small segments of code.

On the negative side, IDLE focuses on lines of code in its presentation of a project, offering little
support to model, understand or investigate higher order abstractions. Once programs become larger
than a few lines, and classes and objects are the natural abstractions for structuring the project, IDLE
offers little help.

Python’s characteristic of allowing, but not enforcing, object-oriented structures can be seen as an
advantage or disadvantage, depending on a user’s goals and point of view. Allowing to break out of
strict object-oriented structures allows quicker and more flexible creation of ad-hoc and experimental
small code segments. For short, spontaneous experimentation, this can be an advantage.

Users who aim at learning good, systematic programming construction, though, may be
better served with a language enforcing a stricter object-oriented style, such as Java. The ad-hoc
flexibility which is beneficial for small programs often breaks code style guidelines and violates
good object-oriented practice. If the learning of software engineering concepts is a goal, the stricter
framework may provide more help.

One of the most obvious limitations of IDLE is the lack of a good and easy to use framework for the
creation of interactive graphical programs. This misses an opportunity for creating engagement, and
fails to bring the goal of engaging multi-media from the consumption model into the creative space.

5.2. Greenfoot/Java

Greenfoot’s main advantage is the easy creation of animated, interactive, graphical applications.
Early examples typically programmed with Greenfoot are much more engaging than those used with
most other environments for text-based languages. Greenfoot also allows direct, GUI-based interaction
with objects and classes, supporting experimentation with underlying concepts (such as classes, objects,
constructors, methods, parameters, etc.) before having to get bogged down in source code and syntax.
Visible effects can be achieved by adding single lines of code.

A disadvantage of Greenfoot is that a much larger framework is at play behind the scenes.
The lines of code typed in Greenfoot—even if it is initially just a single line—is typed into an editor also
containing some boilerplate that may at first not be fully understood. The execution and effect of the
user-authored lines cannot be understood without also understanding some aspects of the embedding
framework. More functionality “just happens” automatically, presenting some “magic” to novices that
may cloud full understanding of the system.

Even though most users work without problems in Greenfoot, having to develop a mental model
of the Greenfoot execution framework in order to understand even small segments of code makes
initial understanding harder.

Electronics 2016, 5, 33 15 0f 17

On the positive side, once the programs become a little larger—consisting of multiple classes
and objects, both the structure and the execution of projects can be understood more easily, since
both—structure and execution—are supported by visualisations in the environment.

Learning of good object-oriented practices is well supported, since the main abstractions—classes,
objects, methods, state—are represented explicitly in the environment, and all programming takes
place within these structures.

Greenfoot also offers an ideal sequence for learners coming from Scratch, the other programming
environment available on the Raspberry Pi. Scratch focuses on programmed micro-worlds, with
actors (named Sprites in Scratch) executing on a Stage. This model transfers directly into Greenfoot’s
very similar execution framework. Where Scratch is object-based (users program individual
instances), Greenfoot’s class-based model represents a logical next step when a programmer outgrows
Scratch’s capabilities.

5.3. Blue]/Java

As with Greenfoot, early Blue] examples are often larger than learning examples used with
Python. While Blue] also offers a read-eval-print loop that makes starting by typing single statements
or expressions possible, this is not the typical entry point in pedagogical Blue] literature. First steps
in Python typically use smaller snippets of code and fewer concepts, making the initial exercises
potentially easier to understand.

Blue], on the other hand, offers a conceptual overview—in the form of a class diagram and
functionality that allows interaction with existing classes and objects—that illustrates the underlying
main programming concepts more clearly. While typing and experimenting with single lines of code
is easier in IDLE, Blue] provides better support for understanding program structures and more
fundamental abstraction concepts of object orientation.

Both Blue] and IDLE enable users to programmatically access the hardware components of the
Raspberry Pi. Blue] may have an advantage initially, since the available classes for the component
abstractions offer methods than can be discovered experimentally (while they have to be known and
memorised in IDLE). When programming more complex interactions with the Raspberry Pi hardware,
the complexity in both languages is comparable.

