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Abstract: We consider a three-tiered cloud service market and propose an energy efficient pricing
strategy in this market. Here, the end customers are served by the Software-as-a-Service (SaaS)
providers, who implement customized services for their customers. To host these services, these SaaS
providers, in turn, lease the infrastructure related resources from the Infrastructure-as-a-Service (IaaS)
or Platform-as-a-Service (PaaS) providers. In this paper, we propose and evaluate a mechanism for
pricing between SaaS providers and Iaas/PaaS providers and between SaaS providers and the end
customers. The pricing scheme is designed in a way such that the integration of renewable energy is
promoted, which is a very crucial aspect of energy efficiency. Thereafter, we propose a technique to
strategically provide an improved Quality of Service (QoS) by deploying more resources than what is
computed by the optimization procedure. This technique is based on the square root staffing law
in queueing theory. We carry out numerical evaluations with real data traces on electricity price,
renewable energy generation, workload, etc., in order to emulate the real dynamics of the cloud
service market. We demonstrate that, under practical assumptions, the proposed technique can
generate more profit for the service providers operating in the cloud service market.

Keywords: cloud computing; energy efficiency; pricing; data centers

1. Introduction

The tremendous development in communication technologies has resulted in enormous growth
of applications ranging from data communication to social media. Recently, well developed
technologies such as broadband and wireless communication have accelerated the implementation
of more sophisticated and powerful technologies such as mobile cloud computing, big data, etc. [1].
Given all of these unprecedented developments, the cloud service marketplace is also growing at
a tremendous pace. In this scenario, there is a prominent need of structuring and implementing
appropriate pricing mechanisms charged by the service providers to the consumers, which results in
an economically sustainable cloud service market. These pricing strategies need to achieve optimal
resource management, which would potentially eliminate the risk of violation of Service Level
Agreement (SLA). Moreover, in order to support and sustain this unprecedented growth of the
market as a whole, the pricing policies have to protect the interests of various players (stakeholders)
operating in the market, such as Infrastructure-as-a-Service (IaaS) providers, Platform-as-a-Service
(PaaS) and Software-as-a-Service (SaaS) providers, and the consumers (customers) in the market [2].

In this paper, we propose developing a novel theoretical framework for implementing sustainable
pricing policies and the corresponding optimal resource provisioning policies in the cloud service
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market, which would benefit all the stakeholders in the long run in this market, including IaaS and
SaaS service providers, and price sensitive rational consumers. Here, the sustainability accounts for
both economic sustainability of all the stakeholders in the market and environmental sustainability of
cloud computing. The high level objective of the work is to merge these two types of sustainability
through appropriate mechanisms, implemented through appropriate models considering the major
characteristics and the structure of the market.

The references in [3,4] presents very rich discussions on the business aspects of cloud computing
and cloud service market. A recent analysis from a renowned market research firm reported that the
cloud market is expected to grow to $121 billion dollars by 2015 with a 26% compound annual growth
rate from the $37 billion value in 2010 [5]. A substantial proportion of the growth is being driven by
rapid adoption of Software-as-a-Service platforms, which are saving businesses on the cost of licensing,
management, and deployment of software and hardware for collaborative knowledge sharing and
productivity enhancement. In the context of Singapore, there are many small to medium-sized
enterprises and startups, which are participating as SaaS providers in the cloud service market.
An example of an SaaS provider operating in Singapore is Greenmatics [6]. This is the same for other
parts of the globe as well [7]. The SaaS providers typically provide a wide spectrum of services to
the corporate clients, ranging from e-commerce, consumer data analytics, image and video content
mining, etc. The SaaS providers do not typically own the cloud computing resources and data center,
since that involves an enormous capital investment, which is not affordable for a small- to medium-size
organization whose major expertise lies in software and application development and maintenance.
These SaaS providers lease the computing resources form other big organizations such as Google,
Amazon, Microsoft, etc. In Figure 1, we give a schematic diagram of a typical three-tiered cloud
service market. Typically, there are many SaaS providers and a few IaaS/PaaS providers in the market.
As discussed in [7], we treat the IaaS/PaaS providers identically, since their contribution in the entire
cloud service ecology and their respective business models are very similar.
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Figure 1. Three-tiered cloud service market.

As per the present practices related to pricing of cloud services, the strategies may not be optimal
in terms of many crucial parameters. For example, after the deregulation of the electricity markets in the
US and some other countries, the wholesale electricity pricing is based on operational considerations
that have been developed through sophisticated economic theories [8]. Although some cloud service
providers (CSPs) have implemented some structured pricing models, these are far from being mature
and unified. As an instance, Amazon Web Services (AWS) charges a real time pricing called as
Spot Pricing instances for allocating various resources to its clients. The details can be found in [9].
AWS, being a large IaaS provider, provides preconfigured virtual computing resources to the SaaS
providers. SaaS providers can buy those resources to implement, run and manage the applications they
provide to their end consumers. These types of customized products offered by Amazon, are called
as EC2 [10]. The description of various types of products and the respective prices can be found
in [9]. These prices vary dynamically over time and regions. Through these kinds of deals, the SaaS
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providers can implement and deploy their customized products and service and offer them to their
end customers (consumers). The fundamental idea behind this pricing scheme is to offer the unused
resources to these consumers while properly addressing the resource congestion issue. However,
by performing extensive analysis on the historical price traces, the work in [11] has empirically shown
that this pricing strategy fails to reflect the actual marginal cost incurred by the CSP to address resource
congestion issues.

Due to this dramatic growth of the cloud service market, the electricity consumed by the
computing resources (such as data centers) is also growing at a tremendous rate. Over the globe,
the data centers consume more than 2% of the total electricity [12]. Increasing concerns associated with
this dramatically increasing power consumption by cloud computing infrastructures have pushed the
CSPs to adopt practices, which lead to high energy efficiency. The prominent approaches adopted by
large CSPs mainly fall into two categories: (i) reducing actual power consumption and (ii) integrating
renewable energy to power various subsystems of cloud infrastructure. In this work, we focus
on the second aspect. A recent report [12] discussed the various practices by large CSPs such as
Amazon, Google and Facebook, who spend hundreds of millions of dollars to power their cloud
service infrastructures. Another important business objective of large CSPs is power cost reduction,
which is very crucial to the business objective of the CSPs since the energy cost drives a significant
fraction of the overall operational cost. We capture the electricity cost incurred by the IaaS/PaaS
through the model proposed in the following section.