All three systems—IDLE, Greenfoot and BlueJ—enable learning of a mainstream, general purpose,
object-oriented language, and all are freely available. Both languages—Java and Python—have large
amounts of easily accessible teaching material available. More pedagogically targeted material exists
for the Greenfoot and Blue] environments than for IDLE, and dedicated online teacher communities
are available for the two Java systems [25,26]. All three systems are currently popular in programming
education contexts (schools and universities).

6. Conclusions

The improved performance of Java on the Raspberry Pi over the last few years, and the addition
of the Blue] and Greenfoot environments to the standard software set on the Raspberry Pi image,
have brought the initial vision of the Raspberry Pi foundation closer to reality: to provide a low cost
computer that can be used by kids to experiment with and learn programming in an engaging way.
While text-based programming was available on the Raspberry Pi since its first release—in the form of
Python—the addition of the Java environments broadens the options for learners and offers several
improvements to the situation. Greenfoot makes it possible to program much more engaging and
interactive examples much more easily, and Blue] allows us to take the Java language forward into
more generic programming projects, including direct interaction with the Raspberry Pi hardware.

Supplementary Materials: A guide to programming Blue] for the Raspberry Pi is available online at
http:/ /www.bluej.org/raspberrypi/.

Acknowledgments: I would like to thank the many who people were involved in the creation of the Blue] and
Greenfoot environments. The current team consists of Neil Brown, Ian Utting, Amjad Altadmri, Davin McCall

Electronics 2016, 5, 33 16 of 17

and Fabio Hedayioglu, who has also implemented the BlueJ optimisations for the Raspberry Pi. I would also
like to thank Eben Upton and Rob Mullins who have provided technical information for this work in a series of
meetings and emails.

Conflicts of Interest: The author declares no conflict of interest.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

Raspberry Pi: About US. Available online: https:/ /www.raspberrypi.org/about/ (accessed on 28 April 2016).
Maloney, J.; Resnick, M.; Rusk, N.; Silverman, B.; Eastmond, E. The Scratch programming language and
environment. Trans. Comput. Educ. 2010, 10, 16:1-16:15. [CrossRef]

Van Rossum, G. Python tutorial. In Technical Report CS-R9526; Centrum voor Wiskunde en Informatica
(CWI): Amsterdam, The Netherlands, 1995.

TIOBE Index. Available online: http://www.tiobe.com/tiobe_index (accessed on 6 June 2016).

Kolling, M.; Quig, B.; Patterson, A.; Rosenberg, J. The Blue] system and its pedagogy. Comput. Sci. Educ.
2003, 13, 249-268. [CrossRef]

Kolling, M. The Greenfoot Programming Environment. ACM Trans. Comput. Educ. 2010, 10, 182-196.
[CrossRef]

Ritter, S. Speakjava. Available online: https:/ /blogs.oracle.com/speakjava/tags/raspberry (accessed on
28 April 2016).

Python—Raspberry Pi Documentation. Available online: https://www.raspberrypi.org/documentation/
usage/python/README.md (accessed on 29 April 2016).

Kolling, M. The Design of an Object-Oriented Environment and Language for Teaching. Ph.D. Thesis, Basser
Department of Computer Science, University of Sydney, Sydney, Australia, 1999.

Kolling, M. Greenfoot: A Highly Graphical IDE for Learning Object-Oriented Programming. ACM SIGCSE
Bull. ITiCSE 2008, 40, 327. [CrossRef]

Kolling, M.; Rosenberg,]. Guidelines for Teaching Object Orientation with Java. Proc. ITiCSE Conf. 2001, 33,
33-36. [CrossRef]

Kolling, M.; Barnes, D. Enhancing apprentice-based learning of Java. In Proceedings of the Thirty-Fifth
SIGCSE Technical Symposium on Computer Science Education, New York, NY, USA, 4 March 2004;
ACM Press: New York, NY, USA, 2004; pp. 286—290.