Over the last few decades, there have been many improvements in the energy efficiency of
cloud computing systems, starting from the server level to the level of a system of interconnected
data centers [13–15]. Some of the commonly adopted strategies for achieving energy efficiency at
individual server levels are, Dynamic Voltage Scaling (DVS), Dynamic Voltage Frequency Scaling
(DVFS), etc. [16,17]. The central idea behind all these strategies is to scale the performance of the server
as per the service requirement. The same idea has been extended and applied in the case of an entire
data center, where the numbers of servers employed are dynamically controlled over time; this is
referred to as dynamic right sizing [18] in the literature. There are well implemented algorithms for
achieving power efficiency based on a discrete time model, some of which are implemented in large
scale cloud computing systems. The next level of importance is to consider the deferrable jobs and
to leverage their deferability to achieve energy efficiency. These jobs with deferability are commonly
referred to as jobs with slacks in the literature [19]. This approach is particularly effective in integrating
renewable energy in the system and would be crucial in achieving energy efficiency. Some earlier
works proposing methods to take advantage of the inherent deferability to achieve energy efficiency
are [19,20]. An energy saving model for data centers is proposed in [21] by scheduling and routing
deadline constrained flows, which are tasks with predefined slacks. The work in [22] explores the
opportunities for improving the profitability of the data center operators by combining some special
characteristics of data centers with conventional traffic engineering. The work in [23] presents a traffic
aware resource allocation scheme for distributed cloud computing systems.

The other class of strategies to achieve power efficiency in the case of multiple interconnected data
centers is popularly known as Geographical Load Balancing (GLB) [24]. This approach is particularly
effective in renewable energy incorporation since it leverages the inherent spatial diversity, if any,
of renewable energy generation. This is also effective in reducing electricity cost incurred by the
operator of a data center. Typically, the price of electricity varies across geographical locations, and this
strategy can make use of this spatial variation in electricity price to reduce the cost [25]. The inherent
idea behind these strategies is to direct the traffic (workload) to the places where more renewable
energy is available and thereby decrease the brown energy consumption, which results in reduction in
the emission of greenhouse gases. The same is true for electricity price as well. In fact, some of the
algorithms for geographical load balancing proposed in the literature are actually being implemented
by some CSPs, which confirm the practical realizability and effectiveness of the existing algorithms.
It may be noted that GLB is applicable to CSPs with multiple data centers across different geographical
locations with access to renewable energy sources. Given these research endeavors in academia
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and many successful implementation adopted by the industries, we are quite convinced that energy
efficiency practices in cloud computing system have become quite mature over the past few decades.
There have also been efforts to design algorithms for GLB considering the deferrable jobs so as to reap
even more benefits [25,26]. A strategy for implementing energy aware scheduling of batched jobs
under GLB based framework may be found in [27].

In this paper, we propose a relatively unexplored line of action to achieve energy efficiency, which
is through appropriate pricing and incentivization. We believe that there is an enormous need to
strongly connect pricing with resource allocation in order to implement an efficient cloud computing
system. We first review the existing literature on this, which is closely related with the objective of the
present paper. The literature on general service pricing for various products and topics is very vast
and well beyond the scope of this paper. However, there are a few specific attributes of cloud service
pricing which may be closely related with the contributions made by this paper. The topic in computer
science literature which serves as a very crucial tool in developing strategies for cloud service pricing
is economics of queues. This is a topic related to provisioning of incentives in controlling the length of
the queue and providing differentiated Quality of Service (QoS) to different users, by implementing
the notion of pricing. The early work in [28] nicely merges concepts in economics with computer
science to realize this. An auction based online mechanism design for dynamically pricing and
allocating the Virtual Machine (VM) and other resources can be found in [29]. The literature in the
intersection of queueing theory and economics is quite rich and beyond the scope of the present
paper. However, a few relevant references are [30,31]. The work very close to the theme of this paper
is [31]. It investigates the characteristics of optimal pricing strategy and the QoS experienced by delay
sensitive customers. As described earlier in this section, the cloud computing market is growing at
a very rapid rate. On top of that, the cloud service market is also becoming hierarchical in nature where
various entities are participating in the market at different levels. It may be noted that the literature on
cloud service pricing considers a wide range of perspectives such as economics, queueing theory, game
theory, theory of incentives and theory of contracting. Some significant research contributions towards
pricing in cloud service market are available in [11,32–34]. A generic discussion on the influence
of competition in the market where different firms compete among themselves to service customer
demands can be found in [35]. However, the above-mentioned works address various economic
perspectives of cloud service pricing considering the competition among the CSPs operating in the
market. In this competitive market, the CSPs need to optimally offer their services to the customers and
charge optimally to earn revenue and grow financially. In our previous work, we had addressed the
energy efficiency issue through appropriate pricing [36]. It may be noted that all the works mentioned
above considered a flat cloud service market with one layer of service providers and one layer of
consumers (customers). In fact, the literature on cloud service pricing considering the hierarchical
nature of the cloud service market is relatively sparse. The work which addresses this hierarchical
cloud service market is [7], where the authors studied the subtle interaction between price competition
and provided some insightful conclusions which would serve as important guidelines for the different
entities in the cloud service market. However, the work in [5] did not consider the issue of energy
efficiency, which we do in this work. In this paper, we consider the hierarchical cloud service market
as depicted in Figure 1 and propose pricing strategies which would promote energy efficiency in the
cloud service market. The other area is energy efficiency through pricing and incentivization, which is
a growing topic in smart grid literature. Various techniques to achieve energy efficiency by pricing
and incentivization can be found in [37] and the references therein. Energy efficiency by pricing and
incentivization specifically in the context of multiple data centers can be found in [36,38] and the
references therein.

The contribution of this paper lies in the intersection of cloud service pricing and the energy
efficiency of the cloud computing system. As discussed above, the strategies for energy efficiency at
the level of a single server, a single data center, and multiple interconnected data centers are quite
well developed by now. Our conviction is that in order to take the energy efficiency issue to the
next level of maturity, and it has to be coupled with the economic aspects of cloud service pricing.
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The contributions of this paper are threefold. Firstly, we consider the realistic three-tiered cloud service
market, where different entities occupy different places in the holistic cloud service industry ecosystem.
Secondly, in this cloud service market, we propose an energy efficient pricing scheme, considering
together the economic sustainability and the environmental sustainability of the cloud service market.
Thirdly, we design a strategy for earning more revenue by providing a better Quality of Service (QoS)
to the higher priority jobs. We carry out rigorous evaluations of the proposed methodologies with real
data traces on electricity price, renewable energy generation, data center internal cooling dynamics,
data center workload, etc. The rest of this paper is organized as follows. Section 2 introduces the
framework to model the three-tiered cloud service market. Section 3 describes the settings under
which the performance of the proposed strategies is evaluated. Section 4 presents and discusses the
results. Section 5 concludes the paper.

2. Model for a Three-Tiered Cloud Service Market

This section presents the framework to model the dynamics of a three-tier cloud service market.
Let there be N IaaS providers, S SaaS providers, and K workload classes. Let i, s and k be the indices
to indicate these entities, respectively. The notations used in this model are presented in Table 1
given below.

Table 1. The notations used for the model to capture the cloud service market.

Notation Meaning

k Index of type of jobs, k ∈ {1, 2, ..K} .

s Index of Software-as-a-Service (SaaS) providers, operating in the market s ∈ {1, 2, ..S} .

i Index of Infrastructure-as-a-Service (IaaS) providers, operating in the market, i ∈ {1, 2, ..N} .

t Index of timeslots.

πs(t) Profit earned by SaaS provider s, in timeslot t.

πi(t) Profit earned by IaaS provider i, in timeslot t.

λs
k(t) Workload generated by SaaS provider s of type k, in timeslot t.

λs
+(t) Total workload generated by SaaS provider s, in timeslot t.

Ps(λs
+(t), τs) Cost (price) incurred by SaaS provider s, to process the workload λs

+(t), with QoS level τs.

Λi(t) Workload serviced by IaaS provider i, in timeslot t.

Ci(Λi(t)) Cost incurred by IaaS provider i to service workload Λi(t), in timeslot t.

E[X] Expectation of the random variable X.

pi(t)
Price of electricity at the location where the data center is operated by IaaS provider i, to power
one server for the duration of the timeslot size.

αi(t) Power Usage Effectiveness (PUE) of the data center operated by IaaS provider i, in timeslot t.

mi(Λi(t)) Total number of servers provided by IaaS provider i, to service the workload Λi(t).

ri(t)
Amount of renewable energy available to the location, where the data center is operated by
IaaS provider i, in timeslot t, normalized to the power consumed by a server per timeslot.

ε Parameter to control the priority for server switching cost.

ρ(mi(Λi(t)), mi(Λi(t− 1)) Function to capture the switching cost incurred between timeslot t − 1 and t.

mi
k(λ

s
k(t)) Number of servers provisioned by IaaS provider i, to service the workload λs

k(t) of type k.

β
Sensitivity towards QoS. This is associated with the end customers and assumed constant
among the IaaS providers.

Πi(T) Cumulative profit earned by IaaS provider i from timeslot 1 to T.

Πi(T) Cumulative profit earned by SaaS provider s from timeslot 1 to T.

vs(λs
k(t)) Revenue earned by SaaS provider s for servicing workload λs

k(t) of type k in timeslot t.

vs(λs
+(t)) Total revenue earned by SaaS provider s for servicing the workload λs

+(t) in timeslot t.

δk A constant associated with revenue earned by the IaaS provider servicing the workload type k.

Ds(τs
k) Delay experienced by the jobs serviced by SaaS provider s.

Pi(Λi
k) Cost incurred by IaaS provider i.
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In this work, we assume the popular model where the revenue of SaaS is a linear function of the
workload. To capture the value of different workload types, the coefficient may be chosen differently
for different workload classes. However, since these are determined by the market (i.e., the end
customers), they would be constant for all the SaaSs. Hence, the revenue earned by SaaS provider s,
by serving a workload of amount λs

k(t) of workload type k, is given by:

vs(λs
k(t)) = δkλ

s
k(t) (1)

It may be noted that the service requests are actually generated by the end customers. We assume
that the end customers choose the SaaS providers from which they wish to receive the service. This may
be based on long-term business relationships or goodwill related factors. After receiving the job
requests from the end customers, the SaaS providers generate the job requests that are to be serviced
by the IaaS providers. The service request generated by the end customers may be of different forms.
These are processed initially by the SaaS providers and mapped to executable workload. That workload
is finally submitted to the IaaS providers. The total revenue earned by SaaS provider s is the sum of
the revenues across all the workload types. This is obtained by:

vs(λs
+(t)) = ∑K

k=1vs(λs
k(t)) = ∑K

k=1δkλ
s
k(t) (2)

The profit earned by the SaaS provider s is given by the difference between the cost incurred
by the SaaS to service the workload and the revenue earned from the end customers. This depends
on how the IaaS providers charge the SaaS providers. In this paper, we have assumed a simple and
realistic model that connects the end customers, the SaaS providers and the IaaS providers as depicted
in Figure 1. For this, the profit earned by the SaaS provider s is given by:

πs(t) = vs(λs
+(t))− E[Ps(λs

+(t), τ
s)] (3)

The second term in Equation (3) is the expectation of the cost incurred by SaaS provider s,
to service the workload λs

+(t) with a given QoS level τs. Here, Ps(λs
+(t), τs) is not known to the IaaS

service provider, and, therefore, it is treated as a random variable and is based on the estimation
from the existing data sets. The actual profit is computed as per the actual realization of this price,
which is available post priori. The cumulative profit earned by SaaS provider s, over timeslot 1 to T,
is obtained by:

Πs(T) = ∑T
t=1π

s(t) (4)

The QoS for cloud services is usually the average response time, which includes both the waiting
time prior to service and the service time. A significant development in queueing theory allows for
characterizing the average characteristics of these parameters, which may be calculated using well
established robust methodologies. In fact, based on well-known results in queueing theory, large
systems are operated with robust guarantee on QoS [39]. In this model, the QoS is captured in the
contract between the IaaS providers and the SaaS providers, using a standard result from queueing
theory as given below:

E[Ds(τs
k)] = βE[τs

k] =
βλs

k(τ)

µimi
k(λ

s
k(τ))− λ

s
k(τ)

(5)