Kolling, M.; Rosenberg, J. Blue]—The Hitch-Hikers Guide to Object Orientation, Technical Report 2002, No 2;
The Maersk Mc-Kinney Moller Institute for Production Technology, University of Southern Denmark:
Odense, Denmark, 2002.

Kolling, M. Introduction to Programming with Greenfoot: Object-Oriented Programming in Java with Games and
Simulations, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2016.

Du Boulay, B. Some difficulties of learning to program. J. Educ. Comput. Res. 1986, 2, 57-73. [CrossRef]
Papert, S. Mindstorms: Children, Computers, and Powerful Ideas; Basic Books, Inc.: New York, NY, USA, 1980.
Utting, L.; Cooper, S.; Kolling, M.; Maloney, J.; Resnick, M. Alice, Greenfoot, and Scratch—A Discussion.
Trans. Comput. Educ. 2010, 10, 1-11. [CrossRef]

Kolling, M. Using Blue] to Introduce Programming. In Reflections on the Teaching of Programming; Bennedsen, J.,
Caspersen, M.E., Kolling, M., Eds.; Springer: New York, NY, USA, 2008; pp. 121-140.

Patterson, A.; Kolling, M.; Rosenberg, J. Introducing Unit Testing with Blue]J. Proc. ITiCSE Conf. 2003, 35,
11-15. [CrossRef]

Fisker, K.; McCall, D.; Kélling, M.; Quig, B. Group work support for the Blue] IDE. SIGCSE Bull. 2008, 40,
163-168. [CrossRef]

Barnes, D.; Kolling, M. Objects First with Java—A Practical Introduction Using Blue], 6th ed.; Pearson: New York,
NY, USA, 2016.

The Pi4] Project. Available online: http://pid4j.com (accessed on 30 April 2016).

Overview: Pi4]. Available online: http://pi4j.com/apidocs/index.html (accessed on 30 April 2016).
Blue]—Raspberry Pi. Available online: http://www.bluej.org/raspberrypi/ (accessed on 30 April 2016).

https://www.raspberrypi.org/about/
http://dx.doi.org/10.1145/1868358.1868363
http://www.tiobe.com/tiobe_index
http://dx.doi.org/10.1076/csed.13.4.249.17496
http://dx.doi.org/10.1145/1868358.1868361
https://blogs.oracle.com/speakjava/tags/raspberry
https://www.raspberrypi.org/documentation/usage/python/README.md
https://www.raspberrypi.org/documentation/usage/python/README.md
http://dx.doi.org/10.1145/1597849.1384370
http://dx.doi.org/10.1145/377435.377461
http://dx.doi.org/10.2190/3LFX-9RRF-67T8-UVK9
http://dx.doi.org/10.1145/1868358.1868364
http://dx.doi.org/10.1145/961290.961518
http://dx.doi.org/10.1145/1597849.1384316
http://pi4j.com
http://pi4j.com/apidocs/index.html
http://www.bluej.org/raspberrypi/

Electronics 2016, 5, 33 17 of 17

25. Blueroom—Home. Available online: http:/ /blueroom.bluej.org (accessed on 30 April 2016).
26. Greenroom—Home. Available online: http://greenroom.greenfoot.org (accessed on 30 April 2016).

® © 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://blueroom.bluej.org
http://greenroom.greenfoot.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Why a Java IDE?
	Greenfoot—A Playful Step to Programming
	Aims of the Greenfoot Environment
	Engaging Examples
	Visualisation
	Classes and Objects
	State
	Behaviour

	Interaction
	Method Invocation
	Object Creation

	Source Level Support
	Greenfoot and Scratch
	Greenfoot and IDLE/Python

	BlueJ
	Aims of the BlueJ Environment
	The Main Window
	Execution
	Editing
	Other Tools
	Accessing the Raspberry Pi hardware

	Discussion
	IDLE/Python
	Greenfoot/Java
	BlueJ/Java

	Conclusions