We now present the strategy for computing the cost incurred by IaaS provider i, to service the
workload generated in the market by the SaaS providers, which are actually the service requests
generated by the end customers. This is the aspect of our model, which considers the operational
details of the data centers, operated by the IaaS/PaaS providers. The model we adopt here is the same
as the one in [36]. This is based on a discrete time based control where the servers are dynamically
controlled as per the service requirement. Here, the optimization procedure is carried out in every
timeslot to compute the number of servers to be activated for the current timeslot. The objective
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function of the optimization procedure is a linear combination of the electricity cost to operate the
servers and the adverse effects of turning servers on to off and vice versa. The total energy consumed
by the data center operated by IaaS provider i at timeslot t is assumed to be:

Eni(t) = αi(t)mi(Λi(t)) (6)

Equation (6) shown above captures the time varying dynamics of physical energy efficiency status
of the data center operated by IaaS provider i for the timeslot t. Power Usage Effectiveness (PUE)
is a crucial parameter summarizing the operational status in terms of energy efficiency [19]. PUE is
defined as the ratio between the total power consumed by a data center and the total power consumed
by the servers. For a detailed discussion on PUE and associated topic, one may refer to [13]. Since the
numerator is always greater than the denominator, PUE is always greater than 1. Though the PUE
may even be as low as 1.1 for an efficiently managed data center, it is generally greater than 1.5 in
practice [12]. It is reported that even for a single data center, the value of PUE varies quite dramatically
during the day depending on outside temperature, cooling system efficiency, etc. [19]. We assume
that the data center is being operated in the real time electricity market, which is quite common in
practice, and that the data centers are quite big consumers of electricity [19,25,36]. Hence, the energy
cost incurred by IaaS provide i in the timeslot t is given by:

Costi(t) = pi(t){αi(t)mi(Λi(t))− ri(t)}+, where {x} = max(x, 0) (7)

We assume that IaaS provider i has access to the onsite renewable energy source owned by it.
In the case where an IaaS provider does not own any renewable energy generating resources, it may
have some form of long-term contract with some utility providers. It may be noted that, these days,
with the aggressive drives for improving the energy consumption portfolio and reducing emission,
plenty of medium- to large-sized cloud service providers (mainly the IaaS/PaaS providers) are heavily
investing on renewable energy. Some of the big cloud service providers such as Facebook and Google
own renewable energy generating infrastructure to generate on site renewable energy to power their
data centers. The small- to medium-size companies, who are unable to make that huge investment
upfront, typically choose to go for a long-term contract with the utility provider to supply renewable
energy to power the data centers owned by them [12].

A major downside of controlling the number of servers dynamically over time according to the
service requirement is that, in reality, there are some adverse effects associated with transitioning
a server from OFF to ON and vice versa. These adverse effects arise from three sources, namely, (i) the
servers consume almost peak energy during the transition without performing any work; (ii) there
may be some adverse effects of frequent transitions from OFF to ON and vice versa on the server
lifetime; and (iii) there are job migration overheads that need to be taken care of by virtualization tools.
However, it may be noted that the server virtualization techniques are currently quite mature and
implemented in a fairly robust way in large scale data centers [40]. Another work proposing a joint
optimization procedure to perform energy efficient virtual machine assignment and traffic engineering
by considering specific characteristics of the applications and the topology of the network may be
found in [41]. In literature, the adverse effects of server switching has been modeled as both linear [18]
and non-linear functions [19]. For the purposes of the present paper, we assume a linear cost as our
focus is energy aware pricing, and we are not interested in analyzing the structure of the switching
cost function itself and its effects as described in [19,25]:

Ci(Λi(t)) = pi(t){αi(t)mi(Λi(t))− ri(t)}+ + ρ(mi(Λi(t)), mi(Λi(t− 1))) (8)

Here, ρ (.) denotes the function to capture the adverse effects of toggling servers which is
assumed to be:

ρ(mi(Λi(t)), mi(Λi(t)) = ε{mi(Λi(t))−mi(Λi(t− 1))}+ (9)
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We now present the pricing model of the IaaS providers. The most common charging is a revenue
based model, which we adopt here. The profit margin is to be strategically determined by the IaaS
providers. The optimization procedure for the load distribution takes care of the aggregated cost
incurred by the SaaS providers, which accounts for the fact that the IaaS providers charging high
prices will experience a reduced demand. The profit earned by the IaaS provider i, during timeslot t,
is given by:

πi(t) = (γi − 1)Ci(Λi(t)) (10)

The cumulative profit earned by IaaS provider i, from t = 1 to T is obtained by:

Πi(T) = ∑T
t=1π

i(t) (11)

Typically, there are many SaaS providers but only a few IaaS providers [7]. As a result, one IaaS
provider will service more than one (in fact many) SaaS providers. It would therefore be quite natural
that the SaaS providers are charged as per the fraction of the workload serviced by the IaaS provider
i. This is true for all the IaaS providers. The realization of the price incurred by SaaS provider s,
for workload type k is obtained by:

Ps(λs
k(t)) = γi λ

s
k(t)

Λi
k(t)

Ci(Λi
k(t)) (12)

The total cost incurred by SaaS provider s, aggregated across all the workload types is obtained by:

Ps(λs
+(t)) = ∑K

k=1γ
i λ

s
k(t)

Λi
k(t)

Ci(Λi
k(t)) (13)

We now present the optimization procedure to determine the load distribution which would
minimize the total cost incurred by the SaaS providers. As done previously in our earlier work [36],
we assume that there is a centralized coordinator who mediates the load balancing process between the
IaaS providers. However, [27] did not differentiate between SaaS providers and IaaS providers, which
is considered in the present paper. Here, the IaaS providers and SaaS providers are modeled as per
their typical characteristics, which is the major contribution of this paper. We specifically focus on the
load distribution between the IaaS providers. This would, in turn, minimize the cost paid by the end
customers. This also takes care of the fact that the IaaS providers charging more (and thereby earning
more revenue) will experience a reduction in demand. This can also be mediated by the regulator
to ensure fairness and service compliance in the cloud service market. The objective function of the
optimization procedure is presented in (14). The constraints are presented in (15) to (18):

Minimize ∑N
i=1γ

iCi(Λi(t)) (14)

Subject to ∑S
s=1λ

s
k(t) = ∑N

i=1Λi
k(t), ∀k, t (15)

Λi(t) = ∑K
k=1Λi

k(t), ∀i, t (16)

m(Λi
k(t)) = ∑S

s=1ms
k(λ

s
k(t)) ∀i, t (17)

Λi
k(t) ≥ 0, ∀k, i, t (18)

The constraint in Equation (15) ensures that the aggregate workload generated by all the SaaS
providers is equal to the aggregate workload served by the IaaS providers, for all workload types k.
The total workload serviced by IaaS provide i, is the total amount of workload received by it, summed
across all the workload types. This condition is enforced through Equation (16). The total number of
servers provided by IaaS provider i is the sum across the number of servers to be provided for different
workload types, as per the QoS for the type of the workload. This is enforced through Equation (17).
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It may be noted that we assume that for each workload type k, the amount of server requirement is
known to the IaaS providers, which is reflected in the price charged by the SaaS providers to the end
customers. On top of this, the optimization procedure (and the algorithm to implement this) must take
care of the fact that the workload assigned to an IaaS provider is non negative for all workload types
and IaaS providers. This is ensured through Equation (18). In the following subsection, we present the
methodology for earning higher profit by proving better QoS for the services.

Methodology for Provisioning Servers for Higher Profit:

The improvement of business revenue, by charging a higher cost for a better quality of service is
a fairly rich topic [35]. The quality of service provided becomes very crucial when there is competition
as in the cloud service market. However, we feel that more rigorous investigations on modeling
the value of improved quality are required to handle this properly. We now present a strategy to
improve the performance in terms of QoS for the higher priority jobs based on the square root staffing
law, in queueing theory literature [42]. This states that, for an M/M/k queue with arrival rate λ, server
speed µ, and R = λ/µ, if k∗α denotes the least number of servers to ensure that the probability that a job
has to queue is upper bounded by α, then

k∗α = R + c
√

R,

where c solves the following:
cΦ(c)
φ(c)

=
1− α
α

(19)

where Φ(.)and φ(.) denote the CDF and pdf of a standard normal distribution, respectively [42].
However, we note that the formula given above is based on the assumption that a Poisson distribution
of mean λ can be approximated (with reasonable precision) by a normal distribution with the same
mean and variance λ, as long as λ is large [42]. This assumption would hold for large scale server
farms and is the reason why we chose to apply this in server provisioning.

In this work, we make a simple yet reasonable assumption that the increase in profit is a linear
function of decrease in average response time, with a constant ηk (depends on the workload type)
that controls the sensitivity of the profit with respect to the QoS (in this case, average response time).
The physical interpretation of ηk is that it represents the customers’ willingness to pay more for better
QoS associated with job type k:

∆πs = −∑m
k=1ηkδkλ

s
k(∆E[ts

k]) (20)

This policy is separate from the optimization procedure described in Equation (14) through
Equation (18) and provides another “knob” for strategically controlling the price-quality tradeoff.
We employ this strategy of providing better QoS on top of the baseline strategy presented above.
This strategy is called as Square Root Algorithm (SqRA) since this is computed on the basis of the
square root staffing rule in queueing theory [42].

The following section presents the novel experimental setup under which we carry out the
simulations to emulate the dynamics of a typical three-tiered cloud service market, although there have
been some research efforts to understand the price and the negative effect associated with congestion
in the Internet [2]. We hope that this simple approach will enable more sophisticated developments in
the areas of rewards for better quality service in the cloud service market.

3. Performance Evaluation

This section discusses the settings under which we perform simulation experiments to evaluate
the efficiency and effectiveness of the pricing strategy proposed in this paper. We used real data
traces to carry out the experiments. We consider a market with three IaaS providers and six SaaS
providers serving a pool of end customers, as shown in Figure 1. In the simulation, we assume that
each IaaS provider is operating a data center where we assume that the IaaS providers 1, 2 and 3 are
operating their data centers in California, New York and Pennsylvania, respectively. However, the
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model proposed in the paper can handle an arbitrary number of data centers operated by an IaaS.
In that case, the respective IaaS needs to perform some GLB strategy as presented in [25]. The electricity
price data is obtained from [43]. The timeslot length is set to be 1 h. The simulation is carried out for
a time scale of two days and the results are reported in the following section. The workload trace is
taken from a commercial server farm owned by Facebook, obtained from [44] which have also been
used earlier in [36]. The renewable energy trace and PUE are obtained from [44] and are also the ones
used in [36]. For the workload types, it is assumed that there are four different workload types. It may
be noted that the workload characteristics can capture the inherent nature of the workload such as
type, resource requirement, processing cost, revenue to the SaaS providers, etc. The type of workload
may be scientific simulation, medical image processing, workload generated by the customers of
an online retail business, workload generated by a corporate business analytics system, etc. In fact,
this can include any service provided in the cloud system. The workload characteristics are defined by
end customers and they are identical across all the SaaS providers and IaaS providers in the market.
The most crucial attribute of a workload type is its resource requirement. We have assumed different
server requirement for each workload type. Obviously, the revenue to the SaaS providers for servicing
these workloads is also different and is defined by the end customers. The resource requirement is
assumed to be a linear function of the amount of workload and varies across different workload types
in the form: mi

k = υkλ
i
k, where k denotes the workload type. The resource requirement characteristics

of different workload types and the corresponding revenue generating constant for an SaaS provider
is presented in Table 2, given below:

Table 2. Model parameters used in the simulation experiments.

Workload Type, k υk δk

1 1.1 1.2
2 1.2 1.25
3 1.4 1.5
4 1.6 1.75

In this model, the SaaS providers charge the end customers in a pay as you go manner, which is
the pricing scheme prevalent in the market [45]. The model presented in Section 2 assumes that the
IaaS providers follow a revenue based model for profit, i.e., the profit earned by the IaaS providers
operating in the market is a linear function of the cost incurred to service the given workload. In other
words, the IaaS provider adds some margin over the operational cost incurred to service the given
workload. The profit margin a particular IaaS provider chooses to earn depends on the margin and
market share trade-off. During the load distribution, the load is distributed so as to minimize the
total cost. This is controlled by a centralized entity, which may be the regulatory body, as described in
Figure 1. We focus on considering the competition between the IaaS providers and this load distribution
optimization procedure is designed to distribute the load among the IaaS providers. This implies
that if a provider chooses to earn more revenue by higher pricing, then it would eventually lose
demand and consequently lose its market share. If this continues for long, then the service provider
trying to charge more will get extinct from the market. The optimization procedure presented in
Section 2 takes care of this and computes an optimal load balancing in this cloud service market.
This is a popular model in economics and deployed in pricing of a wide range of products and
services [46]. Moreover, since the cloud service is an emerging market, there will be some regulators
in the market responsible for ensuring that there is no monopoly in the market and the customers
are priced fairly [36]. If there is monopoly in the market, then the profit driven companies may even
increase the price unreasonably since the customers will not have any alternative service provider
to go to. In the simulation experiments, we assume that the operating IaaS providers 1, 2 and 3 are
earning profits that are 5%, 10% and 8% of their operational costs, respectively. The following section
presents and discusses the results. While implementing the SqRA strategy for providing better QoS
to earn higher profit, we choose the parameter c in Equation (17) to be equal to 1 in the numerical
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experiments. It may be noted that c can be chosen arbitrarily as per the QoS preference of the end
customers, which would depend on the job type as well.

4. Results

Figure 2 given below plots the electricity cost experienced by the IaaS providers. Figures 3 and 4
plot the time series data of PUE and renewable energy availability, respectively. The renewable energy
availability is normalized with respect to the amount of energy required to power a single server for
one timeslot. Here are some details about the workload trace used in this evaluation. We took the
workload trace publicly released by Facebook, in the form of time-series variation in the number of
job requests at one of their server cluster [36]. It is well-known that, in general, the Internet traffic
follows a diurnal pattern [24]. Preserving the temporal variation of the total workload, we generate
the workload produced by the individual SaaS providers. The amount (size) of workload incurred by
a job request is assumed to follow Poisson distribution with a mean that can be serviced by one server
with unit service rate in one timeslot. In this paper, we do not discriminate between workload and job
request and use these two terms interchangeably. The requests are generated by the end customers
and are submitted to the SaaS providers. Once these requests reach the SaaS providers, they map it to
some executable workloads that are to be submitted to the IaaS providers. We develop an optimization
procedure for the load distribution among the IaaS providers. Figure 5 plots the temporal variation of
the total workload (in no. of requests) generated by the SaaS providers, which are actually mapped
from the requests generated from the end customers.Electronics 2016, 5, 65 12 of 20 
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Figure 6 plots the time series data of the workload generated by the individual SaaS providers.
We assume that the end customer chooses the SaaS provider individually, which is exogenous to
the model. There are typically many factors that determine the overall business revenue of an SaaS
provider like the size, the reputation, customer base, maturity in terms of technology deployments, etc.
We observe from Figure 6 that some SaaS providers constantly experience more demand than others,
which can indeed happen in practice. The size and scale of the SaaS providers can also be different [3].
However, the framework presented in Section 2 captures the details of a cloud service system at a very
detailed granularity. It is challenging to obtain the detailed distribution of the different job types
serviced by SaaS (and IaaS subsequently). For the four individual workload types, we assume that
each of them contributes to one quarter of the total workload. However, the resource requirement
for each workload is different, which is presented in Table 2 of the previous section. The revenue
associated with different workload types are also different and are in line with resource requirements.
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To compare the effectiveness of the optimization procedure proposed in Section 2, we compare it
with uniform load balancing among the IaaS providers. Figure 7 given below shows that the proposed
energy and renewable aware load distribution strategy significantly outperforms the uniform load
balancing strategy, which still exists in practice [47]. This uniform load balancing strategy serves as
a reasonable baseline policy with respect to which comparisons are carried out [25]. For better visibility,
the y-axis is in logarithmic scale.

We now present and discuss next the results in terms of the increase in profit experienced by
the IaaS providers and the SaaS providers after providing servers as per the strategy presented in
Section 2. Figure 8 presents the profit earned by the three IaaS providers in the market, before and
after the implementation of the proposed SqRA. Similarly, Figure 9 given below presents the profit
earned by the SaaS providers (six of them), before and after implementation of SqRA.
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Algorithm (SqRA): (a) SaaS provider-1; (b) SaaS provider-2; (c) SaaS provider-3; (d) SaaS provider-4;
(e) SaaS provider-5; and (f) SaaS provider-6.

Tables 3 and 4 given above present the percentage increase in the profit earned after
implementation of SqRA for all the IaaS providers and SaaS providers, respectively. It is observed
that after the application of the SqRA strategy, the profit for all the entities has increased. It may be
noted that this reflects the price paid by the customers in exchange for superior QoS. The extra cost for
SqRA is incurred by the IaaS providers and recovered from the SaaS providers. This is subsequently
recovered from the end customers. Although the improvements are not very huge, we believe that
our work will open up new directions of future research endeavors, which should drive significant
innovations in the development of energy efficient pricing strategies for the cloud service market.
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Table 3. Increase in profit earned by the Infrastructure-as-a-Service (IaaS) providers after implementing
Square Root Algorithm (SqRA).

Entity Increase in Profit after Application of SqRA (in Percentage)

IaaS-1 4.3 (↑)
IaaS-2 9.1 (↑)
IaaS-3 1.8 (↑)

Table 4. Increase in profit earned by the Softaware-as-a-Service (SaaS) providers after implementing SqRA.

Entity Increase in Profit after Application of SqRA (in Percentage)

SaaS-1 7.66 (↑)
SaaS-2 9.05 (↑)
SaaS-3 8.06 (↑)
SaaS-4 7.94 (↑)
SaaS-5 4.89 (↑)
SaaS-6 7.15 (↑)

5. Conclusions

In this paper, we have considered a hierarchical cloud service market and proposed an energy
efficient pricing strategy. The cloud service market consists of three types of entities: (i) end customers;
(ii) SaaS providers; and (iii) IaaS/PaaS providers. The end customers generate demands in the market
in the form of heterogeneous jobs. These jobs are serviced by SaaS providers who host their services
in the cloud, leasing the resources from the IaaS/PaaS providers. Typically, these SaaS providers are
small- to medium-sized enterprises and the IaaS/PaaS providers are big companies with cloud service
infrastructure at a larger scale. We have presented a simple but practical model to mathematically
characterize the profit made by the different entities with different job types with different service
requirements. These different jobs necessarily require different amount of resources to get serviced
and are therefore associated with different value to the service providers in the cloud service market.
We have used the SqRA technique in queueing theory to provide a better QoS in order to earn more
profits. We have carried out a performance evaluation with real data sets on electricity price, renewable
generation, workload service request and some operational details of the data centers. We have
demonstrated the effectiveness of the proposed strategy and presented the results.

Acknowledgments: The authors thank the support of their respective universities.

Author Contributions: Debdeep Paul conceived, designed, and performed the experiments with the advices and
inputs from Wen-De Zhong and Sanjay Kumar Bose. Debdeep Paul wrote the paper draft; Wen-De Zhong and
Sanjay Kumar Bose edited and revised the paper, and provided suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SaaS Software-as-a-Service
IaaS Infrastructure-as-a-Service
PaaS Platform-as-a-Service
PUE Power Usage Effectiveness
GLB Geographical Load Balancing

References

1. Shu, Z.; Wan, J.; Zhang, D.; Li, D. Cloud-integrated cyber-physical systems for complex industrial
applications. Mob. Netw. Appl. 2015, 1–14. [CrossRef]

http://dx.doi.org/10.1007/s11036-015-0664-6


Electronics 2016, 5, 65 18 of 19

2. Anselmi, J.; Ardagna, D.; Wierman, A. Congestion and Price Competition in the Cloud. Available online:
http://rsrg.cms.caltech.edu/netecon/papers/cloudmarket.pdf (accessed on 9 June 2016).

3. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.;
Stoica, I.; et al. A view of cloud computing. Commun. ACM 2010, 53, 50–58. [CrossRef]

4. Liu, Q.; Wan, J.; Zhou, K. Cloud manufacturing service system for industrial-cluster-oriented application.
J. Internet Technol. 2014, 15, 373–380.

5. Navarro, T. Global Cloud Market Will Be Worth $121bn by Next Year, Report Finds. Available
online: http://www.cloudcomputing-news.net/news/2014/mar/05/global-cloud-market-will-be-worth-
121bn-next-year-report-finds/ (accessed on 19 May 2014).

6. Graymatics, Inc. Available online: http://www.graymatics.com/ (accessed on 18 August 2015).
7. Anselmi, J.; Ardagna, D.; Lui, J.C.; Wierman, A.; Xu, Y.; Yang, Z. The economics of the cloud: Price

competition and congestion. ACM SIGecom Exch. 2014. [CrossRef]
8. Stoft, S. Power System Economics: Designing Markets for Electricity; Wiley-IEEE Press: Hoboken, NJ, USA, 2002.
9. EC2 Prices, Amazon Web Services. Available online: http://aws.amazon.com/ec2/pricing/ (accessed on

18 August 2015).
10. Amazon EC2, Amazon Web Serivices. Available online: http://aws.amazon.com/ec2/ (accessed on

18 August 2015).
11. Xu, H.; Li, B. Dynamic cloud pricing for revenue maximization. IEEE Trans. Cloud Comput. 2013, 1, 158–171.

[CrossRef]
12. Cook, G. Clicking Clean: How Companies Are Creating the Green Internet; Greenpeace, Inc.: Washington, DC,

USA, 2014.
13. Pedram, M. Energy-efficient datacenters. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2012, 31,

1465–1484. [CrossRef]
14. Mastelic, T.; Oleksiak, A.; Claussen, H.; Brandic, I.; Pierson, J.-M.; Vasilakos, A.V. Cloud computing: Survey

on energy efficiency. ACM Comput. Surv. (CSUR) 2015, 47, 33. [CrossRef]
15. Wang, B.; Qi, Z.; Ma, R.; Guan, H.; Vasilakos, A.V. A survey on data center networking for cloud computing.

Comput. Netw. 2015, 91, 528–547. [CrossRef]
16. Meisner, D.; Gold, B.T.; Wenisch, T.F. PowerNap: Eliminating server idle power. In ACM Sigplan Notices;

ACM: New York, NY, USA, 2009; pp. 205–216.
17. Andrew, L.L.; Lin, M.; Wierman, A. Optimality, fairness, and robustness in speed scaling designs. In ACM

SIGMETRICS Performance Evaluation Review; ACM: New York, NY, USA, 2010; pp. 37–48.
18. Lin, M.; Wierman, A.; Andrew, L.L.; Thereska, E. Dynamic right-sizing for power-proportional data centers.

IEEE/ACM Trans. Netw. 2013, 21, 1378–1391. [CrossRef]
19. Paul, D.; Zhong, W.-D.; Bose, S.K. Demand response in data centers through energy-efficient scheduling and

simple incentivization. IEEE Syst. J. 2015. [CrossRef]
20. Papavasiliou, A.; Oren, S.S. Supplying renewable energy to deferrable loads: Algorithms and economic

analysis. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8.
21. Wang, L.; Zhang, F.; Zheng, K.; Vasilakos, A.V.; Ren, S.; Liu, Z. Energy-efficient flow scheduling and routing

with hard deadlines in data center networks. In Proceedsings of the 2014 IEEE 34th International Conference
on Distributed Computing Systems (ICDCS), Madrid, Spain, 30 June–3 July 2014; pp. 248–257.

22. Wang, L.; Zhang, F.; Aroca, J.A.; Vasilakos, A.V.; Zheng, K.; Hou, C.; Li, D.; Liu, Z. GreenDCN: A general
framework for achieving energy efficiency in data center networks. IEEE J. Sel. Areas Commun. 2014, 32, 4–15.
[CrossRef]

23. Xu, D.; Liu, X.; Vasilakos, A.V. Traffic-aware resource provisioning for distributed clouds. IEEE Cloud Comput.
2015, 2, 30–39. [CrossRef]

24. Liu, Z.; Lin, M.; Wierman, A.; Low, S.H.; Andrew, L.L. Greening geographical load balancing.
IEEE/ACM Trans. Netw. 2014, 23, 657–671. [CrossRef]

25. Paul, D.; Zhong, W.-D.; Bose, S.K. Energy efficiency aware load distribution and electricity cost volatility
control for cloud service providers. J. Netw. Comput. Appl. 2016, 59, 185–197. [CrossRef]

26. Adnan, M.A.; Sugihara, R.; Gupta, R.K. Energy efficient geographical load balancing via dynamic deferral of
workload. In Proceedings of the 2012 IEEE 5th International Conference on Cloud Computing (CLOUD),
Honolulu, HI, USA, 24–29 June 2012; pp. 188–195.

http://rsrg.cms.caltech.edu/netecon/papers/cloudmarket.pdf
http://dx.doi.org/10.1145/1721654.1721672
http://www.cloudcomputing-news.net/news/2014/mar/05/global-cloud-market-will-be-worth-121bn-next-year-report-finds/
http://www.cloudcomputing-news.net/news/2014/mar/05/global-cloud-market-will-be-worth-121bn-next-year-report-finds/
http://www.graymatics.com/
http://dx.doi.org/10.1145/2692375.2692380
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/
http://dx.doi.org/10.1109/TCC.2013.15
http://dx.doi.org/10.1109/TCAD.2012.2212898
http://dx.doi.org/10.1145/2656204
http://dx.doi.org/10.1016/j.comnet.2015.08.040
http://dx.doi.org/10.1109/TNET.2012.2226216
http://dx.doi.org/10.1109/JSYST.2015.2476357
http://dx.doi.org/10.1109/JSAC.2014.140102
http://dx.doi.org/10.1109/MCC.2015.22
http://dx.doi.org/10.1109/TNET.2014.2308295
http://dx.doi.org/10.1016/j.jnca.2015.08.012


Electronics 2016, 5, 65 19 of 19

27. Polverini, M.; Cianfrani, A.; Ren, S.; Vasilakos, A.V. Thermal-aware scheduling of batch jobs in geographically
distributed data centers. IEEE Trans. Cloud Comput. 2014, 2, 71–84. [CrossRef]

28. Naor, P. The regulation of queue size by levying tolls. Econ. J. Econ. Soc. 1969, 37, 15–24. [CrossRef]
29. Mashayekhy, L.; Nejad, M.M.; Grosu, D.; Vasilakos, A.V. An online mechanism for resource allocation and

pricing in clouds. IEEE Trans. Comput. 2016, 65, 1172–1184. [CrossRef]
30. Mendelson, H. Pricing computer services: Queueing effects. Commun. ACM 1985, 28, 312–321. [CrossRef]
31. van Mieghem, J.A. Price and service discrimination in queuing systems: Incentive compatibility of Gc µ

scheduling. Manag. Sci. 2000, 46, 1249–1267. [CrossRef]
32. Kilcioglu, C.; Maglaras, C. Revenue maximization for cloud computing services. ACM SIGMETRICS Perform.

Eval. Rev. 2015, 43, 76. [CrossRef]
33. Feng, Y.; Li, B.; Li, B. Price competition in an oligopoly market with multiple iaas cloud providers.

IEEE Trans. Comput. 2014, 63, 59–73. [CrossRef]
34. Pal, R.; Hui, P. Economic models for cloud service markets. Distrib. Comput. Netw. 2013, 496, 382–396.
35. Banker, R.D.; Khosla, I.; Sinha, K.K. Quality and competition. Manag. Sci. 1998, 44, 1179–1192. [CrossRef]
36. Paul, D.; Zhong, W.-D.; Bose, S.K. Energy efficient cloud service pricing: A two-timescale optimization

approach. J. Netw. Comput. Appl. 2016, 64, 98–112. [CrossRef]
37. Alizadeh, M.; Li, X.; Wang, Z.; Scaglione, A.; Melton, R. Demand-side management in the smart grid:

Information processing for the power switch. IEEE Signal Proc. Mag. 2012, 29, 55–67. [CrossRef]
38. Kaushik, R.T.; Sarkar, P.; Gharaibeh, A. Greening the compute cloud’s pricing plans. In Proceedings of the

Workshop on Power-Aware Computing and Systems, Farmington, PA, USA, 3–6 November 2013; p. 6.
39. Bose, S.K. An Introduction to Queueing Systems; Springer Science & Business Media: Berlin, Germany, 2013.
40. Huang, D.; He, B.; Miao, C. A survey of resource management in multi-tier web applications. IEEE Commun.

Surv. Tutor. 2014, 16, 1574–1590. [CrossRef]
41. Wang, L.; Zhang, F.; Vasilakos, A.V.; Hou, C.; Liu, Z. Joint virtual machine assignment and traffic engineering

for green data center networks. ACM SIGMETRICS Perform. Eval. Rev. 2014, 41, 107–112. [CrossRef]
42. Harchol-Balter, M. Performance Modeling and Design of Computer systems: Queueing Theory in Action; Cambridge

University Press: Cambridge, UK, 2013.
43. US Energy Information Administration. Available online: http://www.eia.gov/electricity/wholesale/

(accessed on 1 March 2016).
44. Liu, Z.; Liu, I.; Low, S.; Wierman, A. Pricing data center demand response. In Proceedings of the

ACM International Conference on Measurement and Modeling of Computer Systems, Austin, TX, USA,
16–20 June 2014; pp. 111–123.

45. Yeo, C.S.; Venugopal, S.; Chu, X.; Buyya, R. Autonomic metered pricing for a utility computing service.
Future Gener. Comput. Syst. 2010, 26, 1368–1380. [CrossRef]

46. Laffont, J.-J.; Tirole, J. A Theory of Incentives in Procurement and Regulation; MIT Press: Cambridge, MA,
USA, 1993.

47. Wendell, P.; Jiang, J.W.; Freedman, M.J.; Rexford, J. Donar: Decentralized server selection for cloud services.
ACM SIGCOMM Comput. Commun. Rev. 2010, 40, 231–242. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCC.2013.2295823
http://dx.doi.org/10.2307/1909200
http://dx.doi.org/10.1109/TC.2015.2444843
http://dx.doi.org/10.1145/3166.3171
http://dx.doi.org/10.1287/mnsc.46.9.1249.12238
http://dx.doi.org/10.1145/2847220.2847245
http://dx.doi.org/10.1109/TC.2013.153
http://dx.doi.org/10.1287/mnsc.44.9.1179
http://dx.doi.org/10.1016/j.jnca.2015.10.016
http://dx.doi.org/10.1109/MSP.2012.2192951
http://dx.doi.org/10.1109/SURV.2014.010814.00060
http://dx.doi.org/10.1145/2567529.2567560
http://www.eia.gov/electricity/wholesale/
http://dx.doi.org/10.1016/j.future.2009.05.024
http://dx.doi.org/10.1145/1851275.1851211
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Model for a Three-Tiered Cloud Service Market 
	Performance Evaluation 
	Results 
	Conclusions 

